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ABSTRACT The early recognition and understanding of the actions performed by pedestrians in traffic
scenes leads to an anticipation of pedestrian intentions in advance and helps in the process of collision
warning and avoidance in the context of autonomous vehicles. An environment with low visibility conditions
such as night-time, fog, heavy rain or smoke increases the number of difficult situations in traffic. A
complete and original model for assessing if a pedestrian is engaged in a street cross action using only
infrared monocular scene perception is proposed in this paper. The assessment of a street cross action is
done by the time series analysis of features like: pedestrian motion, position of pedestrians with respect to
the drivable area and their distance with respect to the ego-vehicle. The extraction of these features emerges
from the combination of a deep learning based pedestrian detector with an original tracking algorithm, a
semantic segmentation of the road surface and a time series long-short term memory network based action
recognition. In order to validate the proposed method we introduce a new dataset named CROSSIR. It is
formed of pedestrian annotations, action annotations and semantic labels for the road. The CROSSIR dataset
is suitable for several common computer vision algorithms: (1) pedestrian detection and tracking algorithms
because each pedestrian has a unique identifier over the frames in which it appears; (2) pedestrian action
recognition; (3) semantic segmentation of the road pixels in the infrared image.

INDEX TERMS Image Processing, Neural Network, Pattern Recognition, Night Vision Applications, FLIR
Camera, Pedestrian Detection, Pedestrian Tracking, Semantic Segmentation, Time Series Analysis

I. INTRODUCTION

N
UMEROUS approaches that are able to achieve state of
the art results for pedestrian action, intention and be-

havior recognition are present in the active field of computer
vision for autonomous vehicles [1].

Existing pedestrian action and intention recognition so-
lutions address mostly information extracted from color or
gray scale images [1], [2], [3] that come from monocular
or stereo-vision camera setups suitable in particular for day-
light driving scenarios. Little is explored for the situation of
night traffic scenes. For these particular situations, cameras
that capture the heat emitted by objects can be used. Far
infrared sensors are suitable for night driving situations.
The development of algorithms coping with the information

provided by far infrared cameras provides a promising field
of research and can lead to robust and accurate solutions for
pedestrian detection, tracking and pedestrian action recogni-
tion.

The method proposed in this paper addresses the problem
of street cross action recognition in the framework of a
monocular far infrared setup in which images have been
captured during winter and spring, both in day and night
driving situations.

Figure 1, presents a set of states that a pedestrian transits
while performing a street cross action. It represents a classi-
cal situation in which the pedestrian comes towards the street
and keeps crossing without stopping.

As it can be noticed in Figure 1-a the pedestrian is crossing
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(a) Continuous cross action. The temporal order of the frames is from left to right.

(b) Not cross: walk towards the road then stop. The temporal order of the frames is from left to right

FIGURE 1: Sequence of states for a cross vs. not cross action

(from right to left) at a marked place but the zebra marking
is slightly visible in the infrared image. Hence approaches
based on the position of a subject with respect to a marked
crossing are not applicable in the case of the infrared field.

Another characteristic situation in assessing the awareness
of an autonomous driving system with respect to the cross
action performed by a pedestrian involves a continuous mo-
tion towards the drivable area, followed by a stop in motion,
meaning the pedestrian has a low probability of crossing the
street. This situation is depicted in Figure 1-b.

The two situations exemplified in Figure1 are frequently
encountered in every day driving scenarios. A high awareness
of the autonomous driving system regarding the actions per-
formed by pedestrians, especially the cross versus not cross
situations, would improve the system anticipation level and
furthermore could reduce the chance of injury.

The proposed solution is based on the interaction and
interconnection of several coupled modules which all define
a multi-cue environment representation model. The main
components are:

1) Data acquisition;
2) Road surface estimation;
3) Pedestrian detection and tracking;
4) Pedestrian distance estimation;
5) Pedestrian speed computation;
6) Pedestrian action recognition;

The authentic outcomes and contributions of the paper
reside in:

• The proposal, design and development of an original
tracking algorithm applied on top of a deep learning
based pedestrian detector fine tuned to work with far
infrared images.

• The recognition of pedestrian street-cross or not cross
actions, in the difficult situations of night and / or
low visibility driving. A time series Long Short Term
Memory based model is trained using features like:

-- Distance of the pedestrian with respect to the ego-
vehicle (in meters)

-- Pedestrian motion features like the horizontal and
vertical optical flow components and the horizontal
speed component (transversal to the road) of the
tracked pedestrian.

-- Position of pedestrians with respect to the road:
pedestrian on road or pedestrian off road.

• In order to validate the results of the proposed solution
a dataset of cross / not cross annotated image sequences
captured with a FLIR infrared camera is introduced. The
experimental results report a recognition accuracy of
93%.

II. RELATED WORK

The proposed solution is a complete model that comprises
pedestrian detection in infrared sequences, a robust tracking
method and a cross action recognition module. A survey of
existing state of the art methods is presented in the following
subsections.

A. PEDESTRIAN DETECTION IN INFRARED IMAGES

Even though most of the pedestrian detection approaches
are based on monocular or stereo cameras, the use of FLIR
cameras has attracted attention of the research community
and manufacturers of ADAS or autonomous systems due to
the ability of thermal cameras to provide reliable detections
for vulnerable road users in bad weather conditions such as
snow, fog, rain or bad illumination situations.

Feature based classification approaches and deep learning
models are highly explored in what regards the topic of
detecting pedestrians in infrared images. Traditional classi-
fication techniques that extract visual image features which
are fed to machine learning algorithms are highly explored
in color images [4], [5], [6] and their typologies have been
restructured and adopted for infrared images or for fused
infrared and color images [7]. Histogram of Oriented Gradi-
ents, Local Binary Patterns, Edgelets or feature pyramids are
combined with AdaBoost, Support Vector Machine and other
types of algorithms in order to obtain reliable classification
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solutions [8], [9], [10], [11], [12].
The high recognition rates achieved using deep learning

based object recognition models [13] in color images con-
stitute the basis for object detection and recognition in the
infrared domain. An illumination aware Faster R-CNN deep
learning based convolutional neural network architecture is
employed by [14] for pedestrian detection in both infrared
and color images. A brightness aware deep learning based
mechanism is proposed by [15] and it is used to detect
pedestrians under day or night conditions respectively. An
automatic region proposal network is introduced by [16]
to generate bounding boxes with confidence scores for far-
infrared (FIR) pedestrian detection. A Faster R-CNN net-
work is trained on infrared images augmented with their
saliency maps that serve as an attention mechanism for the
pedestrian detector [17]. The saliency maps are generated
using static and deep methods and show an improvement
in detection especially during daytime. A multi-class object
detection solution based on YOLO [18] architecture is pre-
sented by [19] with a focus on pedestrian and car detection
in monocular infrared images. To validate the model, the
authors of [16] uses the LSI, CVC09, CVC14 and SCUT
FIR pedestrian detection datasets in their experiments. They
obtain a log average miss rate of 49.4 for CVC09, 38.06% for
LSI and 17.54% for SCUT FIR.

