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Abstract—This paper describes a system for pedestrian detec-
tion in infrared images, which has been implemented on an exper-
imental vehicle equipped with an infrared camera. The proposed
system has been tested in many situations and has proven to be ef-
ficient and with a very low false-positive rate. It is based on a mul-
tiresolution localization of warm symmetrical objects with specific
size and aspect ratio; anyway, because road infrastructures and
other road participants may also have such characteristics, a set
of matched filters is included in order to reduce false detections.
A final validation process, based on human shape’s morphological
characteristics, is used to build the list of pedestrian appearing in
the scene. Neither temporal correlation nor motion cues are used
in this first part of the project: the processing is based on the anal-
ysis of single frames only.

Index Terms—Infrared imagery, machine vision, multiresolu-
tion, pedestrian detection.

I. INTRODUCTION

T
HE development of in-vehicle assistance systems dedi-

cated to reducing the number of fatalities and the severity

of traffic accidents is an important and active research field.

Since pedestrian accidents represent the second largest source of

traffic-related injuries (annually, more than 200 000 pedestrians

are injured and approximately 9000 are killed in traffic accidents

in the European Union), systems that are capable of reducing the

number or effects of traffic accidents involving pedestrians are

of major interest.

The tasks of such driver-assistance systems are extremely

complex; the use of vision sensors and image-processing

methods provides a promising approach.

Several different image-processing methods and systems

dedicated to detecting and classifying pedestrians have been

developed in the last years, including shape-based [5], [6],

texture-based [7], stereo [8], and motion [9] methods. An

approach that combines motion and appearance information is

presented in [10]. All of these approaches have to overcome

the difficulties of different appearances of pedestrians in the

visual domain, mainly caused by clothes, carryons, illumination

changes, and—indeed—different postures.
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Only recently, thanks to the decreasing cost of infrared

devices, the benefits and advantages of using infrared cameras

have been actually considered (e.g., [3] and [11]). Some first

pedestrian-detection systems have been developed, showing

that infrared images can facilitate the recognition process [1],

[12].

In this paper, we present a new pedestrian-detection method

employing far infrared images. It is based on the following:

1) localization of warm symmetrical objects with specific

aspect ratio and size;

2) filtering process to avoid a number of false positives;

3) final validation procedure based on human shape and

thermal characteristics.

The result is a list of pedestrians appearing in the scene, each

detected by position, angle of view, height, and an approximate

posture.

The process is iterated at different image resolutions in order

to detect both close and faraway pedestrians. The following as-

sumptions have been made:

1) pedestrians are not occluded;

2) complete shape of the pedestrian appears in the image;

3) a number of pedestrians appear simultaneously in the

image but they do not occlude each other.

Although the proposed method does not perform tracking, ex-

perimental results demonstrate its robustness and effectiveness.

In Section II, considerations on the infrared domain are pro-

vided. Section III shows how design choices affect the detection

range and Section IV describes the approach and algorithm. Fi-

nally, Section V discusses the results and concludes the paper

with some final considerations.

The images produced by our software have been modified by

hand in order to adapt to grayscale printing.

II. CHARACTERIZATION OF THE INFRARED (IR) DOMAIN

Images in the IR domain convey a type of information that

is very different from images in the visible spectrum. Basically,

in the visible spectrum, the image of an object depends on the

amount of incident light on its surface and on how well the sur-

face reflects it. On the other hand, in the IR domain, the image

of an object relates to its temperature and the amount of heat it

emits.

Generally, the temperature of people is higher than the envi-

ronment temperature and their heat radiation is sufficiently high

compared to the background. Therefore, in IR, images pedes-

trians belong to the upper range in the gray-level scale and are

sufficiently contrasted with respect to the surroundings, thus
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Fig. 1. The position of the infrared camera on the VW test vehicle.

making IR imagery particularly suited to pedestrians localiza-

tion. Obviously, other objects that actively radiate heat, such as

automobiles, trucks, busses, and motorcycles, have a similar be-

havior; however, people can be recognized thanks to their shape

and aspect ratio.

One major point in favor of IR cameras is their independence

of light conditions: they can be used in the daytime or nighttime

with little or no difference, extending vision beyond the usual

limitations of daylight cameras. Moreover, the absence of colors

or textures eases the processing toward interpretation. Further-

more, the problem of shadows is greatly reduced. In fact, even if

persistent shadows are still present in IR images—due to the dif-

ferent temperatures caused by shadows themselves—incidental

shadows, which do not modify the temperature of bodies, are

not perceivable.

