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Abstract

This paper presents a robust multi-cue approach to the integrated detection and tracking of pedes-

trians in cluttered urban environment. A novel spatio-temporal object representation is proposed that

combines a generative shape model and a discriminative texture classifier, both composed of a mixture

of pose-specific submodels. Shape is represented by a set of linear subspace models, an extension of

Point Distribution Models, with shape transitions modeled by a first-order Markov process. Texture,

i.e. the shape-normalized intensity pattern, is represented by a manifold implicitly delimited by a set

of pattern classifiers, while texture transition is modeled by a random walk. Direct 3D measurements

provided by a stereo system are furthermore incorporated into the observation density function. We

employ a Bayesian framework based on particle filtering to achieve integrated object detection and

tracking. Large-scale experiments involving pedestrian detection and tracking from a moving vehicle

demonstrate the benefit of the proposed approach.

I. INTRODUCTION

Pedestrians, and children in particular, are the most vulnerable participants of today’s urban

traffic. The goal of this paper is to present techniques for sensor-based driver assistance systems

that detect potentially dangerous situations with pedestrians ahead of time. Such systems could

then raise a warning to a possibly inattentive driver or, if no sufficient time remains, initiate

protective measures such as automatic vehicle braking or the deployment of front airbags to

either avoid an accident or to mitigate the impact of an otherwise unavoidable collision.

A prerequisite to such systems is the capability to accurately detect, localize, and track

pedestrians. We make use of video sensors, because they provide fine-grained texture information

that allows to distinguish pedestrians from other objects in the traffic environment. But the

problem is challenging from a computer vision perspective due to the great variety of human

appearances, background structure, and lighting conditions. While many different approaches to

pedestrian detection and tracking have previously been studied in the literature, we seek to gain

robustness by the use of multiple visual cues and their tight integration.

Building upon previous work [18], this paper introduces a novel spatio-temporal object repre-

sentation that combines mixture models of shape and texture. An associated observation density

function integrates multiple visual cues: shape, texture, and depth. Object shape is used, since it

is distinctive yet sidesteps variation in object appearance due to texture. Furthermore, efficient

matching techniques exist [17]. We utilize an extension of Point Distribution Models [6], [15]
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to represent 2D object silhouettes by a set of distinct linear subspace models, each attuned to

a distinct body pose or articulation. Temporal shape changes are represented by probabilities of

subspace switching, by means of a Markov transition matrix. This shape model is generative in

that it allows to synthesize shape hypotheses from the transition prior. Accurate segmentation of

the object region is obtained by matching the shape hypotheses to image data using an active

contour algorithm.

The object model is complemented by a texture component that employs a pattern classifier to

make the distinction between object and background regions, after the image patch has been nor-

malized for shape. The texture component also involves a mixture model, with separate classifiers

for each shape subspace for enhanced specificity. Within a Bayesian tracking framework, this

discrimination capability allows inference to be made not only about object configuration (posi-

tion, shape, etc.) but also about the object class (target object versus background clutter). This

enables the tracker to recognize false initializations and object disappearance, thus performing

integrated object detection and tracking.

3D object kinematics (position and velocity) is modelled, which allows to incorporate available

real-world knowledge and for which we obtain direct observations by means of stereo imag-

ing (“depth”). We solely rely on learning-based approaches for constructing our object model

from training data, since no prior object models are available that accurately describe human

appearance in an arbitrary environment.

We apply our multi-cue object model within a Bayesian framework for detection and tracking

based on particle filtering. The choice of particle filtering is due to the cluttered environment

of our application and the use of highly nonlinear observations, which leads to a non-Gaussian,

multi-modal posterior probability density function. An independently operating object detection

module provides object hypotheses from single image frames, which are used to initialize new

tracks and which serve as an additional source of information for particle sampling of existing

tracks. Extensive evaluation of the proposed approach is performed on video data recorded on

two half-hour drives in urban environment.

The outline of the paper is as follows. After reviewing previous work in Section II, our

proposed multi-cue object model is described in Section III. Subsections IIIA–C cover details of

the individual components shape, texture, and depth, their integration is described in Subsection

III-D. In Section IV, details of the implementation of our particle filtering framework integrating
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the proposed object model and the independent object detector are given. Experimental results

that validate the proposed approach are presented in Section VI, and we conclude in Section

VII.

II. PREVIOUS WORK

There is extensive literature on the visual detection and tracking of pedestrians. A detailed

survey of different sensor modalities and detection methods has recently been given in [13]

and [14]. Previous research on detection and tracking systems can roughly be divided into two

distinct lines. One line of research combines single-frame pedestrian detection with general-

purpose object tracking. For the former, pattern classification techniques such as Support Vector

Machines [8], [29] or AdaBoost [40] were applied to various feature extraction methods, e.g.

Haar wavelets [29], [40] or orientation histograms [8]. See [27] for a recent comparative study.