B. PEDESTRIAN TRACKING

Multi object tracking (MOT) can be applied in very many
different settings and scenarios, and for some advanced tech-
nical systems, like autonomous cars, multiple object tracking
is a necessary enabling technology. For an autonomous ve-
hicle to drive safely in an urban environment, it is important
to track pedestrians or cyclists while using this information
carefully to plan its trajectory for collision avoidance. The
challenges that appear in the MOT problem can be split into
two categories, sensor and data association related issues.
The far infrared sensor related challenges may refer to:

• Unknown number of objects with unknown number of
states that are present in the sensor field of view (FOV)

• Objects leave and enter the FOV of the sensor
• The detector of objects is imperfect and is susceptible

to two kind of errors i.e. missed detections (due to
environment conditions, object properties, occlusions)
and false detections or clutter (a detection that is not
caused by an object). Both error types can lead to fatal
outcomes in the worst-case scenario if they are not
handled.

In addition to the sensor challenges stated above there is
yet another challenge in target tracking which is the called the
data association problem. The gist of this problem is that we
do not have any information about the origin of the detection
or what caused them. Therefore, the challenges for treating
the data association problem can be split into two categories:

• The origin uncertainty âĂŞ we do not have any informa-
tion about the new measurements and how they relate to

the previous sensor data
• The motion uncertainty âĂŞ objects can have multiple

motion models
Poor handling of the data association problem leads to bad

tracking results. Most multi object tracking methods use a
tracking-by detection framework, which means they rely on
an object detector to provide the object candidates. Multiple
papers in the literature propose tracking solutions that ad-
dress the previous mentioned problems using different types
of sensors: like single cameras, stereo cameras LIDARS,
RADAR, FIR (far infra-red) or a combination of them.
Several studies describe tracking systems in video sequences
taken by color or monochrome cameras mounted on a vehicle
[20], [21]. Some approaches use a handcrafted cost function
[22], [23], allowing a better control over the selected features
and the data association process, while other methods pro-
pose deep learning (or data-based) association and tracking
methods [24], [25] which let a neural network decide the best
feature combination for solving the correspondence problem.
The main issue with deep learning and data-based methods
in general is that the tracker may get latched onto an object,
that may be a false detection, but looks similar to something
from the training data-set, and never recover. Furthermore, if
motion information is not incorporated in the neural network
model, in case an object is occluded by a similar object the
tracker may get latched onto the wrong object.

When fusing multiple sources of information for perform-
ing more robust object tracking, very many of the current
approaches center their solution on a single input (like the
camera) or do not exploit the information coming from all
the input sources [26], [27]. This means that in case of
camera failure their solution would not function properly.
The authors in [28] and [29] address this issue by ensuring
that each sensor is able to perform its role reliably and inde-
pendently. The overall system performance is improved when
all sensors are functioning, however in case one sensor is not
working, the whole system does not crash. The solution in
[28] uses deep learning to fuse the different modalities, while
the method presented in [29] uses a combination between an
Unscented Kalman Filter (UKF) and single layer perceptron
to fuse the data. In another approach [30] the authors use deep
neural networks to jointly detect and track 3D objects using
a stereo camera system. In this approach a neural network is
used to detect 2D bounding boxes in images, and improve
the 3D bounding box detected from the point cloud using a
regression strategy.

The use of Far Infrared(thermal) cameras has attracted
many researchers due to their ability to operate in bad
weather conditions and in low illumination or night con-
ditions. Some approaches describe solutions using single
thermal [31] cameras for tracking, while others use stereo
vision [32], based on far infrared cameras, to reconstruct
and track pedestrians. Other solutions combine probabilistic
algorithms for tracking pedestrians using a thermal camera.
For example, in [33] the authors use a Kalman filter and
a mean shift algorithm to find the exact position of mov-
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ing pedestrians. In [34] the authors fuse multiple sensors
including a LIDAR and FIR camera to obtain both ego mo-
tion and distance estimation. The solution presented in [35]
illustrates a modular approach for tracking pedestrians by
merging the predictions of the Kalman filter with past history
analysis. This solution is able to help correct temporary miss-
recognitions that occur when the detector fails as well as
reduce false detections. The authors in [36] try to solve the
data association and tracking problem in thermal images us-
ing deep network architectures. They propose a feature model
comprising of thermal infrared specific features and correla-
tion features for thermal infrared object representation. The
features are coupled for a more robust data association and
tracking using a multi task matching framework. The paper
presented in [37] proposes a simple weighted function that
combines similarities in position, size and appearance. The
main issue with this work is that the appearance score is
computed in a naive manner and no information related to
the motion of the pedestrian is used in the final cost function,
which would make the data association fail in case of similar
overlapping pedestrians.

C. PEDESTRIAN ACTION RECOGNITION

The development of methods able to estimate pedestrian’s
action of crossing the street is an active field of research, es-
pecially nowadays when the autonomous vehicles are starting
to be part of an every-day reality in urban traffic. A detailed
survey of existing approaches in pedestrian action recogni-
tion and intention prediction is performed by [38]. As it is de-
scribed, even if largely addressed in the scientific community,
the pedestrian intention prediction subject is a challenging
problem because pedestrians have an unpredictable behavior,
they can move in any direction and suddenly change motion
[38]. Existing approaches consider particular situations like
crossing at an intersection, or at a marked crossing zebra, or
more generically, in situations when the street is not marked
at all.

Several categories of prediction models are very popular
[39]: (1) pedestrian related approaches (2) context based
approaches (3) path prediction approaches. These approaches
are applied on color images and few methods have been
proposed for infrared images.

Pedestrian related methods define a model in terms of
features (motion, appearance) and these features are learned
by a classifier. For example, numerous approaches consider
features that define the body pose of pedestrians by means
of skeletons or 2D joints. [40] use a CNN based model for
skeleton fitting (pose estimation) and the most stable points
of the skeleton which correspond to the legs and the shoulders
are fitted to a Random Forest (RF) classifier that provides
the probability of the cross / not cross action. [2] use a low
dimensional feature vector that contains flow variations on
the pedestrian legs and upper body. Stereo measurements,
vehicle velocity and yaw-rate measurements are considered
to compute the ego-motion compensated and normalized
optical flow field that is further used to extract features given

a bounding box detection and distance estimation z of a
pedestrian. The action classification is done using a particle
filter model. The 2D articulated pose extracted by a con-
volutional neural network model from monocular images is
employed by [40] in order to recognize the intentions of both
pedestrians and cyclists. A Random Forest (RF) classifier is
applied on top of skeleton features and it provides a proba-
bility to perform the cross vs. not cross classification. They
consider only pedestrian training samples with a minimum
bounding box width of 60 pixels and no occlusion.