Nevertheless, the problem of detecting humans in IR images

is far from being trivial. Weather conditions, such as heavy fog

or rain, can modify the thermal footprint of bodies, limiting the

effectiveness of IR systems.

Moreover, conditions of high temperature and strong sun

heating can decrease the difference of temperature between

pedestrians and other objects. In fact, objects that have a

passive heat radiation behavior, such as traffic signs, barriers,

trees, buildings, and road markings, may be strongly heated

by the sun, making the scene more complex or even causing

heat radiations or reflections. In addition, in the case of strong

external heat radiation, clothes that people wear can have

different thermal behavior depending on their type and color,

thus adding texture to the image.

Conversely, in the case of low external temperature, clothes

can significantly shield the heat emission and only parts of

the body (such as head or hands) can be perceivable. Another

problem, even if less critical than in the visible domain, is

represented by objects carried by people.

The problems mentioned above make the detection of pedes-

trians more difficult. Nevertheless, the IR domain seems to be

promising and justifies deep investigation.

III. DESIGN CHOICES AND DETECTION RANGE

Two issues have to be defined when designing the system:

• setup of the vision system, considering physical and aes-

thetical automotive requirements;

Fig. 2. Window of the graphical calibration tool showing the calibration setup.

Fig. 3. Two small bounding boxes, enclosing (a) a faraway pedestrian and (b)
a fake pedestrian.

• desired target, i.e., the range of pedestrians’ height and

width.

Moreover, the algorithm has to be designed considering that

the input data are low resolution (320 240) digital images. All

these design choices influence the performance of the system in

terms of the distance range of the detection.

A. Setup of the Vision System

The camera position is fixed by physical constraints and aes-

thetical choices (see Fig. 1). The mapping between image pixels

and world coordinates has to be known for a correct localiza-

tion. The calibration is performed on a flat stretch of road by

placing markers at known distances up to 40 m (see Fig. 2); the

relation between three-dimensional (3-D) coordinates of these
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Fig. 4. Pedestrians of different heights standing at different distances and a bounding box containing a 170-cm-tall pedestrian at different distances; in white, the
feasible detection range for a 170-cm-tall pedestrian.

points and the corresponding pixels in the image is used to com-

pute camera extrinsic parameters.

The computed parameters are then used for all future relation-

ships between 3-D world coordinates and image pixels, under

the assumption of a flat road in front of the vision system and

negligible vehicle pitch. Indeed, these strict assumptions can

be supposed to hold in the area close to the vehicle (up to 20

m) even in the presence of hills or bumps. Conversely, in the

faraway area (more than 20 m), less confident results may be

obtained. To reduce these errors, a software image-stabilization

procedure has been developed [13].

B. Definition of the Target

Specific size and aspect ratio are used to define targets. The

size of a pedestrian is chosen as follows: 1) height: cm

cm and 2) width: cm cm. The large tolerance on the

width takes into account different pedestrian postures (e.g., the

typical walking positions of pedestrians crossing the observer’s

trajectory). Actually, only the combinations of height and width

satisfying specific limits on aspect ratio are considered (a range

of 2.4–4.0 is assumed for the height/width ratio).

C. Detection Range

The presence of a pedestrian is checked for in different-sized

bounding boxes placed at different positions in the image. In

the assumption of a flat road, perspective constraints allow us to

limit the search, decreasing computational time.

Moreover, since this attentive technique relies on symmetry

and morphological characteristics, not all bounding boxes need

to be checked due to detail content. In fact, too large bounding

boxes may contain a too detailed shape, showing too many dis-

turbing small details. In other words, the presence of texture (not

only caused by clothing) and the many different human postures

that must be taken into account would make the detection diffi-

cult.

On the other hand, very small bounding boxes feature a very

low information content. In these situations, it is easy to obtain

false positives, since many road participants (other than pedes-

trians) and even road infrastructures may present morphological

characteristics similar to a human shape. An example of the low

information content in small bounding boxes is shown in Fig. 3.

It is, therefore, imperative to define a range of reasonably

sized bounding boxes in which detection may lead to a suffi-

ciently accurate result. In this paper, the considered size is as

follows:

• smallest bounding box is 28 7 pixels;

• largest bounding box: 100 40 pixels.