The subsequent tracking step builds upon Kalman filters [1], [5] or particle filtering [28]. Despite

successful applications, such approaches only utilize position information for tracking and drop

valuable information about temporal appearance transition. Alternatively, temporal image features

have been integrated into texture classification [40], [41], but these approaches require additional

means for ROI (region of interest) alignment or are applicable to static camera scenarios only.

In this paper, discriminative texture classification is integrated into a probabilistic object model

employed within a Bayesian tracking framework.

Bayesian tracking approaches form the second line of research. They involve an object model

with an associated observation density function, and a mathematical method to sequentially

infer the posterior probability density. See Table I for an overview. Regarding object models,

an attractive way of representing pedestrians involves shape models, because they eliminate the

need for modeling intensity variations that arise from varying lighting or clothing. The manifold

of pedestrian shapes has either been represented by a set of exemplars in combination with

efficient coarse-to-fine matching techniques [17], [37], [38], or by parametric representations of

deformable contours [4], [6], [15], where shape matching involves iterative parameter estimation

techniques. Recently, statistical field models have been introduced that directly model edge

observation likelihoods [24], [43].

However, a vulnerability of purely shape-based approaches is their susceptibility to background

clutter, since random background structure may lead to similar shape observations as the target
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TABLE I

OVERVIEW OF VISUAL CUES AND TRACKING METHODS USED IN PREVIOUS WORK ON VISUAL TRACKING OF HUMANS

Authors Object Model Visual Cues Tracking

Shape Texture Motion Others? Approach

Deutscher et al.,

2000, [9]

3D assembly of

cylinders

edge

pixels

BG subtr. “Annealed” PF

Isard and Mac-

Cormick, 2001 [22]

3D generalized

cylinder

Mexican

hat filter

color PF

Soto and Khosla,

2001 [35]

2D appearance edge

pixels

color

histogram

stereo PF

Toyama and Blake,

2002 [38]

2D shape exemplars edge

pixels

PF

Fablet and Black,

2002 [10]

2D appearance optical

flow

PF

Sidenbladh and

Black, 2003 [34]

3D assembly of

truncated cones

edge,

ridge

intensity

diff.

PF

Spengler and

Schiele, 2003 [36]

2D appearance skin color BG subtr. Kalman or PF

Zhao and Nevatia,

2004 [45]

3D shape and

locomotion

optical

flow

BG subtr. Kalman

Roth et al., 2004

[32]

2D appearance gradient

pixels

PF

Okuma et al., 2004

[28]

2D appearance color

histogram

“Mixture” PF

Kang and Kim,

2005 [24]

2D shape (SOM) edge

pixels

PF

Ramanan et al.,

2005 [31]

component-based

2D shape

edge

pixels

color

classifier

MAP search by

DP

Wu and Yu, 2006

[43]

2D shape (Markov

field)

edge

pixels

PF

Wu and Nevatia,

2006 [42]

2D component

appearance

“Edgelets” data association

or meanshift

Alonso et al., 2007

[1]

2D component

appearance

Canny,

HoN

histogram,

NTU

Kalman

This paper, 2007 mixture of 2D

shape (PDM) and

texture

edge

pixels

texture

classifier

stereo PF

BG subtr.: background subtraction; PF: particle filtering; PDM: Point Distribution Models [6]; SOM: Self-Organizing Map;

DP: Dynamic Programming; HoN: Histogram of normalized gradients; NTU: “number of texture unit”, see [1].
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class. Increased robustness and accuracy has been obtained by combining shape and texture, such

as the compound linear models described in [7], [11], [23]. Their application, however, is time

consuming, since a model fit requires the combined estimation of shape and texture parameters

by means of iterative, gradient descent-like methods. As a way out, separate models of shape

and texture have been built, and their observations have been combined in a joint observation

density function [22], [34], [35].

Orthogonal to combining multiple visual cues, the accuracy of appearance models has been

increased by using mixtures of pose-specific models. For instance, Heap and Hogg [19] proposed

a “Hierarchical PDM” (point distribution model) approach to 2D shape modeling, where a set of

locally linear shape models is found by a k-means clustering of the training data. The adaptation

of this approach in [18] has been used for our shape model in Section III-A. Other authors [42],

[44] manually categorize by viewing angle (e.g., left, right, frontal, and back views), and build

separate object models for each viewing direction.

Regarding pedestrian tracking, particle filtering has evolved as the standard tool because of

its ability to estimate complex multi-modal posterior pdfs (probability density functions) that

arise in cluttered environments. Following the seminal work of Isard and Blake [20] who re-

introduced particle filtering to computer vision, many extensions have been proposed regarding

mixed discrete/continuous state spaces [19], improved sampling strategies [9], [21], and the

integration of multiple visual cues [21], [26], [36].