Context related approaches integrate pedestrian features
with environment clues. The authors of [41] propose a de-
scriptor based on the motion of the pedestrian relative to the
road and based on the spatial layout of the scene considering
information like pedestrian lights, zebra crossings and traffic
islands, waiting areas as bus stops. A classification based on
Support Vector Machine is applied to the feature vector for
predicting the pedestrian intention in color intensity images.
An algorithm that predicts the pedestrian’s intention to cross
the street in infrared images is presented in [42]. Dynamic
fuzzy automata are employed in combination with spatio-
temporal features like the distance between the curbs and the
pedestrian, the velocity of pedestrians and head orientation.
Furthermore, the authors consider four intention states for
pedestrians: standing-sidewalk, walking-sidewalk, walking-
crossing and running crossing. The predicted intentions are
’stop’ or ’cross’.

Path prediction approaches are highly related to intention
estimation besides current action recognition. For example,
[43] propose an encoder-decoder Long Short-Term Mem-
ory (LSTM) network that extracts the state streams from
both vehicle trajectory and pedestrian trajectory. A decoder
network performs the state fusion and predicts the future
trajectory. The pedestrian location and pose are inferred by
means of a Balanced Gaussian Process Dynamical Model (B-
GPDM) and naÃŕve-Bayes classifiers in the work of [44].
The classifiers use 3D joint positions in lateral direction and
the displacements of the 3D joints in the same direction.
Based on the lateral position of a pedestrian [45] a long-
term intent prediction model is proposed. They train a stacked
LSTM and formulate the intention as a time series prediction
problem.

The quantification and labeling of the pedestrian crossing
intention depends on the type of intention model proposed.
Several types of annotations and labels for pedestrian cross-
ing intentions have been explored. For example [41] define
the pedestrian crossing intention in relation with the situation
when the pedestrianâĂŹs principal aim is to cross the street.
A human based annotator rates the cross intention in an
interval from 0 to 1 with a step of 0.25, where 0 means
the pedestrian does not cross the street, and 1 means the
pedestrian crosses the street. The inner intervals of 0.25, 0.5
and 0.75 model possible uncertainties upon the pedestrian
decision.

Two scenarios are considered by [2] when the pedestrian is
walking towards the road side curb: will the pedestrian cross
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or stop at the curb. For each trajectory where the pedestrian
stops the moment of the last placement of the foot is labeled
as the stopping moment. A time-to-stop value is set to zero
for that moment. Similarly for cross scenarios a time-to-curb
is defined in relation with the closest point to the curbstone
(with closed legs).

The authors of [40] have enriched the JAAD dataset [46]
with time-to-event (TTE) information for the cross actions.
Two scenarios were considered by [40]: start-walking-to-
cross when the pedestrian stands near the road and then he
starts to cross and keep-walking-to-cross when the pedestrian
is involved in a continuous cross action. For keep-walking-
to-cross the time to event is zero at the first frame at which
the trunk of the walking pedestrian is over the curbside. For
start-walking-to-cross the time to event is zero at the frame
at which the stopped pedestrian starts moving a leg forward.
Positive TTE values correspond to frames before the event,
negative values to frames after the event.

The work on cross action recognition is based on pedes-
trian detection algorithms, which rely on benchmark datasets
for infrared images. The most popular datasets are:

• KMU Pedestrian Intention Prediction Database in Ther-
mal Images [42] contains a collection of infrared se-
quences captured by a FIR camera of a moving car
roof at nighttime. The dataset totals 3254 frames and
37 pedestrians, collected in 6 videos. Each video shows
four behaviours: standing, walking on the sidewalk,
walking, and running on the road.

• The KAIST MultiSpectral Pedestrian Dataset was in-
troduced by [7]. It comprises pedestrian annotated in-
stances for pairs of temporally and spatially aligned
color and infrared images, corresponding to both day
and night situations.

• SCUT FIR Pedestrian Dataset [47] consist of about
11 hours-long image sequences at a rate of 25 Hz by
driving through diverse traffic scenarios at a speed less
than 80 km/h. Bounding box annotations are provided
for 7,659 unique pedestrians.

• FLIR-ADAS [48] provides multi-class annotations for
far infrared images. The instance labels are for pedestri-
ans (over 20k annotations), cars, bicycles and dogs.

• PTB-TIR: A Thermal Infrared Pedestrian Tracking
Benchmark [49] that contains sequences of thermal
images, which are annotated manually. The benchmark
also contains the results and rankings of different track-
ing algorithms on the provided image datasets.

It can be noted that only the KMU [42] pedestrian dataset has
annotations that support cross action recognition algorithms.
The dataset is suitable for pedestrian detection based algo-
rithms as it contains action and bounding box annotations.
With this paper we enrich the field of benchmark datasets by
introducing CROSSIR action recognition dataset that can be
used for pedestrian, context and motion based approaches.
It contains bounding box annotations, unique identifiers
for pedestrians, semantic segmentation information for road

pixels and motion type descriptors (walk, stand, run). The
dataset is available for the scientific community 1.

As it can be noted from existing state of the art approaches,
the pedestrian cross action recognition for color images is
highly explored in the literature. However, approaches to
infrared based pedestrian cross action recognition are not
yet sufficiently addressed. The model proposed in this paper
combines pedestrian feature with context and motion based
approaches. It uses a deep learning based pedestrian detector
and a novel texture based tracking approach that ensures sta-
ble detections across successive frames and provides motion
information along with pedestrian features. All these features
are combined with context information which is extracted by
the combination of a semantic segmentation of the road and
monocular distance estimation which enhance the pedestrian
feature vector which is used by a Long Short Term Memory
Network for recognizing the cross action in infrared scenes.

III. MATERIALS

In order to ensure variety for the experiments presented in
this paper, and to cover day and night diving scenarios using
a far infrared camera, a new dataset is introduced: CROSSIR.
It contains annotated infrared sequences, with focus on cross
/ not cross actions of pedestrians, but also a set with road
segmentation ground truth which is applicable for semantic
segmentation.

