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avenue de l’université, 76800 Saint Etienne du Rouvray

France

email: frederic.suard@insa-rouen.fr

A. Broggi

Dipartimento di Ingegneria dell’Informazione,
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Abstract— This paper presents a complete method for pedes-
trian detection applied to infrared images. First, we study an
image descriptor based on histograms of oriented gradients
(HOG), associated with a Support Vector Machine (SVM)
classifier and evaluate its efficiency. After having tuned the
HOG descriptor and the classifier, we include this method in
a complete system, which deals with stereo infrared images.
This approach gives good results for window classification,
and a preliminary test applied on a video sequence proves
that this approach is very promising.

I. INTRODUCTION

Since the last few years now, the development of driving

assistance systems has been very active in order to in-

crease the vehicle and its environment safety. At the

present time, the main objective in this domain is to

provide the drivers with some information concerning its

environment and any potential hazard. One among all

useful information is the detection and localization of a

pedestrian in front of a vehicle.

This problem of detecting pedestrians is a very difficult

problem that has essentially been addressed using

vision sensors, image processing and pattern recognition

techniques. In particular, detecting pedestrians thanks to

images is a complex challenge due to their appearance

and pose variability. In the context of daylight vision,

several approaches have been proposed and are based

on different image processing techniques or machine

learning [9], [5], [12].

Recently, owing to the development of low-cost infrared

cameras, night vision systems have gained more and

more interest, thus increasing the need of automatic

detection of pedestrians at night. This problem of

detecting pedestrians from infrared images has been

investigated by various research teams in the last years.

The main methodology is based on extracting cues

(symmetry, shape-independent features, ...), pedestrian

templates from images and then using these features to

perform detection [8], [1], [6].

This paper addresses the problem of detecting pedestrian

from infrared images. The proposed approach is based on

shape-based cues and a machine learning technique that

learns to recognize a pedestrian.

Recent works have shown that efficient and robust

shape-based cues can be obtained from histogram of

oriented gradient (HOG) in images [7]. For instance,

Shashua et al. [10] has developed a complete system

for pedestrian detection with monocular acquisition

system. Its one-frame classification method is based on

a description of images with histograms of gradients,

computed over a determined number of regions according

to a mask of distribution. Recently, Dalal and Triggs

have further developed this idea of histogram of gradient

and have achieved excellent recognition rate of human

detection in images [4].

In this paper, we introduce a complete pedestrian

detection system, applied to infrared images. At first,

we propose a single frame pedestrian detection system

which follows the path of Shashua and al. and Dalal

and al. This detection system is based on histogram of

gradients combined with Support Vector Machines for

the recognition stage. It has been developed to detect

a pedestrian centered in a 128 × 64 single image. The

paper provides a comprehensive study of this system

parameters in order to point out its best setting. Then we

propose a complete detection system based on a focus of

attention approach. This complete system is then able to

detect any scale of pedestrians in a large size image.

The paper is organised as follows. In section II-A, we

describe the single frame detector and we give details
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for the HOG descriptor and its parameters. Then, we

propose our method to scan a complete image and to

detect pedestrians. The results section gives a study of

the parameters setting of the HOG descriptor and also

presents some performances of the full system. Conclu-

sions and perspectives are presented in the final section.

II. OVERVIEW OF THE METHOD

A. Histogram of Oriented Gradients based Detector

In the context of object recognition, the use of edge orien-

tation histogram has gain popularity [10], [4]. However,

the concept of dense and local histograms of oriented

gradients (HOG) is a method introduced by Dalal et al.[4].

The aim of such method is to describe an image by a set

of local histograms. These histograms count occurences

of gradient orientation in a local part of the image. In

this work, in order to obtain a complete descriptor of an

infrared image, we have computed such local histograms

of gradient according to the following steps :

1) compute gradients of the image,

2) build histogram of orientation for each cell,

3) normalize histograms within each block of cells.

The following paragraphs give more details on each of

these steps.

1) Gradient computation: The gradient of an image

has been simply obtained by filtering it with two one-

dimensional filters :

• horizontal :
(

−1 0 1
)

• vertical :
(

−1 0 1
)T

An example of gradient is shown in figure 1. Gradient

could be signed or unsigned. This last case is justified

by the fact that the direction of the contrast has no

importance. In other words, we would have the same

results with a white object placed on a black background,

compared with a black object placed on a white back-

ground. In our case, we have considered unsigned gradient

which values going from 0 to π.

The next step is orientation binning, that is to say to

compute the histogram of orientation. One histogram is

computed for each cell according to the number of bins.