Tracking needs to handle a variable number of objects which randomly enter or leave the

field of view. This can be achieved by a joint state space of variable dimension, where the

number of objects is inferred in parallel with each object’s configuration [22], [25]. However,

the computational burden, increasing exponentially with dimension, is high. If complex object

representations or complex observation models are involved, authors have generally refrained

from joint state spaces but rather ran multiple (single target) tracker instances in parallel. Some

heuristics are then typically used to handle track initialization and termination, and to implement

target interactions. For example, a separate tracker instance with uniform prior distribution was

employed in [24], while independent object detector processes were used in [21], [28]. Object

detection performance is clearly limited by the initialization heuristic, which operates on single

frames only. In this paper, inference about the object class is therefore made by the tracker in

a sound Bayesian manner, based on the discriminatory components of our object model. For
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processing cost reasons, one separate tracker is employed for each pedestrian hypothesis.

III. MULTI-CUE OBJECT REPRESENTATION

In this section, we introduce the cues that we use to represent the object class, their observation

in video images, and their temporal transition. Three different visual cues are considered: shape,

texture, and depth. Object shape is represented by its 2D contour for which we build a parametric

mixture model (subsection III-A). Texture denotes the pixel intensity pattern within the object’s

contour obtained after shape normalization (subsection III-B). Direct 3D measurements from

stereo imaging are incorporated by the depth cue (subsection III-C).

All three cues are represented within the object state vector xt = (ut, st,vt), which consists

of object position and velocity in 3D, ut, shape st, and texture vt, at time index t. The use of

a Bayesian approach for tracking requires to model the temporal transition of the object state,

p(xt |xt−1), and its observation by means of image features Zt extracted from the input image

at time t, p(Zt |xt). The observation density function is derived in subsection III-D below by

integrating the three visual cues. For modeling the transition pdf (probability density function),

we assume the decomposition

p(ut, st,vt |ut−1, st−1,vt−1) = p(ut |ut−1) p(st | st−1) p(vt | st, st−1,vt−1) . (1)

The individual transition pdfs are derived below.

A. Shape

Our shape model is three-fold consisting of a parametric representation of static shapes of the

object class, a model of temporal transition, and an observation function.

1) Static Shape Model: For modeling the 2D contours of pedestrians in still images, we

employ the Multi Point Distribution Models described in [15]. A mixture of linear subspace

models is used to handle the manifold of pedestrian shapes, each describing a certain body pose

or viewing direction. The shape model is built from training data in a semi-automatic process

consisting of the following two steps (see Figure 1):

Registration and clustering: In the first step, the training shapes are partitioned into K

clusters (K given by the user), and point correspondences are established. These two operations

are done jointly: Shape registration is only done within each cluster to ensure that physical point
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Fig. 1. Illustration of the construction of our shape model. The set of training shapes is first partitioned into clusters of distinct

body poses, and a linear subspace model is built for each cluster. Temporal transitions between the clusters are represented by

a Markov transition matrix.

correspondences can be found, and the distance function used for clustering is based on the actual

point correspondences. Details of the integrated shape registration and clustering algorithm are

given in [15]. This fully automatic procedure is followed by a manual refinement step to correct

obvious errors in clustering or registration.

Linear subspace model: The result of the registration and clustering procedure is a set

of K local vector spaces. A compact representation of each local vector space is obtained by

principal component analysis (PCA), where the number of eigenvectors to retain is chosen such

that a user-supplied fraction of the total variance (we use 95%) is explained. A Mahalanobis

threshold is then determined that covers a user-supplied fraction of the training examples, e.g.

90%. Examples outside the resulting hyperellipsoid are considered outliers, while a truncated

normal distribution is assumed within the hyperellipsoid.

2) Shape Observation: The chamfer distance is used to measure the similarity between an

instance of our static shape model and an observed image, where the position and direction of

edges found in image I are used as features. We make use of the multi-feature distance transform

[17] to compute the shape observation

zshape(I,x) =
1

|S|

∑

s∈S

DI(s) , (2)

where S is the set of pixels resulting from the projection of the shape parameters into the image

I , and DI(s) is the distance from s to the closest edge pixel in I with a matching edge direction.

The shape observation zshape is incorporated into the observation density function in subsection
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III-D.

3) Shape Transition: The temporal transition of an object’s shape is decomposed into pose

cluster switching and shape changes within each cluster. The former is handled by a discrete

first-order Markov process, where entry Ti,j of the transition matrix describes the probability

of switching from cluster ct−1 = i to ct = j. A Gaussian random walk is assumed for shape

changes within the same cluster (ct−1 = ct), while the shape prior is used in the case of a cluster

switch. More precisely, if (ct,bt) is the shape state at time t consisting of the pose cluster ct

and PCA coefficients bt, then

p(ct,bt | ct−1,bt−1) = Tct−1,ct
·











gct
(bt |bt−1) if ct = ct−1

p(bt | ct) if ct 6= ct−1 ,

(3)

where gct
is a Gaussian random walk and p(bt | ct) is the normal shape prior, both subject to

the Mahalanobis threshold prescribed above.