A. ACQUISITION SYSTEM

The used image sensor consists of a FLIR PathFindIR cam-
era, incorporating an uncooled 320x240 Vox microbolome-
ter, with 8-14 µm spectral response. It is equipped with au-
tomatically heated 19mm lens providing a 36◦(h) and 27◦(v)
field of view. The core is hermetically sealed and protected
against dust and water spreads (IP67 rated) allowing the unit
to perform in a wide range of weather conditions. The PAL
analog video output running at 25 fps is turned into digital
format with DVD EZMaker 7 converter from AVerMedia and
the images are up-sampled to 640x480 resolution.

Capture.png

FIGURE 2: Aquisition System: the infrared camera, the ana-
log to digital converter, the system that receives the captured
frames.

B. CROSSIR DATASET

The proposed dataset contains sequences of infrared images
grabbed in winter and spring time. Acquired frames have
a resolution of 640x480 pixels. The annotation has been

1https://users.utcluj.ro/ raluca/crossir/
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realized using the Computer Vision Annotation Tool (CVAT)
[50].

Pedestrian annotations are present for 86 sequences of
various lengths captured during night or day in the city of
Cluj-Napoca, Romania. An annotation contains:

• Pedestrian identifier (id) – that is unchanged for ev-
ery frame in which the pedestrian appears, making the
dataset appropriate for tracking algorithms.

• Pedestrian bounding box in the form of top left coordi-
nates, width and height.

• A label for the performed action. It can be cross or not
cross.

• A label for the direction of movement with respect to the
road. The label can take the values: lateral, longitudinal
or diagonal.

• A label for the type of motion: walk, stand, run.
• A label that marks if the pedestrian is occluded or not.

The cross scenarios captured by the proposed dataset are :

1) pedestrians walking or running towards the road and
crossing continuously.

2) pedestrians standing close to the curb and starting to
cross

3) pedestrians walking on the road, having a longitudinal
direction of motion (their motion is parallel to the
motion vector of the ego-vehicle)

These scenarios are depicted in Figure 3.

FIGURE 3: Scenarios for cross action: pedestrians are
marked with a point: the red point figures a pedestrian that is
walking or running towards the road and is crossing continu-
ously without stopping, the blue point represents the scenario
in which a pedestrian is standing close to the curb and
starts to cross, while the green point represents a pedestrian
walking on the road.

The not cross scenarios acquired in the proposed dataset
are:

1) Pedestrian standing, walking or running parallel to the
road. In this situation the pedestrians do not enter the
drivable area and their direction of motion is parallel to
the road.

2) Pedestrians walking or running towards the road and
stopping.

These scenarios are depicted in Figure 4. The dataset contains

FIGURE 4: Scenarios for not cross action: the red point
represents a pedestrian that walks towards the street and then
stops, the green point represents a pedestrian walking on the
pavement without entering the street area.

fully visible and also occluded pedestrians. At least one
pedestrian is present in each sequence. The total number of
annotated frames is 14678. The dataset contains a total num-
ber of 175 unique pedestrians. Road segmentation sequences
contain 471 night frames, and 376 day frames. These are
annotated as polygonal areas. The annotations are made for a
random subset of frames from all the acquired videos in order
to ensure the large diversity of the annotations.

IV. METHODS

The proposed processing pipeline is described in Figure 5
and its main modules are:

• Pedestrian detector – applies a CNN based detector
to input images for each frame. Its outputs are a
set of bounding boxes defined by position and size:
[x, y, width, height].

• Pedestrian tracking – performs tracking on top of de-
tected bounding boxes. It improves quality of detections
and provides an updated list of bounding boxes, speed
components (vx, vy), optical flow magnitude and angle.

• Distance estimator – using the geometric constraints of
the system setup (position of FLIR camera on top of the
ego-vehicle) it computes the distance of any point in the
image with respect to the camera and also with respect
to the Ego vehicle coordinate system (centered in the
road projection of the mid point of the front bumper).
It is used for estimating the relative position and speed
between the tracked pedestrians and the ego-vehicle.

• Action recognition module – uses a Long Short Term
Memory Network that given a sequence of states and the
measured features for a pedestrian in each state (frame)
provides the probability the pedestrian is engaged in a
cross or not cross action.

6 VOLUME 4, 2016
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FIGURE 5: Main modules of the proposed processing
pipeline: the FLIR Image that results after the acquisition
is processed in parallel by the pedestrian detector and the
semantic road segmentation module. The results of the pedes-
trian detection are forwarded to the pedestrian tracking and
distance estimator that output features like pedestrian motion
direction, speed and distance with respect to the car. All these
features and the position of the pedestrian with respect to the
road are input to the action recognition module that predicts
the cross or not cross action using a time series Long Short
Term Memory model.

A. PEDESTRIAN DETECTION AND TRACKING

MODULES

A YOLO [18] type architecture with spatial pyramid pooling
was adopted for detecting pedestrians in infrared images.
This choice is made due to the high classification accuracy
obtained with such a network in previous work [19]. The
algorithm employed by YOLO splits the image into multiple
regions in which weighted bounding box predictions are
made. The weights are obtained using bounding box priors.
These are computed by K-means clustering on the input
training dataset.

The proposed tracking method, which will be discussed
in detail in this section, consists of the following major
components: data association and similarity cost computa-
tion, track selection, update and refinement. The pedestrian
tracking algorithm using a far infrared camera is one of the
contributions of this paper.

We build upon the state of the art by creating a loosely
coupled tracking solution that follows the track by detection
framework and we engineer a similarity cost that includes
both motion and appearance scores thus making better cor-
respondences between the tracks and detections. We make

an optimal assignment between tracks and detections using
an optimization algorithm and finally we refine the results
removing any unwanted tracks. The input to our algorithm
is a set of bounding boxes corresponding to the detected
objects, which also have the classification probability for that
object class. The output is given by the set of tracked objects
that have a unique ID associated to them and a smoothed
trajectory.

1) Data Association and Dissimilarity Cost Computation

In the presence of clutter, it is often difficult to distinguish
sensor measurements from false alarms. Furthermore, com-
puting an association score between a track and every detec-
tion in a frame is a computationally intensive task. Hence,
a measurement validation gate is used to reduce the number
of comparisons by forming a gate around the position of the
predicted hypothesis and only considering detections within
that region. The gate is described by an origin (which is
usually the position of the predicted value Xk) and a gate
volume Vk. The validation region for ellipsoidal gating is
given by equation (1).

(χi
k −Xk)

′S−1

k (χi
k −Xk) ≤ γ (1)

In equation (1) χi
k is the ith measurement inside the

validation gate Sk which is defined in [31], and it represents
the innovation co-variance, while γ is a probability threshold
which can be obtained from tables of the chi-squared distri-
bution and it is kept constant for a given application. The gate
volume is given by equation 2, where c is a scaling value.