The limits on the bounding box height (28 and 100 pixels)

were experimentally determined, while the limits on the

bounding box width (7 and 40 pixels) were computed using

the limit values for the target height and width.1 Indeed, this

choice leads to a limited detection area in front of the vehicle,

as described in the following.

Assuming a flat road, the calibration is used to fix the corre-

spondence between

• distances in the 3-D world and lines of the image

• size of 3-D targets and the size of bounding boxes in the

image.

Distances from 7 to 70 m are considered in Fig. 4 as an

example. For reference purposes, the image also shows the

bounding box corresponding to a 170-cm-tall pedestrian at the

different distances (the farther, the smaller).

Fig. 4 shows in gray the bounding boxes that comply with

the above specifications on the bounding box size. The distance

range in which the detection of a 170-cm-tall pedestrian can

take place m m is also shown in white. As can be

seen, not all pedestrians can be detected, due to their size in

the image. Indeed, the extension of the search to a 160–200-cm

height range for the target would further narrow the detection

range.

The graph in Fig. 5 shows the working area of the system. The

minimum distance, given by the setup, at which pedestrians can

be completely seen is represented by the vertical dashed line. On

the other hand, the specifications about pedestrian height deter-

mine the limits represented by the two horizontal dashed lines.

Therefore, the search area extends to the right of the vertical

dashed line and between the two horizontal dashed lines.

Moreover, some additional considerations, deriving from the

definition of the bounding box size, need to be made in order

to localize the region of the graph that represents the actual

17 = 28=(160=40), 40 = 100=(200=80).
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Fig. 5. Detection range.

Fig. 6. After subsampling, close pedestrians fall in the detection range.

working area of the system. The additional curves on the dia-

gram represent the iso-bounding box mappings: each curve de-

scribes the relationship between the distance and height of ob-

jects enclosed by a bounding box with a given height in pixels.

Given the range of bounding boxes height ,

the working range of the systems is depicted as the intersection

of the search area described above with the area that extends

between the two iso-bounding box mappings corresponding to

pixels and pixels, shaded in Fig. 5.

In order to be sure that for a given distance all pedestrians in

the height range (from the shortest to the tallest) can be detected,

the working area has to be further limited to the portion of the

shaded area delimited by the two vertical dotted lines. The arrow

highlights the actual detection range. Assuming all the values

given before, the resulting detection range is m m.

Considerations may be made on the behavior of the detec-

tion range with the increment or decrement of the target height

range; in other words, extending the target height range to in-

clude children would shorten the system detection range.

D. A Multiresolution Approach for an Extended Detection

Range

As mentioned before, processing the original image does

not allow for the detection of all pedestrians; conversely, only

pedestrians in a specific detection range can be localized. While

the low information content for too distant pedestrians cannot

be compensated for, a subsampling of the image can extend

the detection range to include close pedestrians. Namely, after

subsampling, the original image the size of bounding boxes en-

closing close pedestrians falls within the limits imposed by the

algorithm on maximum bounding box size. The subsampling

process also requires a new mapping between pixels and 3-D

world (see Fig. 6).

Thus, in order to extend the detection range to a closer

region, processing is performed on a smaller version of the

original image. Actually, the image is first subsampled and

processed to look for pedestrians in a close distance range,

then processed again at the original resolution to search for

pedestrians in a farther distance range (as justified in Sec-

tion IV-D).

In the processing of the subsampled image, the size of the

investigated bounding boxes is the same used for the original

image. Given that the image is now smaller by a factor (

subsampling), the use of the same bounding box size brings

to the localization of pedestrians that in the original image are

contained into bounding boxes times larger and wider than the

predefined size range. In other words, the system is now able to

detect larger—and, thus, closer—pedestrians.
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Fig. 7. Extended detection range.

Fig. 8. (a) Block diagram of the algorithm and (b) detailed flow chart of candidates’ generation.

For example, Fig. 7 shows the new detection range when

using a 1:2 subsampled image (which is equivalent to use the

range of bounding boxes height on

the original image). The graph shows the two detection ranges

for the original and subsampled images. In general, they have

the following characteristics:

• the higher the subsampling rate, the closer the new detec-

tion range and the shorter it gets;

• the two detection ranges can overlap.