2) Cell and block descriptors: The particularity of this

method is to split the image into different cells. A cell

can be defined as a spatial region like a square with a

predefined size in pixels. For each cell, we then compute

the histogram of gradients by accumulating votes into

bins for each orientation. Votes can be weighted by the

magnitude of a gradient, so that histogram takes into

Fig. 1. This figure shows the gradient computation of an image.
(left) is the original image, (middle) shows the direction of
the gradient, (right) depicts the original image according to the
gradient norm.
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Fig. 2. This figure shows the histograms of gradient orientation
for (left) 4 bins, (middle) 8 bins (right) 16 bins.

account the importance of gradient at a given point. This

can be justified by the fact that a gradient orientation

around an edge should be more significant than the one

of a point in a nearly uniform region. Examples of

histograms of the square region given in the middle image

of figure 1 is shown in figure 2. As expected, the larger

the number of bins, the more detailed the histogram is.

When all histograms have been computed for each cell,

we can build the descriptor vector of an image concate-

nating all histograms in a single vector.

However, due to the variability in the images, it is

necessary to normalize cells histograms. Cells histograms

are locally normalized, according to the values of the

neighboured cells histograms. The normalization is done

among a group of cells, which is called a block.

A normalization factor is then computed over the block

and all histograms within this block are normalized ac-

cording to this normalization factor. Once this normaliza-

tion step has been performed, all the histograms can be

concatenated in a single feature vector.

Different normalization schemes are possible for a vector

V containing all histograms of a given block. The normal-

ization factor nf could be obtained along these schemes :

• none : no normalization applied on the cells, nf = 1.

• L1-norm : nf = V

‖V ‖1+ε

• L2-norm : nf = V√
‖V ‖

2
2+ε2
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ε is a small regularization constant. It is needed as we

sometime evaluate empty gradients. The value of ε has

no influence on the results.

Note that according to how each block has been built, a

histogram from a given cell can be involved in several

block normalization. In thus case, the final feature vector

contains some redundant informations which have been

normalized in a different way. This is especially the case

if blocks of cells have overlapping.

B. SVM Classifier

As we have stated in the introduction, the recognition sys-

tem is based on a supervised learning technique. Hence,

we have used a set of training image examples with and

without pedestrians, and described by their HOG, to learn

a decision function. In our case, we have used a Support

Vector Machines classifier.

The Support Vector Machines classifier is a binary clas-

sifier algorithm that looks for an optimal hyperplane as a

decision function in a high-dimensional space [2], [11],

[3]. Thus, consider one has a training data set {xk, yk} ∈
X × {−1, 1} where xk are the training examples HOG

feature vector and yk the class label. At first, the method

consists in mapping xk in a high dimensional space owing

to a function Φ. Then, it looks for a decision function

of the form : f(x) = w · Φ(x) + b and f(x) is optimal

in the sense that it maximizes the distance between the

nearest point Φ(xi) and the hyperplane. The class label

of x is then obtained by considering the sign of f(x).

This optimization problem can be turned, in the case of

L1 soft-margin SVM classifier (misclassified examples are

linearly penalized), in this following way :

min
w,ξ

1

2
‖w‖2

+ C

m
∑

k=1

ξk (1)

under the constraint ∀k, ykf(xk) ≥ 1−ξk. The solution

of this problem is obtained using the Lagrangian theory

and it is possible to show that the vector w is of the form :

w =

m
∑

k=1

α∗

k
ykΦ(xk) (2)

where α∗

i
is the solution of the following quadratic

optimization problem :

max
α

W (α) =

m
∑

k=1

αk −
1

2

m
∑

k,`

αkα`yky`K(xk, x`) (3)

subject to
∑

m

k=1
ykαk = 0 and ∀k, 0 ≤ αk ≤ C, where

K(xk, x`) = 〈Φ(xk),Φ(x`)〉. According to equation (2)

and (3), the solution of the SVM problem depends only

on the Gram matrix K.

(a) (b) (c) (d)

Fig. 3. This figure shows some examples of images in the
learning set. (a) and (b) are pedestrians, (c) and (d) are non-
pedestrians but are potential objects that could be detected in
the image.

III. SETTING PARAMETERS

In this section, we will describe a method to choose

the optimal parameters for the HOG descriptors. As

we have seen in section II-A, HOG descriptors involve

many parameters concerning the cells, blocks, or cells

histograms that need to be treated.

• Cell

– size of the cell, that is to say the number of

pixels contained in a cell.

• Blocks

– size : number of cells contained in a block,

– shift : number of cells overlapped by block,

– norm : normalization scheme.

• Histogram

– number of bins,

– sign : gradient signed or unsigned,

– weighting vote method.