Vk = cγ
1

2 |Sk|
1

2 (2)

A graphical depiction of the grating process can be seen in
Figure 6.

FIGURE 6: Graphical depiction of the measurement valida-
tion gate

Some far infrared cameras (including ours) can have freez-
ing moments in which frames are not acquired for a number
of seconds. Due to this phenomena the tracked objects may
be at larger distances than predicted (due to the loss of
measurements). The proposed model was build to cope with
such situations by inferring two values for the parameter
c. The far infrared camera signals the freezing moment by
displaying a small white square in the bottom right corner,
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hence we know when to apply a more reasonable value for
the variable c. The expression for c when the camera is
functioning normally is displayed in (3) and for the frames
following a freezing moment the expression is depicted in
(4).

c = 2× (w + h) (3)

c =
2wh

3
(4)

The scaling of the gate volume depends on the tracked
object dimension, w represents object width and h represents
object height. The two expressions for calculating the value
c were determined experimentally. After obtaining the gated
measurements for a track, a similarity cost is computed
between the track and all measurements within the validation
gate.

In the proposed solution, the similarity cost ǫ(i, j) (5), that
is computed between the ith infrared measurement and the
jth object in the tracking list, is defined as the sum of two
distance measures, one representing a motion score m(i, j)
and another representing an appearance score a(i, j). Each
of the two scores is a weighted sum of several terms which
will be described shortly.

ǫ(i, j) = a(i, j) +m(i, j) (5)

One of the main difficulties when building similarity cost
functions is trying to solve some problems without un-
solving others. To this end each time a new term was
introduced in the cost function equation with the purpose
of solving an issue, all the scenarios corresponding to the
already available terms were tested as well to ensure they are
still working.

In the proposed solution we have decided to engineer
the cost function because such a solution would offer more
control regarding the effect of each feature that is used in
the cost computation, so the final equation is not a black
box. Furthermore, we know which feature is responsible for
solving certain issues. Solutions based on neural networks
would not give us the flexibility mentioned above, and in case
a scenario is presented to the network that was not covered
by the training test, the network might fail or latch onto the
wrong object.

Appearance Score

The appearance score is important in tracking because it can
offer a way to recognize an object in different frames and
is also a measure of distinguishing between different objects
when they are in proximity of each other. Nonetheless, the
appearance of an object may be altered in consecutive frames
due to deformations or changes of view point. The thermal
infrared emission is independent of any light source, however
the combination between the human skin infrared emissivity
and the clothes that each person wears, leads to a unique
thermal signature for each subject. Therefore, it is important
to define a method that captures the changes in appearance
and the texture uniqueness of each pedestrian. To address this

problem in this work, we design an appearance score that
relies on multiple weighted features. The expression of the
appearance score between the tracked object and the infrared
detection is given in (6).

a(i, j) = whuLbp × huLbp(i, j) + wµs × µs(i, j) +

+wσs × σs(i, j) + whs × hs(i, j) +

+wWs ×Ws(i, j) + wcs × cs(i, j) +

+wos × os(i, j) (6)

The terms whuLbp, wµs, wσs, whs, wWs, wcs, wos are the
weight contributions for each distance measure. They were
determined experimentally by evaluating each term’s contri-
bution over 160 sequences recorded with the thermal camera
in different conditions including day, night, cold and warm
scenarios. The values determined experimentally for each
weight are whuLbp = 10, wµs = 285, wσs = 8, whs =
10, wWs = 10, wcs = 550, wos = 95. The values deter-
mined for the weights are not unique and small variations are
possible without affecting the output of the algorithm. For
readability, some weights were approximated to the nearest
multiple of 5, where it was possible.

The meaning of each distance measure from the appear-
ance cost equation is the following: huLbp(i, j) represents
the histogram of uniform local binary pattern (LBP) in the
region of interest (ROI) given by the detection, µs(i, j) is the
mean value pixel intensity distance of the ROI, σs(i, j) rep-
resents the variance score in the ROI, hs(i, j) and Ws(i, j)
are the height and width distances, os(i, j) represents the
overlapping score and cs(i, j) represents the class detection
probability score.

To capture the texture structure of each hypothesis, in order
to use it in the track and measurement association, we have
used a uniform local binary pattern histogram over the region
of interest. The object level structure can be a good feature to
measure the correlation between a track and a measurement
in adjacent frames, due to the fact that the structure of an
object is not expected to change drastically in consecutive
frames. The LBP descriptor outputs a binary word for each
pixel as shown in (7):

LBPP,R =
P−1
∑

p=0

s(gp − gc)× 2p (7)

The number of neighbors to be analyzed on a circle of
radius R is given by P , s(x) = 0 if x ≥ 0 ∧ s(x) = 1
otherwise; gp is the intensity of neighbor p and gc is the
intensity of the center pixel. In the proposed solution a 3× 3
neighborhood is used. All LBP codes from the region of in-
terest can be represented in the form of a 256-bin histogram.
In order to achieve a faster feature comparison, reduce the
memory consumption and achieve more robustness to noise,
a uniform local binary pattern histogram is employed. A LBP
is called uniform if the binary pattern contains at most two
bitwise transitions from 0 to 1 and vice versa when the bit
pattern is traversed circularly [51]. Therefore, by comparing
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pixel values in a 3 × 3 neighborhood, there are a total of
256 patterns, 58 of which are uniform, which yields in 59
different labels. The voting of each LBP code in the uniform
LBP histogram is done via a look up table in order to improve
the running time efficiency of the feature extraction. The
intuitive depiction of the uniform LBP histogram creation is
depicted in Figure 7.

FIGURE 7: Computation of the LBP descriptor for the region
of interest, and the creation of the uniform LBP histogram
using a Uniform LBP LUT.

The final value of the histogram of uniform local binary
patterns, huLbp(i, j) , term is obtained by performing a root
mean square operation on uniform LBP histograms contained
by the measurement j, huLbp(j) , and the one stored by track
i, huLbp(i) as illustrated in (8).

huLbp(i, j) =

√

√

√

√

1

59

59
∑

k=1

(huLbp(i)k − huLbp(j)k)2 (8)

To compute some of the dissimilarity values from the
appearance score the function expressed in (9) is defined.The
operator |a| refers to the absolute value of the variable a.

F (x, y) = |x− y| (9)

The mean and standard deviation of the region of interest
are two measures that are used in the appearance score.
Mainly due to the fact that the thermal camera does not need
an external source of illumination the two mentioned values
do not have large variations between consecutive frames
for the same object instance (because the pedestrian cannot
increase his temperature abruptly in consecutive frames). The
mean is a measure of the intensity, while the standard devia-
tion is a measure of the contrast in the region of interest, both
characterize the level of thermal infrared radiation emitted
by the pedestrian. The scores of (µs(i, j)) is obtained by
applying (9) as shown in equation (10).