B. Texture

The texture cue represents the variation of the intensity pattern across the image region of

target objects. Much like in the Active Appearance Models by Cootes et al. [7], appearance

variations that arise from differing shapes are eliminated by normalizing each object image for

shape. Given the pose cluster and the parameters of the respective shape submodel, a Delauney

triangulation method [3] is used to obtain a piece-wise affine warp to the mean shape of the

respective pose cluster; see Figure 2 for a few examples. Let VI(u, s) denote the texture vector

such obtained from image I at position u (projected to the image plane) with shape parameters

s.

1) Static Texture Representation: Although appearance variation has already been significantly

reduced by shape normalization, the foreground texture distribution of the pedestrian class is still

very complex due to the great diversity of clothing, and due to varying lighting conditions. We

hence do not attempt to build a generative model of this manifold, but instead make use of a

generic pattern classifier to find the decision boundary between object and non-object texture

patterns. In earlier research [27], we found a neural network with local receptive fields [41]

particularly suitable for the task of pedestrian classification. One such neural network hc is

trained for each pose cluster c = 1, . . . , K.
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Fig. 2. Examples of shape normalization. The top row shows a few examples of the training set that fall into the same pose

cluster. Texture warping to the pose cluster prototype is shown in the bottom row. Contour labels are superimposed on the

examples images for visualization purposes, background pixels outside this contour are masked out for further processing.

Texture observation, given an input image and an hypothesized object configuration x =

(u, s,v), then involves to feed the shape-normalized image patch VI(u, s) into the neural network

of pose cluster c to yield the texture observation value

ztexture(I,x) = hc(VI(u, s)). (4)

2) Temporal Texture Transition: The shape-normalized texture pattern of a pedestrian is

assumed to remain constant over time, plus some unknown random noise. The transition pdf is

therefore modeled by cross-correlating the two consecutive texture state vectors vt−1 and vt. If

there is no pose cluster switch, i.e., ct−1 = ct, then the shape-normalized texture vectors vt−1

and vt have pixel-wise correspondence and we define

p(vt |vt−1, ct−1 = ct) ∝ exp
(

− α1ZNCC(vt−1,vt) − α0

)

. (5)

ZNCC denotes the zero-mean normalized cross-correlation given by

ZNCC(a,b) =
(a− ā1) · (b − b̄1)

√

(a − ā1)2(b− b̄1)2
, (6)

where ā is the mean of vector a. In the case of a pose cluster switch, ct−1 6= ct, we observe that

texture transformations occur mainly in horizontal image direction, while the vertical intensity

distribution remains approximately constant. This is exploited by matching the vertical profile
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of the two texture patterns given by a projection to the image y axis and resampling to some

fixed length. We thus have

p(vt |vt−1, ct−1 6= ct) ∝ exp
(

− β1ZNCC(Hct−1
(vt−1), Hct

(vt)) − β0

)

, (7)

where H is the vertical profile operator. The pdf parameters α0, . . . , β1 are learned from training

data.

C. Depth

The depth cue represents the 3D position and velocity of target objects, the former observed

by means of stereo imaging. Modeling object position in 3D space rather than 2D image space

simplifies the dynamical model (we assume constant velocities), and allows to incorporate scene

constraints such as the assumptions of pedestrians standing with at least one foot on the ground.

Thus, u = (ux, uy, uz, uvx, uvy, uvz).

1) Depth Observation: We make use of a feature-based, multi-resolution stereo algorithm

developed by Franke [12]; alternative choices would have been possible, e.g. [39]. The outcome

is a relatively sparse depth map that provides depth estimations along vertical image edges.

Depth measurements are assumed normally distributed around the true depth, so we compute

the mean difference as the depth observation value to be fed into the observation density function

below,

zdepth(I,x) = ZI(u, s) − uz , (8)

where ZI(u, s) denotes the mean of depth measurements within the image region given by (u, s).

2) Dynamics: The dynamics of the position and velocity component u of the state vector is

modeled as a first-order auto-regressive process by

ut =

(

I3 I3∆t

0 I3

)

ut−1 + eu∆t , eu ∼ N(0, Σu) , (9)

where Σu is the user-defined process noise, ∆t the time interval, and I3 denotes the 3×3 identity

matrix.
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D. Cue Integration

Having introduced the individual cues above, we now turn to their integration to model the

density function p(Zt | Xt) of observing image features Zt given the true state Xt, by using

the above cues z = (zshape, ztexture, zdepth). The state of interest Xt to be inferred from the video

sequences is the presence and positions of pedestrians. Here, we assume that either no target

object is present at time t, or exactly one at position xt, which we denote by Xt = Nt and

Xt = (Ot,xt), respectively. Multiple objects are handled by multiple trackers, one for each

object, see Section V.