With the current setup and design choices, the distance explored

when the original image is used ranges from 15 to 43.5 m, while

the detection range investigated when using a 1:2.15 subsam-

pled image is m m. The subsampling rate has been com-

puted so as to push the minimum explored distance to the limit

imposed by the setup constraints (7 m). The two areas overlap

and, thus, one search area needs to be reduced in order to avoid

duplicate analysis. Therefore, the search for distant pedestrians

is actually performed from 20 to 43.5 m.

IV. ALGORITHM DESCRIPTION

As mentioned in Section III-D, the core of the algorithm is

repeated for two different image resolutions [see Fig. 8(a)]. It is

divided into the following parts:

1) localization of areas of interest (focus of attention) and

generation of possible candidates based on symmetry;

2) candidates filtering to remove errors, based on non-

pedestrian characteristics;
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Fig. 9. Computation of symmetries and focus of attention. (a) Original image;
(b) vertical edges image; (c) symmetry of gray levels (dark gray), symmetry of
vertical edges (black), density of vertical edges (light gray), and a combination
(white); (d) histogram of gray levels together with its global average and local
average; (e) positions of possible vertical symmetry axes (in white) and search
stripe; (f) histograms are computed only in correspondence to the white dashes
shown in the bottom of (e).

3) candidates validation on the basis of a match with a

model of a pedestrian;

4) fusion of the results of the two iterations.

A. Candidates Generation

The low-level part of the algorithm, depicted in Fig. 8(b), is

mainly based on the computation of symmetries. First, the input

image is processed to focus the attention on interesting regions,

then vertical edges are extracted. Both the input image and the

image containing vertical edges are searched for symmetrical

areas. These areas need to match specific aspect-ratio and size

constraints that are typical of a pedestrian shape, also taking into

account perspective issues. The density of edges in these areas

is also considered.

Fig. 9 shows as an example: the original input image

[Fig. 9(a)], a binary image containing its vertical edges

[Fig. 9(b)], and a number of histograms [Fig. 9(c)] computed

by maximizing, for each vertical symmetry axis as follows:

• symmetry of gray levels (dark gray);

• symmetry of vertical edges (black);

• density of vertical edges (light gray)

among the different bounding boxes centered on the same axis.

The white histogram presents a combination of all the above; it

Fig. 10. Bounding box framing a tree. (a) Vertical edges histogram and the
threshold value and (b) vertical contours.

Fig. 11. Elimination of bounding boxes after the resize step: for each bounding
box, the original base is displayed with a segment while the horizontal line
indicates the horizon. The black box is not modified by the resize step.

Fig. 12. Models representing different clothings, postures, and points of view.

Fig. 13. Examples of eight points of view for a standing and walking
pedestrian.

can be observed that the pedestrian presents high local peaks in

all histograms and in their combination, as well.
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Fig. 14. Example of the fusion of the results achieved working at the two
resolutions. (a) Input image, (b) results of low resolution processing, (c) results
of original resolution processing, and (d) final results.

Candidates are generated by thresholding the resulting his-

togram. Each over-threshold peak corresponds to a bounding

box containing the shape of a potential pedestrian.

Instead of performing an exhaustive search, which would def-

initely take a long time and consume a great amount of compu-

tational resources, specific areas of interest are determined. Per-

spective constraints limit the search to a stripe of the image [see

Fig. 9(e)]. Moreover, considerations that are generally true for

Fig. 15. False-positives result if the area covered by the close pedestrian is not
eliminated when looking for far pedestrians.

images in the IR domain permit to reduce the number of sym-

metry axes to be examined: a filter has been defined to select

symmetry axes in warm image areas only. For this purpose, a

histogram encoding the presence of white (hot) pixels is com-

puted; its local average (computed on a small window) as well as

its overall average are also computed. The low-pass filter is used

to smooth the histogram and to remove small peaks close to high

peaks, while the overall average is used to mask out histogram

peaks in cold areas. Fig. 9(d) shows the histogram, its average

and its low-pass filtered version. As explained before, assuming

that a pedestrian is hotter than its background, the symmetries

are computed only in the areas in which the histogram presents

values larger than the overall average and the local average. As

an example, as shown in Fig. 9(e), vertical symmetry axes inter-

secting the white portions of the bottom of the image are con-

sidered, while the remaining ones (intersecting black dashes)

are neglected. Fig. 9(f) shows the actual histograms computed

in correspondence to the white dashes only. This technique im-

proves both the detection (false positives are reduced in number)

and computational time.