µs(i, j) = F (µs(i), µs(j)) (10)

The value of (σs(i, j) is computed analogously by applying
the function F defined in (9) with the parameters (σs(i))
and (σs(j)). The value of µs(i) and σs(i) is computed as
illustrated in (11) and (12), where h and w are the dimensions
of the regions of interest and Image is the region of interest
from the far infrared image.

µs(i) =
1

M

(

h−1
∑

k=0

w−1
∑

r=0

Image(k, r)

)

(11)

σs(i) =

√

√

√

√

1

M

(

h−1
∑

k=0

w−1
∑

r=0

(Image(k, r)− µs(i))2

)

(12)

The physical attributes of each pedestrian, like width and
height, are other properties that offer clues when performing
object association. Physical particularities of the detected
pedestrians do not change suddenly and due to the fact that
the frame rate of the used thermal sensor is sufficiently high,
we can capture the variations for the same object instance.
Even though properties such as width and height can help
distinguish between pedestrians of different noticeable sizes,
in case the pedestrians are similar in dimensions these prop-
erties alone are not sufficient. For this reason, the mentioned
features are introduced in the appearance score among other
functions. The height measure for track j and detection i,
hs(i, j), is computed by applying the function F(h(i),h(j))
defined in (9), where h(x) is the height of instance x. The
width distance score, Ws(i, j), is computed analogously
taking the width measure instead of the height.

In the aggregate cost function the classification probability
coming from the pedestrian classifier in thermal images is
also included. It was noticed that the classification score
difference from adjacent frames for the same pedestrian
instance is very small compared to the difference obtained
by subtracting the classification score for different pedestrian
instances from consecutive frames. The classification score
cs(i, j) is obtained by applying function F(c(i),c(j)) (9),
where the c(x) represents the classification score of x. The
result is a value between 0 and 1, the closer the difference is
to 0 the more similar the two objects are with respect to this
distance metric. It may happen that multiple pedestrians have
similar classification scores, in such a scenario, this metric
is not sufficient to discriminate between objects, hence the
value was used as a component of the appearance cost not
just by itself.

The last term of the appearance cost function is a size-
based distance function. This term incorporates the size sim-
ilarities of a track and a measurement, as well as localization
information of each detection compared to the predicted
localization information from a track. Therefore, the size-
based distance, os(i, j), between a measurement i and track
j is considering both the location and size of the bounding
boxes and is defined in equation (13); where Ai is the area
of the measurement, Aj is the area of the tracked object, and
A∩ is the area of the intersection between the two objects.

os(i, j) =
|Aj −Ai|

A∩

(13)

Motion Score

In some situations when two pedestrians are very similar as
viewed from the thermal camera, the appearance score might
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be unable to distinguish between them. For such scenarios,
the motion pattern of each pedestrian is also included in the
final cost. The final expression for the motion score, m(i, j),
between measurement i and track j is shown in (14). As in the
case of the appearance score, the weights were determined
experimentally, their values are wdst = 85, wσm = 20.

m(i, j) = wdst ∗ dst(i, j) + fc(i, j) +

+wσm(σm(i, j)x + σm(i, j)y) (14)

When tracking an object in adjacent frames, its motion is
offering an important clue regarding the objects future posi-
tion in the next frame. We define the difference between the
predicted position and the measured position as the motion-
based distance measure. The Euclidean norm is used, and
the center positions of the objects bounding boxes expressed
in 2D image coordinates are selected when computing the
distance.

Another term that is included in the motion score is the
flow distance metric between the detection i and track j.
Tracking using a sparse optical flow algorithm may not
be reliable from a qualitatively point of view and dense
optical flow is a very expensive procedure computationally
and qualitatively may be imperfect on unstructured surfaces.
Although the individual trajectories that result from the op-
tical flow may be inaccurate, collectively they can provide
clues regarding the motion of objects in consecutive frames.
After applying the algorithm presented in [52] for computing
the optical flow, several steps were performed for obtaining
the angle and magnitude values for the optical flow of the
region of interest. First of all, 36 bins are created to store
the flow values. Each flow vector value casts a vote in one
of the 36 bins based on its angle. Secondly, after having all
the identified flow vectors vote inside their corresponding
bins, we compute the mean values for the magnitude and
angle for each bin. Finally, a search is performed to find
the bin where the majority of votes were cast and afterwards
the mean magnitude and angle corresponding to that bin are
selected as flow parameters for our region of interest. We
have observed using multiple sequences recorded in various
scenarios, that objects do not change their motion pattern
abruptly in consecutive frames, a thing which has led us to
define the flow cost as shown in 15.

fc(i, j) = F (θi, θj)× wθ + F (ϑi, ϑj)× wϑ (15)

The flow angle is represented by (θ), the flow magnitude
is represented by (ϑ), the function F has been defined in (9)
and wθ = 40 and wϑ = 15 are two weights whose values
were determined experimentally.

The last term of the motion score, σm, represents the
deviation of object motion from the objects current motion
pattern, on x and y directions. We have included this term
because we want to penalize large deviation from the current
motion pattern of the object. The rationale behind this term
is: if we consider the motion pattern of the pedestrian in the
last five frames, the next move will most likely resemble the

same pattern, having a small deviation for the correct object
association. We would also want to mention we stored the
last five positions for each tracked object. The expression for
variation cost distance is displayed in equation (16). This cost
is applied on both x and y components of the 2D motion. The
variable Xi represents a detection, Zj(k) represents the kth
stored past position of track j.

σm(i, j) = |Xi −

√

√

√

√

1

5

4
∑

k=0

(Zj(k)− Zj(k + 1))2| (16)

It is worth mentioning the fact that the identified weights
for the appearance and motions scores are not unique, other
variations are possible however the selected values offered
the best results in our case.

Track Selection, Update and Refinement

Once the motion and appearance similarity scores have been
computed between measurement i and track j, they can be
assembled into the final cost ǫ(i, j) as shown in equation (5).

The similarity cost is computed for all tracks stored in
memory against all the detections from the current frame that
fall within the track co-variance ellipse. The affinity scores
are stored into a matrix format and are used as input in the
Hungarian [53] algorithm, that finds the best assignment for
each detection in the current frame with the corresponding
track. If the similarity cost for a track-detection assignment
pair is above a threshold, the assignment is nullified and a
new track is created for that measurement.