To evaluate the most efficient set of parameters, we have

set up a complete test. This test has been realised with

4400 infrared images with a size of 128×64 pixels :

2200 pedestrians, and 2200 non-pedestrians. Figure 3

shows some examples of images used for learning. These

images are obtained by selecting manually in original

images different boxes containing a pedestrian or any kind

of object. Images are then resized to comply with the

requested size of 128×64 pixels.

We tested a large variety set of parameters :

• Size of cell : 4×4, 8×8 or 16×16 pixels,

• size of block : 1×1 , 2×2 or 4×4 cells,

• overlap of block : 1, 2,

• number of bins for histogram : 4,8 or 16,

• vote method for histogram : weigthed with gradient

magnitude or no,

• normalization factor for block : no, L1 or L2,
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Fig. 4. This figure shows main results obtained for different set of HOG parameters. All figure have been obtained for a 2-classes
linear svm with 100 elements for learning. For HOG descriptor, here are the default parameters that have been retained : size of
block=2, number of bins = 4, size of cell = 8, overlap of blocks = 1, adding values in histogram = normalized, normalization factor
for block = L2. (a), (b) and (c) shows results for block parameters. (d) and (e) shows parameters for histogram parameters. (f) shows
the cell parameter.

To complete the test, we also tested different parameters

for SVM classifier :

• size of learning set : 10, 100, 1000 object per class,

• weight for misclassified points C : 0.01, 1, 100.

First, we compute a dataset for a given HOG set of

parameters. Then we evaluate its efficiency with the

classifier. The classifier was run 10 times on different

combination of data for learning and test. It should be

noticed that all combinations have been fixed at the

beginning of the test, and for different sets of parameters,

we took the same elements for classification.

We present here some results of our test. Results in figure

4 highlights the parameters setting. All results are given

with respect to default parameters which are :

• size of block=2,

• number of bins = 4,

• size of cell = 8,

• overlap of blocks = 1,

• adding values in histogram = normalized,

• normalization factor for block = L2.

Figure 4 shows different results obtained for setting

HOG parameters. We can see that some parameters are

increasing performance significantly, like block factor

normalization or cell size. On the other hand, some

parameters are less significant but participate also to the

global performance.

We deduced the optimal set of parameters :

• size of block=2,

• number of bins = 8,

• size of cell = 8,

• overlap of blocks = 1,

• adding values in histogram = normalized,

• normalization factor for block = L2.

A result should be pointed out. Graphic 4-(f) seems to be

better for a shortest size of cell. Indeed, results are better

for a size equal to 4, but with these parameters, size of

HOG descriptor becomes too large for our machine and

the test could not be run.
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True

P N

Prediction
P 2096 54

N 71 2079

detection 0.9749

accuracy 0.9709

precision 0.9672

Fig. 5. Confusion matrix obtained with a learning set of 1000
examples, tested on 4400 examples.

In fact, that size of a vector varies for 128 up to 100000,

depending on parameters. With a small vector, computa-

tion of HOG descriptor is fast and does not require a lot

of memory. In the contrary, largest vector requires more

time, but detection rate is higher. In pratice, a compromise

is done between time computation and high detection rate.

IV. RESULTS

A. Windows classifier

Here are some results for the single windows classifier.

We use the optimal HOG parameter set that have been

found in section III. We test 3 sizes for the learning

set : 10, 100 and 1000 for each class. The total number

of images is 2200 positive and 2200 negative examples.

For each test, we use the given learning set, and test the

classifier with all other images.

Results have been averaged over 10 trials with random

splitting of learning and testing data. This random splitting

has been performed prior to parameter testing so that

results are comparable.

Figure 6 presents some results of ROC Curve obtained

with the classifier. An example of Confusion Matrix

obtained during our test is shown on figure 5.

The ROC curve enables us to compare different result

obtained for the prediction function f(x) when f(x) >

θ, θ ∈ R. For a high value of θ, false prediction are

rejected. At the contrary, when θ is low, the classifier

becomes more permissive and some misclassification ap-

pear.

As we can see on figure 6, with 1000 examples in the

learning set, for 90% of detection rate, we have one false

alarm for 330 computed images. The accuracy obtained

is up to 99%.

As shown on figure 6, size of learning set is an important

parameter. It clearly shows that when the learning set

covers the largest variety of pedestrians, the recognition

is easier. But it should be noticed that, even for 100

pedestrians in the learning set, detection rate is already
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Fig. 6. This figure shows the ROC Curve of the classifier when
the size of the learning set varies.

good. Concerning the weight of misclassified C, we have

tested some different values (0.01, 1 and 100), but this

change has little effects on the results.