The bounding box list is then passed on to the next phase,

which is in charge of removing false positives.

B. Candidates Filtering

Unfortunately, artifacts featuring strong vertical edges are

likely to confuse the bounding boxes generation phase. A

specific filter has been designed to discard such false positives.

The vertical binarized edges inside each bounding box are

considered. Actually, the edges above and below the bounding

box are also considered, since objects (e.g., poles, columns,

trees, road signs, edges of building, etc.) can extend outside the

box. A vertical histogram is computed using vertical edges; the

peaks of the histogram higher than a given threshold indicate the

positions of a significant amount of vertical edges. These areas

are further investigated to detect the exact position of vertical

contours by building chains of contiguous edges. Short contours

are discarded. If the bounding box is centered on a high amount

of vertical contours, it is discarded as a false positive.

An example of the application of this filter is shown in

Fig. 10. This figure shows a bounding box framing a tree

trunk; Fig. 10(a) displays the vertical edges histogram and the

threshold value, while Fig. 10(b) shows the vertical contours.



BERTOZZI et al.: PEDESTRIAN DETECTION FOR DRIVER ASSISTANCE USING MULTIRESOLUTION INFRARED VISION 1673

Fig. 16. Results of pedestrian detection in different situations: with complex or simple scenarios or with one or more pedestrians. The distance (in meters) is
displayed below the boxes; the two horizontal lines encode the range for which pedestrians are searched.

Other criteria based on the analysis of the vertical histogram

of edges are used to eliminate false positives [13]. A bounding

box is removed in the following cases.

• When the center of the histogram is empty: This is true

for large poles, pylons, and columns, even if they are not

perfectly vertical.

• When more than half of the histogram is empty: This is

true for large vertical poles, pylons, and columns.

• When the histogram is confined to the central part of the

bounding box, namely when the left and/or right parts are

empty or when the histogram is concentrated in two small

areas that contain more than 80% of the contributions:

This is true for thin vertical poles, pylons, and columns.

Each surviving bounding box is then reduced in height and

width in order to fit the internal presence of edges. The bounding

boxes that have been resized too much, due to the absence of

edges in their border regions, are removed, since pedestrians are

characterized by a uniform distribution of edges.

The surviving bounding boxes are further examined in order

to eliminate bounding boxes that
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Fig. 17. Other results of pedestrian detection in different situations: with complex or simple scenarios or with one or more pedestrians. The distance (in meters)
is displayed below the boxes; the two horizontal lines encode the range for which pedestrians are searched.

• due to this resize operation are completely over the

horizon (arrow 1 in Fig. 11);

• no longer meet perspective constraints (arrow 2 in

Fig. 11);

• no longer meet the original assumptions on aspect ratio

(arrow 3 in Fig. 11).

The resize operation can move the base of the box. After this

operation, some boxes may lie beyond the actual search area.

These boxes are considered to be guesses and are not passed on

to the validation step.

C. Candidates’ Validation

Each surviving bounding box is validated through a match

with a 3-D model of the human shape. This filter, based on shape

and/or thermal patterns, is used to remove candidates that do

not present a human shape. The 3-D models represent different

postures and viewing angles of the human shape.

The idea of generating the models at run-time and performing

an exhaustive search for the best configuration has been dis-

carded, since it is time consuming and does not fit real-time
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Fig. 18. ROC curve on (a) test sequence 1 and (b) test sequence 2.

criteria. A selection of precomputed configurations has been

chosen.

The possibility of adapting the models to real images at-

tributing different gray values to the body parts in order to

encode different body temperatures has also been considered

and tested. In fact, generally, the head and hands are not

covered by clothes and, thus, more heat escapes from them

with respect to the trunk or limbs both in winter and summer.

Fig. 12 shows some examples of models representing different

clothing. Anyway, detailed investigations about models en-

coding thermal differences have not be made so far. Instead,

most of the investigation is focused on using a large number of

different shapes.