After finding all the viable correspondences between the
tracks and measurements, the following scenarios can be
identified: we can have a track matched with a detection,
an unmatched detection or an unmatched track. In the case
of a successful track and measurement association, the track
and all its parameters are updated, using the new informa-
tion coming from the measurement. In case we have an
unmatched detection, a new track is created. The newly
created track will remain in an unstable state until it will
be associated to new detections and tracked for another five
frames, and afterwards it will become stable and it will be
displayed.

One of the key features of a tracking algorithm is to main-
tain the tracked object even if the detection is not available
for a number of frames due to errors in the object detector,
occlusions and other factors. For this reason, each track
incorporates a history counter, which counts the number of
frames for which a specific track has not been associated. The
position of the unmatched track in the next frame is predicted
based on the motion pattern the track has had so far, using a
Kalman filter predict function. After a number of frames, if
the unmatched track remains un-associated it enters a drifting
state, where the track is not displayed however it is still
kept in memory. The track is finally removed in the drifting
stage if still not matched. Therefore, unmatched tracks are
not removed immediately. It is important to mention the
fact that tracks that exit the region of interest are marked
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for termination and removed. In the proposed solution the
track history and drifting history have different values for day
and night scenarios, which were determined experimentally
and depend on the camera frame rate. The value for the
history counter is 20 and for drifting counter is 15 for night
scenarios, while for day cases history counter becomes 25
and drifting counter becomes 15. It is worth mentioning the
fact that the drifting and history counters values mentioned
above are applicable only to stable tracks. In case of tracks
which are not stable, they will be set for removal if they are
not associated after 5 frames for night scenarios or 7 frames
for day scenarios. In Figure 8 a scenario is illustrated where
a pedestrian gets occluded by some trees, but his identity
is maintained until he becomes visible again and the object
detector is once again able to successfully detect him.

FIGURE 8: a)Pedestrian fully detected and tracked
b)pedestrian begins to get occluded; c) pedestrian is fully oc-
cluded but continues to be tracked; d) pedestrian is occluded
we can observed parts of him between the trees, the detector
is unable to detect him, but due to the tracking algorithm his
identity is maintained; e) Pedestrian reappears and is detected
and tracked.

Finally, the track list is updated with the newly found
tracks and old tracks are removed. In Figure 9 we show a
scenario where two pedestrians cross paths. The proposed
solution is able to maintain the correct identity of each
pedestrian and not latch onto the wrong pedestrian when the
pedestrians overlap. The bottom right image from Figure 9
shows the path history of each pedestrian position.

Another scenario where multiple pedestrians walking on a
sidewalk are being successfully tracked is displayed in Figure
10. The pedestrian ID is maintained and there is no ID switch
error for the pedestrians that are close to each other. The
meaning of the four images that make up Figure 10 remain
the same as in the case of Figure 9.

FIGURE 9: In the top left, object detections are shown,
with their corresponding motion vectors. In the top right, the
detections are projected in a grid. In the bottom left each track
is represented with a unique id and color and in the bottom
right the tracked objects are depicted as well as the motion
trail corresponding to the path of each pedestrian.

FIGURE 10: In the top left, the measurements are shown.
In the top right, the image illustrates the detections projected
onto a grid. In the bottom left the tracked objects are shown,
and in the bottom right the trail left by the tracked object is
displayed.

B. SEMANTIC SEGMENTATION OF THE ROAD

SURFACE IN INFRARED IMAGES

A key factor that influences the decisions of a pedestrian ac-
tion recognizer is given by the position of the pedestrian with
respect to the street, or with respect to the drivable area. A
semantic segmentation of the road in infrared images is em-
braced in this paper. The convolutional neural network model
proposed by [54], [55] is adopted. The network contains a
sequential architecture based on an encoder segment produc-
ing downsampled feature maps and a subsequent decoder

VOLUME 4, 2016 11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080822, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

segment that upsamples the feature maps to match input
resolution. We have kept the original architecture proposed
by [54], [54] which consists in 16 layers that combine resid-
ual blocks and downsampling blocks defining the encoder,
while layers 17 to 23 form the decoder. The decoder includes
transposed convolutions that have the role to upsample the
encoder’s feature maps. The result of the segmentation is a
labeled image of size equal to the input image size having
the pixels labeled as either road or non-road.

In our experiments we have used the PyTorch implemen-
tation and the pretraied encoder provided by ERFNet. This
encoder was pre-trained on ImageNet while the decoder
was trained from scratch on the infrared images. We have
modified the number of classes to two (road and non road
pixels), and trained the network with a batch size of 6 for 150
epochs.

C. PEDESTRIAN CROSS ACTION RECOGNITION

The cross action recognition module represents another orig-
inal contribution of this paper as it engineers a times series
prediction model for action recognition in infrared images.
The input of this module consists in time series feature
vectors of maximum length equal to t and the output is a cross
action recognition probability vector for frame t. As time
series prediction model we use the classical Long Short Term
Memory (LSTM) Network proposed by [56] and extended by
[57], [58]. It is able to process sequential data one sample at
a time and its additive interactions improve the gradient flow
through the network.

The LSTM network employed in this paper is a many-to-
one topology for classification. Its structure is presented in
Figure 11. The input is formed of feature vectors computed

FIGURE 11: LSTM network topology: considers as input the
time series feature vectors for frames t− 3, t− 2, t− 1, t and
predicts the action for frame t

for continuous frames in the video sequence. The feature
vectors are detailed in section IV-C. To predict class labels,
the network ends with a fully connected layer, a soft-max
layer, and a classification output layer.

The LSTM layer in Figure 11 contains several LSTM cells
[56], [59]. Each cell comprises computational blocks, named
gates, that control the amount of information that is added or
removed by the cell. The LSTM layer with three cells, from
Figure 12 depicts the data flow from frame t− 2 to frame t.