Roughly, input image It is expected to contain only non-object features in the case Xt = Nt,

whereas in the state Xt = (Ot,xt), object features are expected within the image region given by

xt, and non-object features elsewhere. This decomposition is realized by making a simplifying

assumption: Projecting object state xt to the image plane subdivides the image into a foreground

and a background region. Although not strictly true, we assume that features extracted from

these regions are statistically independent, and that these features obey a common foreground

(FG) or a common background (BG) distribution, respectively. With this assumption at hand,

we follow the reasoning of Sidenbladh and Black [34] and other authors [22], [33] to get

p(Zt | Xt) ∝











p(z(It,xt) |FG)
p(z(It,xt) |BG)

for Xt = (Ot,xt)

1 for Xt = Nt ,

(10)

with the proportionality factor p(Zt | Nt).

In order to find a parametric model of the above likelihood ratio, we notice that:

• The distribution of Chamfer distances zshape is approximated by an exponential distribution

[30], [38].

• The neural network output ztexture is approximately normally distributed about the class

means.

• Both cues, shape and (shape-normalized) texture, represent complementary image features,

so dependencies are relatively weak.

This motivates the use of a quadratic function to approximate the log of the likelihood ratio

log
p(z |FG)

p(z |BG)
≈ z

T Rz + r
T
z + r0 , (11)
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which covers multivariate normal distributions and univariate exponential distributions as special

cases. Non-zero off-diagonal elements of matrix R represent statistical dependencies between

the respective cues. An illustration of the quadratic approximation is given in Figure 3, which,

for visualization purposes, shows two separate quadratic approximations of the two marginal

distributions of shape and texture.
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Fig. 3. Quadratic approximation of the log of the likelihood ratio, shown for the marginal distributions of zshape (left), and

ztexture (right). The ragged borders of both histograms plots arise from sparsely populated histogram bins, whereas the more

densely populated regions around the graph centers are well approximated by the quadratic function.

IV. PARTICLE FILTERING IN AN HYBRID STATE SPACE

For tracking, we make use of a standard sequential importance resampling (SIR, [2]) particle

filter that has been successfully employed in many similar applications (e.g., [22]). Multiple

pedestrians are handled by the simplified approach of instantiating one independent particle

filter per object, initialized from a separate object detection module. However, each particle

filter makes inference about the hybrid state space of object class (target object vs. background

clutter) and object configuration (position, velocity, etc.), in order to cope with false or inaccurate

initializations. In this section, we derive the particle filtering equations for this hybrid state space.

Filtering denotes the recursive computation of the posterior probability p(Xt | Z1:t) of state Xt

given the series of image observations Z1:t = (Z1, . . . ,Zt). Our state of interest Xt is either Nt,

which denotes that no target object is present at time t, or (Ot,xt), which denotes the existence

of an object of configuration xt. Whereas the transition of object configuration xt has been
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-

-

q

1

Nt−1 Nt

Ot−1

xt−1

Ot

xt

1 − pe

ps(xt−1)p(xt |xt−1)

1 −
ps(xt−1)

p
epn(x

t)

Fig. 4. Transition PDF

defined by our object representation above, we still need to define the transitions of states Ot

and Nt, i.e. the appearance and disappearance of objects as illustrated in Fig. 4:

• ps(xt−1) = p(Ot | Ot−1,xt−1) specifies the probability that an object remains within the

detection area given its previous position (“Stay”),

• pe = p(Ot | Nt−1) denotes the probability of the event that a new object enters the detection

area, and

• pn(xt) = p(xt | Ot,Nt−1) describes where new objects enter the detection area.

These functions are application-specific and need to be provided the user. The desired posterior

is then obtained using Bayes rule as (cf. Eq. (4) in [2])

p(Xt | Z1:t) ∝ p(Zt | Xt) p(Xt | Z1:t−1) , (12)

where the transition prior p(Xt | Z1:t−1) is given by the Chapman-Kolmogorov equation (cf. Eq.

(3) in [2])

p(Ot,xt | Z1:t−1) = pn(xt) pe p(Nt−1 | Z1:t−1)

+

∫

p(xt |xt−1) ps(xt−1) p(Ot−1,xt−1 | Z1:t−1) dxt−1 , (13)

p(Nt | Z1:t−1) = (1 − pe) p(Nt−1 | Z1:t−1)

+

∫

(1 − ps(xt−1)) p(Ot−1,xt−1 | Z1:t−1) dxt−1 . (14)

In particle filtering, the posterior is approximated by a set of weighted samples or particles.

For representing our hybrid state space, we dedicate one special particle with index 0 and weight

w
(0)
t to the case Nt, while the remaining Ns particles {(x

(i)
t , w

(i)
t ) : i = 1, . . . , Ns} represent
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(Ot,xt). Formally,

p(Nt | Z1:t) ≈ w
(0)
t

p(Ot,xt | Z1:t) ≈
∑Ns

i=1 w
(i)
t δ(xt − x

(i)
t ) .