Two degrees of freedom are sufficient to obtain a good

match in most situations and are used to generate the complete

matching set: postures and point of view. A third degree of

freedom (size) is implicit in the match process. A first set of

eight configurations obtained combining four points of view

with two positions were initially tested but demonstrated to

be not sufficiently reliable. A new set of 72 configurations

were finally chosen. They were obtained by combining eight

different points of view with nine positions (one standing and

eight walking). Fig. 13 shows the 72 configurations generated

using a smoother model, also taking into account the actual

viewing angle, orientation, and height of the camera on the test

vehicle.

Each model is scaled to the bounding box size and overlapped

to it using different displacements to cope with small errors in

localization of the box. The matching is implemented through

a simple and fast cross-correlation function. The result is a per-

centage rating the quality of the match. A threshold is applied

for the final evaluation.

This filter has proven to be effective in most cases, both in the

identification of pedestrians and in the exclusion of bounding

boxes that do not contain humans.

Anyway, the localization of pedestrians is difficult in some

situations, such as bikers, running people, or when the bounding

box is not precise.

D. Fusion of the Results

The results obtained by separately processing the undersam-

pled image and the original-sized one need to be fused together.

Indeed, even if the two detection ranges are disjoint, they are

contiguous anyway. Therefore, a trivial joining of these two re-

sults may lead to double detections and a method has been de-

vised to join the two results more effectively, which is based on

the following considerations.

First, a correct detection in the close area eliminates the need

to perform the search in the same direction in the faraway area.

For this reason, as mentioned before, the close-range processing

is performed first and the position of close pedestrians found is

considered to limit the search area in the second far range phase

[see close pedestrians to be used as mask in Fig. 8(a)].

Second, as explained in Section IV-B, due to the resize step,

the candidate filtering can output some results that are beyond

the actual close search area and, thus, are not passed on to the

validation step. These low confidence results are worth being

propagated anyway to the far-range processing [see Fig. 8(a)]

for a validation using correct criteria, which are only available

during the search in the faraway area.
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An example is shown in Fig. 14. As can be seen in Fig. 14(b),

the close-range processing detects a near pedestrian (the white

box with the model superimposed) and a guess just beyond the

search area (the black box). A bird’s eye view of the results is

also sketched.

Following the above considerations, the results of the first

phase (low resolution) are taken into account to limit the search

area in the second phase (original resolution). More specifically,

no further search for symmetries is performed in the image area

where the close pedestrian was found. Furthermore, the guesses

attained in the first phase is passed on to the second phase and

added to the list of new candidates generated by the search for

symmetries. Together with the new candidates, the guess will be

filtered and resized, and possibly validated. Fig. 14(c) displays

the results of the far detection range processing. Two boxes are

visible for the far pedestrian: the black one corresponds to the

approximate localization deriving from the guess [the black box

in Fig. 14(b)], while the white one corresponds to the new cor-

rect detection. Both boxes have been validated as representing

a pedestrian by the 3-D models. As displayed in the bird’s eye

view, the area covered by the close pedestrian is not investigated

in the second phase. Besides speeding up the search, this avoids

false detections that may originate by misinterpretations of parts

of the close pedestrian (see Fig. 15).

As in this example, generally pairs of similar bounding boxes

may be generated when a guess generated in the first stage is val-

idated in the second stage and, at the same time, a new detection

is obtained in the second stage for the same pedestrian. An extra

step devoted to the fusion of similar bounding boxes is needed.

In case two, bounding boxes are overlapped (similar in position

and size) and the selection is based on their detection confidence

and match with the 3-D model.

• Whether one of them was rated as a guess and the other as

a correct result, the guess will be dropped and the correct

result maintained.

• In the case that both bounding boxes received the same

confidence, two criteria are adopted: the larger is preferred

if both are guesses, while the vote assigned by the match

with the 3-D models is used to decide which one should

be kept and which one should be discarded when both are

validated boxes.

Fig. 14(d) shows the final result of the discussed example after

the fusion procedure.

V. DISCUSSION OF RESULTS AND CONCLUSION

Figs. 16 and 17 show a few results of pedestrian detection

in IR images in a number of different situations. The two hor-

izontal lines encode the detection range in which pedestrians

are searched for m m . In correspondence to a de-

tected pedestrian, the image shows a white bounding box and

the model that best matches the pedestrian. The guesses out of

the detection range are also displayed using a black bounding

box. Please note that, as mentioned in the introduction, the im-

ages produced by our software have been modified by hand in

order to adapt to grayscale printing. The result shows that the

Fig. 19. Critical situations. (a) and (d): The algorithm finds false positives due
to a noisy background. (b) and (c): a wrong 3-D model is matched against a
correct detection due to the limited number of 3-D models used.

system is able to detect one or more pedestrians, even in the

presence of a complex background.