Now we will present some preliminary results for the

complete system. We test the system on a video sequence

containing infrared stereo images. Note that the sequence

is completely different with the sequence used during the

HOG test.

We tested a two-classes SVM, with a learning set of 100

pedestrians, and 100 non-pedestrians. These examples

are extracted from the current video sequence, as well as

the test examples.

Figure 7 is an example of results. Usually, we consider the

sign of the prediction f(x) to classify the object x (see

sectionII-B) . The prediction value can be interprated as

a distance with the margin. If the distance is over 0, it

means that this is near the pedestrian class, but could be

rejected according with the ambiguity of the prediction.

So, if we want to keep only windows which represents a

pedestrian with strong confidence, we can set a threshold

for the prediction rate fx) > θ. Figure 7 shows clearly

that when the threshold θ is higher, we have less false

prediction or ambiguity. If we come back to the ROC

Curve (6), it means that when θ is high, the ratio between

good classification and misclassification is high.

On figure 8, we can see some misclassified objects exam-

ples. The reasons why our system fails can be explained

as follows: generally, misclassification is either due to the

poor quality of images, since the camera definition is only

320 × 240 pixels or due to the pedestrian location in the

image.
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(a) (b) (c)

Fig. 7. This figure shows the pedestrian detection. The threshold prediction value for (a) is 0, 1 for (b) 1.5 for (c). C is the prediction
rate, D is the disparity of the window.

(a) (b) (c) (d)

Fig. 8. Examples of misclassified pedestrians (a and b) and
non-pedestrians (c and d).

a - pedestrian is blurred, so it does not fit exactly a

pedestrian shape.

b - pedestrian is not centered.

c,d- non-pedestrians are confused with a small pedes-

trian.

V. COMPLETE SYSTEM

In this part, we will describe a proposal for a complete

system.

In the section II-A, we have studied a classification

method for a single window. Now, a complete system

is implemented to use this classifier for an image of a

scene, that is to say containing many objects, which of

them could be pedestrians. The HOG descriptor enables

us to caracterize a window with a feature vector. The brute

method would be to test all possible windows in the given

image, in order to be the most exhaustive. But we could

easily conclude that the number of windows becomes

rapidly too large, and the large majority of the scan is

useless. Our aim is now to select potential windows of

the image, that could contained a pedestrian.

Our application concerns FIR images : infrared images.

One specificity of this kind of images, is that warm objects

appears lighter than cold objects which are dark. We

propose to use FIR images during night, so a pedestrian

appears lighter than its environment.

One way to extract potential areas of the scene is to

look at each area whose pixel values are above a defined

threshold. For each area, we extract some windows

around this area, resize it at 128×64 pixels, compute

HOG descriptor for each windows and classify vectors.

Figure 9 shows an example of potential areas detected in

an image.

(a) (b)

Fig. 9. This figure shows points for potential pedestrian location

The proposed system is made of two infrared cameras,

that is to say stereovision. For the moment, we use only

one image (right or left) to detect pedestrians in the

observed scene. Using stereovision provides us informa-

tion concerning the pedestrian position. To obtain the

depth information we simply compute the disparity for the

detected frames which are containing a pedestrian. Figure

10 shows an example of disparity computation, for some

windows in the image.

In the future, we propose to run with another advantage

given by stereovision. Since we could dispose of a second

image, we could reinforce the detection obtained on the

first image, with a second detection. This point could help

us to reduce the false alarm rate.

VI. CONCLUSION

We have presented a new method for pedestrian detection

using infrared images. The main characteristic of this
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(a)

164

14

0

45

(b)

Fig. 10. This figures shows an example of disparity compu-
tation. (a) shows the right and left images, (b) shows result
disparity for some windows.

method is its single frame based classification method.

Indeed, the classifier deals with a 128 × 64 window

containing a single object. From this window, we have

extracted a feature vector composed of local histograms

of oriented gradients. Combined with a SVM classifier,

such system yields to very good results for single frame

performance. We have integrated this classifier into a

complete system of pedestrian recognition, using an in-

frared stereovision system. In FIR images, a pedestrian

has some caracterics which help us to localize all potential

pedestrians in the scene. Then, we look precisely through

a sliding window if the image contains or not a pedestrian.

If a pedestrian is found, we add another functionality, with

help of the stereovision, to locate in real world the position

of the pedestrian.

Results are very encouraging, but there is still some

perspectives for our future search. Firstly, we will

develop a coarse-to-fine approach to localize pedestrians

in large images. Furthermore, we plan to enhance

the performance of the global system by developing

a multiple classifier system, where each classifier is

devoted to a given pedestrian pose. Besides, when

dealing with image sequences, motion information can

be used for still improving the detection performance.
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