(15)

At each time step t, a new particle set is drawn from a proposal distribution qt. Here, we draw

exactly one particle of state Nt, and Ns particles of state Ot with object configuration xt sampled

from the proposal qt(xt), i.e.

qt(Nt) = 1
Ns+1

∝ 1
Ns

qt(Ot,xt) = Ns

Ns+1
qt(xt) ∝ qt(xt) .

(16)

Particles are then weighted to represent the posterior,

w
(i)
t =















p(Nt | Z1:t)
qt(Nt)

∝ p(Zt | Nt) p(Nt | Z1:t−1) Ns for i = 0 ,

p(Ot,x
(i)
t | Z1:t)

qt(Ot,x
(i)
t )

∝
p(Zt | Ot,x

(i)
t ) p(Ot,x

(i)
t | Z1:t−1)

qt(xt)
for i = 1, . . . , Ns ,

(17)

where the transition priors given in Eqs. (13) and (14) are now approximated by the particle set:

p(Ot,xt | Z1:t−1) ≈ pn(xt) pew
(0)
t−1 +

Ns
∑

j=1

p(xt |x
(j)
t−1) ps(x

(j)
t−1) w

(j)
t−1 (18)

p(Nt | Z1:t−1) ≈ (1 − pe) w
(0)
t−1 +

Ns
∑

j=1

(1 − ps(x
(j)
t−1)) w

(j)
t−1 (19)

Proportionalities in the above equations are resolved by normalizing the particle weights to sum

to one.

The choice of a good proposal density is a crucial design step in the implementation of a

particle filter [2]. The most convenient and most frequent choice is to use the transition prior

p(Xt | Z1:t−1) as approximated in Eqs. (18) and (19), because this greatly simplifies the particle

weight computation in Eq. (17). But this choice is not necessarily optimal, as it may lead to

many “wasted” particles with negligible weight, in particular in cases of noisy state prediction

(widespread transition prior) and peaked observation densities. It is hence desirable to incorporate

the current measurements into the proposal density in order to have particles generated close to

the posterior distribution [2], [21]. Since sampling from p(Xt | Zt) is computationally expensive,

the output of the independent target detector is used as an approximation, and the proposal

density is then designed as a mixture of both sources of information; details are given in the

next Section.
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Detection Module

[16]

Shape Observation

(III-A.2)

Texture Observation

(III-B)

Depth Observation

(III-C.1)

Joint Observation PDF (III-D)
Decision Module

(V-C)

Deterministic

Motion Model

(III-C.2)

Particle Evaluation

Importance Sampling (V-B)

Position Sampling q(u) Motion Model (III-C.2)

Shape Model (III-A.3)

Video ImageTexture Sampling q(v)

Shape Sampling q(s)

Fig. 5. Overview of our pedestrian detection and tracking system. Section numbers for details of each module are given in

brackets.

V. IMPLEMENTATION

We now turn to our pedestrian detection and tracking application, integrating the proposed

multi-cue object model (Section III) into the particle filtering framework (Section IV). See Figure

5 for a system overview.

A. Target Object Detector

A computationally efficient target object detector provides a rough approximation about the

presence of target objects and their positions, given a single input image [16]. A cascade of

system modules is applied to an input image, each utilizing complementary image features, to

successively narrow down the search space. Processing starts with stereo-based ROI generation

which utilizes a depth map (as in Subsection III-C) and the so-called ground plane constraint to

generate a list of ROIs for the shape-based detection module. Based on a hierarchy of exemplary
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shape templates, this module performs coarse-to-fine template matching to efficiently locate target

objects, by means of chamfer matching. The shape matching results are then fed into a texture-

based pattern classification module to make the distinction pedestrian versus non-pedestrian. The

pattern classifier used has the same architecture as the one used for the texture representation

(Subsection III-B), a neural network with local receptive fields, applied to the raw input intensity

pattern. Finally, a stereo-based pedestrian verification heuristic filters out false detections that

contain an appreciable amount of background; see [16] for details.

The result of the detection process is a list of 3D positions of potential pedestrians. Deviations

from the true positions are assumed to obey a normal distribution, with parameters learned

from a training set. In order to use the list of detections in the proposal density of a particle

filter, detections are associated to (possibly multiple) existing trackers, by means of a maximum

distance to the mean track position. For each tracker, a detector density gt(ut) is built as a

mixture of Gaussians from the list of associated detections. (gt is left unspecified if this list is

empty.) Detections not associated to any track are used to initialize new trackers, see below.

B. Proposal Density

The proposal density qt(xt) of our particle filter needs to possess two properties: First, both

sampling from and evaluation of the proposal density needs to be computationally efficient.

Second, two sources of information, the transition prior and the detector density are to be

incorporated into the proposal density by means of a mixture density. Given the decomposition

of the transition prior in Eq. (1), sampling is done incrementally for each of the state vector

components position, shape, and texture:

• Pdfs of the position component ut are given as a Gaussian or mixture of Gaussians (Eq.