The two major critical situations, exemplified in Fig. 19, are

• in the presence of a complex background, artifacts or ob-

jects other than pedestrians are occasionally detected [see

Fig. 19(a)];

• the algorithm does not miss the detection of a pedestrian,

but a wrong model is matched [see Fig. 19(b)].

Since there is no widely available image test set, a direct com-

parison to other systems is not possible. However, a quantitative

performance analysis was carried out to measure performance

and to allow our approach to be compared to other systems for

which quantitative results were published (such as [6] and [10]),

even if these studies do not refer to the IR domain.

Ground truth was collected for a test set of 4111 images con-

taining 5082 pedestrian instances. A graphical tool specifically

developed to annotate pedestrians and assess statistics about re-

sults was employed [14]. Test images were acquired in different

times of day, weather, and scenarios and include very com-

plex situations with many pedestrians, occlusions, and groups

of people. A quantitative evaluation of results is given by means

of ROC curves. We run the system over the test set for which
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ground truth is available and computed the number of correct

detections and false positives. Results were considered correct if

they adequately overlapped with the annotated boxes (see [14]).

The detection and false positives rates depend on the param-

eters and thresholds used in each stage of the system. Since the

execution flow chart of our system is complex (stages are re-

peated twice and there is a feedback of the output from the first

low resolution run to the second high resolution run, see Fig. 8),

a separate analysis of the different stages (candidates genera-

tion, filtering, and validation) poses severe problems. We de-

cided to evaluate the behavior of the whole system with a single

ROC curve obtained by varying the correlation threshold used

in the matching with the models. In fact, due to the high com-

plexity of the system, optimizing the thresholds one at a time

would have been prohibitive.

The graph in Fig. 18(a) presents the ROC curve obtained for

the complete test set. The false-positive rate is very low, but the

detection rate is affected by the very high number of complex

scenes with groups of people.

The graph in Fig. 18(b) shows the curve obtained running the

system over a part of the test sequence: complex scene were

eliminated and significantly occluded pedestrians maintained, in

order to reflect the assumptions upon which the algorithm was

designed. The same choice was adopted in other studies ( [6]

and [10]); therefore, this second sequence represents a testing

condition similar to theirs. Moreover, this is a reasonable as-

sumption, since the most dangerous pedestrian is the closest

one, who is least occluded. This new test set is composed of

2152 images with 1496 pedestrian samples. A high number of

frames without pedestrians was left to particularly challenge the

system with respect to false alarms. In this case, a detection rate

of 70% is achieved with 0.2 false positives per image. This very

low false-alarm rate is a good result in order to not to flood the

driver with too many unnecessary warnings, which could de-

crease the driver’s confidence in the system.

Currently, the system is based on the processing of single

shots only; one of the most important enhancements will be

the integration of a tracking procedure that will allow us to im-

prove the final results, both reducing temporary misdetections

caused by noise or occlusions and decreasing the number of

false alarms. In addition, tracking would permit us to speed up

the processing; in fact, due to the similarity between two sub-

sequent images, only a subset of the models can be used in the

correlation.

Moreover, in the case of walking pedestrians, the sequence

of 3-D models to be used in the correlation may suggest the

pedestrian moving direction. Furthermore, improvements may

be obtained by using a more representative set of 3-D models to

reproduce the average pedestrian appearance with more accu-

racy. In fact, we realized that the models described in this work

(see Fig. 13) are too thin compared to a dressed person.

Concerning time performance, the system has been tested

on a 1.8 GHz Athlon XP (FSB 266 MHz) with 512 MBytes

DDR@400 MHz. The pedestrian detector proved to be very ef-

ficient: the average time required for the processing of a frame is

127 ms (correspondent to a frame rate of about 8 frames/s). In-

deed, the actual frame-processing time depends on the number

of pedestrians.

The algorithm developed so far proves to be effective in

different situations. Extensive tests are being carried out in

different seasons (winter/summer). The results are promising,

though the system is not ready for deployment. We believe that

significant improvements could be achieved by using stereo

IR vision and making the system more robust by fusing visual

information with radar data.
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