(9) and definition of gt above), for which efficient sampling and evaluation is possible.

Therefore,

qt(ut) = ρgt(ut) + (1 − ρ)p(ut | Ot,Z1:t−1) , (20)

where the mixing coefficient ρ is set to 0 if gt is undefined (i.e. no associated detections),

otherwise, we choose ρ = 0.5. The component transition prior in the second term,

p(ut | Ot,Z1:t−1) =
p(Ot,ut | Z1:t−1)

1 − p(Nt | Z1:t−1)

is obtained from Eqs. (18) and (19) by replacing xt with ut.
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• The transition pdf of the shape component (3) is composed of a discrete first-order Markov

process and a Gaussian random walk and allows efficient sampling and evaluation, so we

let

qt(st) = p(st | Ot,Z1:t−1) , (21)

where the RHS is computed analogously to the position transition prior above.

• The transition pdf of the texture component (5),(7) based on cross-correlation is easily

evaluated, but does not permit direct sampling. Instead, the texture component of particles

is always sampled directly from the input image given the particle’s position and shape:

vt |ut, st = VIt
(ut, st) . (22)

The joint proposal density is then composed of the above parts as

qt

(

xt = (ut, st,vt)
)

=











qt(ut)qt(st) if vt = VIt
(ut, st) ,

0 otherwise.

(23)

In order to explore the high-dimensional state space with only a limited number of particles, we

employ a particle optimization step as proposed in [19]. After each new sample is drawn from the

proposal density, an active contour algorithm is used to refine the shape and to obtain an accurate

segmentation of the foreground region, which is crucial for subsequent texture observations.

C. Track Initialization and Termination

New tracks are initialized if a detection made by the target object detector is not associated to

an existing track. In order to suppress spurious detections, tracks start hidden, i.e., their output is

suppressed. A track becomes visible if the probability of not tracking a target object, p(Nt | Z1:t),

falls below a threshold θvisible, while we switch back to hidden if p(Nt | Z1:t) > θhidden. Tracks

are terminated if p(Nt | Z1:t) exceeds the user-defined threshold θterm. For the experiments below,

we chose θvisible = 0.5, θhidden = 0.7, and θterm = 0.9. To avoid that multiple trackers “jump”

onto the same target, the track with higher non-target posterior is discarded if the mean object

positions of two tracks coincide (subject to some user-defined tolerances).
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VI. EXPERIMENTS

The proposed multi-cue object representation has been extensively evaluated in the application

of tracking pedestrians from a moving vehicle. A training set of 6,522 pedestrian instances

occurring in 170 pedestrian trajectories with manually labeled contour points has been used

to learn the static and dynamic shape and texture representations (Sections III-A and III-B),

respectively. Non-pedestrian patterns were randomly extracted from a set of 7,000 video images

without pedestrians. 12 pose clusters have been defined according to four different viewing

directions (frontal, back, left, right) and three different leg articulations (feet closed, knees closed

but feet apart, knees apart). The number of particles to use in each tracker has been determined in

preliminary experiments. As a result of the efficient proposal density and the particle optimization

strategy employed, 500 particles per track were found sufficient.

Our pedestrian tracking system was then tested on two long, continuous sequences recorded

on the same route through suburbia and inner city of Aachen, Germany, lasting 27 min and 24

min and consisting of 21,053 and 17,390 frames, respectively. We required the system to detect

pedestrian within the range of 10m to 25m ahead and 4m to each side. In total, 92 pedestrian

trajectories and 1,427 pedestrian instances appeared within this observation area.

System performance was measured by means of detection rate and false alarm rate. For addi-

tional insight, we consider the two performance metrics on both the frame- and trajectory-level.

For the latter, we further distinguish two types of trajectories: “class-B” and “class-A” trajectories

that have at least one entry or at least 50 percent of their entries matched, respectively. Thus,

all “class-A” trajectories are also “class-B” trajectories, but “class-A” trajectories pose stronger

detection demands that might be necessary in some applications. Furthermore, we distinguish

“system detection rate” which measures the combined detection and tracking performance by

counting the percentage of all true pedestrians correctly detected by the system, and “tracking

rate” which only considers true pedestrians after (and including) the first detection made by the

detector process. For the latter, ground truth instances prior to the first detection are ignored,

and true pedestrian trajectories not detected at least once are entirely ignored. Thus, “tracking

rate” only refers to the tracking component of the system.

The localization tolerance for matching ground truth and system output was specified in 3D,

relative to the true object distance, which better fits application constraints than, e.g., a 2D pixel
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TABLE II

EXPERIMENTAL RESULTS COMPARING THE PROPOSED MULTI-CUE DETECTION AND TRACKING APPROACH TO THE

PERFORMANCE OF THE DETECTION MODULE ALONE AND TO THAT OF A SIMPLE α-β TRACKER [16]. SEE TEXT FOR

DETAILS.

Detector Only [16] α-β Tracker [16] Our Approach

F F A B F A B

System Detection Rate 51.6% 58.2% 57.6% 72.8% 64.3% 65.2% 73.9%

Tracking Rate N/A 76.8% 80.0% 92.9% 84.6% 91.4% 95.7%

FPR (per 10
3fr, min) 15 14 2.5 2.4 17 2.0 2.0

Columns “F” show frame-level performance, “A” and “B” denote class-A and class-B trajectory performance,

respectively. “FPR” denotes the number of false positives and is given per 103 frames for frame-level performance

(F), and per driving minute for trajectory-level performance (A,B). “Tracking Rate” denotes the rate of object

detection after the first track initialization.

tolerance. We chose to tolerate 10% in lateral and 30% in longitudinal direction, e.g., at 10m

distance we tolerate 1m lateral and 3m longitudinal deviation, respectively. A true pedestrian

was considered matched if there was at least one system output within the localization tolerance,

and vice versa, so that many-to-many correspondences were allowed.

Evaluation results on the two test sequences are given in Table II. The first column, “Detector

Only”, refers to the object detector, without any tracking, and serves to quantify the benefit of

the tracking component added to the detector. The second column lists the performance obtained

with a very basic tracking approach (“α-β Tracker”) described in [16]. The outputs of the object

detector are simply concatenated by means of the Hungarian method for object association

and α-β filtering for predicting object positions. The third column (“Our approach”) lists the

performance of the system proposed in this paper.

Comparing the second and third column of Table II, we see that false positive rates of both

tracking approaches are similar; a slight increase on the frame level is compensated by a decrease

on the trajectory level. The benefit of our approach is shown by the increased detection rate.

Compared to the detector alone, our tracking approach raised the frame-level detection rate from

51.6% to 64.3%, while only one-half of that increase was achieved by the simpler α-β tracker

(58.1%). The effect becomes even more visible when considering the tracking rate on the “class-
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5787 5790 5793 5796

5799 5802 5805 5808

Fig. 6. Example results obtained on one of the test sequences. In each row, the top subimages show results of the detector

module, bottom subimages show results of our tracker. Tracks classified as visible are shown by red contours, i.e. they denote

the actual system output, while hidden tracks are shown in black. Frame numbers are given below each image.

A” trajectory level, where our approach achieved the considerably higher rate of 91.4% compared

to 80.0% of the α-β tracker.

Figures 6 and 7 show tracking results for a few example frames of the two test sequences.

Top subimages show the output of the independent target detector (red boxes). The maximum

a-posteriori output (i.e., the particle with maximum weight) of our tracker is given in the bottom

subimages. Red contours denote visible tracks which are classified as tracking a target object,

while black contours denote hidden tracks that are more likely not to contain a target object.

In Fig. 6, all pedestrians are correctly detected and tracked after few initialization frames, even

though the detector process only provides sporadic detections. Fig. 7 shows an example of

false positives of the detector process that leads to a false initialization, but which is correctly

recognized as such by the tracker.
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5890 5891 5892 5893

Fig. 7. Example of a false initialization caused by the detector process (red boxes in top subimages) that are correctly classified

as “non-pedestrian” by our tracker (black contours in bottom subimages).

Our unoptimized implementation of the system runs at about 5s per frame on a 2.66GHz

Intel PC. The texture warping component of the shape normalization code turned out to be

the bottleneck of the current system. Large speed-ups can be expected from careful software

optimization (e.g. memory management, loop unrolling) and the use of specialized hardware. For

example, texture warping can be performed on the GPU (graphics processing unit) of modern

video hardware. Provided that both optimizations yield about a factor of 10, real-time processing

speed is achievable.

VII. CONCLUSION

This paper described a Bayesian, multi-cue approach to the integrated detection and tracking

of pedestrians in cluttered urban environment. A novel spatio-temporal object model has been

presented that combines dynamic shape representation and shape-invariant texture classification,

thus enabling accurate segmentation of the object region and discrimination from non-object

patterns. Specificity has been gained by utilizing a mixture of sub-models, each attuned to a

particular body pose. The efficacy of the proposed object model has been demonstrated within a

Bayesian framework for pedestrian detection and tracking based on particle filtering. By enabling

the tracker to make inference about both, object class and configuration, the system detection

rate and the tracking rate could be significantly improved without degrading the false alarm rate.

What detection performance is actually necessary for a production system clearly depends on

the particular application. The deployment of a front airbag, for example, poses more stringent
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performance requirements than an acoustical warning system. See [13], [14] for detailed dis-

cussions. Especially for critical applications, the performance of our system certainly needs to

be further improved. For example, component-based approaches [34], [44] could improve the

robustness of our object model against partial occlusions. For tracking groups of pedestrians,

recent advances in multi-target tracking [24], [25] that deal with object interactions seem to

be a worthwhile direction of future research. Finally, our system would benefit from a higher

detection rate of the object detector.
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