The input vectors for timestamp t, t−1, t−2 and t−3 are
xt, xt−1, xt−2, xt−3. Two states, ht –the hidden state and ct
– the cell state are maintained at each time stamp. The i, f ,
g, and o represent the input gate, forget gate, cell candidate,
and output gate. The input gate i is beneficial for storing new

FIGURE 12: Three LSTM cells and the data flow from frame
t− 2 to frame t− 1 and to frame t as implemented by [59]

information in the cell, the forget gate, f helps in discard-
ing/forgetting irrelevant information from the previous state,
the cell candidate gate g is used for updating the cell state and
the output gate, o controls which information is transmitted
to the next time step. The cell state at a given time step t is
given by:

ct = ft ⊙ ct−1 + it ⊙ gt (17)

where ⊙ represents the element-wise multiplication of vec-
tors. The hidden state at time step t is:

ht = ot ⊙ tanh ct (18)

As described by [58] and [59] the weights that are learned
and updated during the training process of an LSTM are the
input weights W, the recurrent weights R, and the bias B:

W =
[

Wi Wf Wg Wo

]T
,

R =
[

Ri Rf Rg Ro

]T
,

B =
[

Bi Bf Bg Bo

]T
, (19)

At time step t the behavior of the gates in the cell is defined
as follows:

it = σg(Wixt +Riht−1 +Bi)

ft = σg(Wfxt +Rfht−1 +Bf )

gt = tanh (Wgxt +Rght−1 +Bg)

ot = σg(Woxt +Roht−1 +Bo) (20)

where σg is the sigmoid function, σ(x) = (e−x + 1)−1.
In the implementation for this paper the LSTM network
functionality provided by [59] was used. The fully connected
layer is used to combine the features in order to classify the
actions. The output size of the fully connected layer is equal
to two, as we have two actions which are to be recognized.
The softmax layer applies a softmax function to the output
of the fully connected layer. This layer is followed by the
classification layer that has the role of computing the cross
entropy loss during the network training procedure.

Features used by the LSTM

The cross action recognition is based on a time series analysis
of the pedestrian’s position in the image, motion features,
distance of the pedestrian with respect to the ego-vehicle, and
road context information as shown in Figure 13.

The feature vector for a pedestrian track k in frame t
contains:

• Bounding box parameters of the tracked pedestrian:
BBkt =

[

xtop
kt ytopkt , wkt, hkt

]
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FIGURE 13: Features computed for the time series analysis–
from left to right we consider the bounding box information
provided by the pedestrian detector, the pedestrian speed
provided by the tracking module, the pedestrian relation with
respect to the road and the distance of the pedestrian with
respect to the ego-vehicle.

• The horizontal and vertical optical flow components,
Okt = [oxkt, o

y
kt]

• Horizontal speed of the tracked pedestrian: shkt
• Distance from the ego-vehicle to the pedestrian: zkt
• Road context feature vector Rkt.

The bounding box parameters are computed by the pedestrian
detection and tracking module. The horizontal and vertical
optical flow components are computed in the feature ex-
traction phase of the tracking module. In our experiments
a monocular infrared camera was used for acquiring the
sequences, hence the distance estimation method from the
monocular camera was implemented. The top view projec-
tion of the scene was also used for computing the relative
speed on the horizontal direction (Ox). The speed was tem-
porally filtered by a low pass average filter of dimension 5.
The horizontal speed is computed based on tracking and 3D
information, while the road context feature vector computa-
tion is explained bellow.

In order to estimate the pedestrian distance with respect to
the ego-vehicle an approximate method for distance measure-
ment using a monocular camera is employed. The constraints
considered in the proposed approach are shown in Figure 14.

As shown in Figure 14 we consider the following assump-
tions in order to compute distance relative to the ego-vechicle
coordinate system :

• Consider 3 coordinate systems: the Ego-vehicle coor-
dinate system (OEXEYEZE), the Camera coordinate
system (OCXCYCZC) and the World coordinate sys-
tem (OWXWYWZE), which is related to the road (con-
sidered flat);

• Their relative position and orientation is established dur-
ing the system set up as presented in Figure 14: between
the ego-vehicle and the world coordinate systems there
is only a translation (offset) along the Z direction (due
to the camera mounting system on the ego-vehicle);

FIGURE 14: Initial setup of the scene geometry: (OCXCYC)
denotes the camera coordinate system, with blue we have the
image plane and p1(u1, v1) is the projection on the image
plane of a 3D point P1 situated on the road plane

between the world coordinate system and the camera
coordinate system there is only a translation along the
Y axis (camera mounting height above the ground) and
a rotation around the X axis (pitch angle α)

• Let Ow be the projection of the camera’s optical center
(Oc) on the road plane. We consider Ow to be the
origin of the world coordinate system in which all the
3D measurements are computed. The transformation of
the 3D coordinates from the world into the the ego-car
coordinate system can be done by a simple translation
along the Z axis by subtracting the (offset);

• The extrinsic parameters of the camera model (offset,
height and α) can be precisely estimated during the
system setup. Offset and height are measured using
a laser rangefinder while the pitch angle (α) is com-
puted as α = tan−1(OwOC/OwOP10) applied on the
OcOwOP10 triangle (Figure 15) where OP10 is the
intersection of the optical axis with the road plane. In
order to determine the 3D coordinate (mainly the depth
OwOP10) of the point OP10 a white cross was drawn
on the image, centered in the principal point (Figure 21)
and a corresponding marker was drawn on the road sur-
face in such a manner that its image projection perfectly
overlapped the white cross. The measured depth of the
marker relative to point Ow is the length of the OwOP10

segment;
• We also know the camera intrinsic parameters [60],

from the camera dustsheet:

-- fx - focal length measured as number of horizontal
pixels

-- fy - focal length measured as number of vertical
pixels

-- p0(u0, v0) - the principal point measured in pixels.
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The focal length expressed in pixels (f [pixels] =
f [mm]/P ixelSize[mm] according to [60]) is used to
transform the pixel coordinates into metric units as it
will be shown in equations (21) - (27).

Let suppose that we observe a 3D vertical segment (i.e.
the median vertical axis of the pedestrian - Figure 14) having
as extremities the 3D points P1(X, 0, Z) and P2(X,Y, Z).
Their projections on the image plane are the 2D points
p1(u1, v1) and p2(u2, v2) The goal is to compute the 3D
coordinates of the points P1 and P2 in the world coordinate
system and by translation in the ego-vehicle coordinate sys-
tem.

First a side-view projection of the scene on the YwOwZw

plane (having Xw = 0) is performed as depicted in Figure
15. Point P1 is projected in point P10, p1 is projected in p10
and P2 in P20 and so on.

FIGURE 15: The side-view projection of the points in the
scene

Based on trigonometric relations in the triangle Ocp10p0
one can compute the angle γ:

γ = tan−1

(

v1 − v0
fy

)

(21)

Using the relations in triangle OcOwP10 the depth of point
P10 (respectively P1 in the world coordinate system) can be
deduced as:

Z = [OwP10] =
height

tan(α+ γ)
(22)

From the right triangle Ocp20p0 we can compute the angle
θ which will be used further for the height computation of the
object/pedestrian Y Y :

θ = tan−1

(

v2 − v0
fy

)

(23)

The height Y Y is computed from the right triangle
OcY2P20:

Y Y = [OcOw]− [OcY2] = height− Z · tan(α+ θ) (24)

The top-view or bird-eye view projection of the scene on
the horizontal road plane XwOwZw (Figure 16) is used to

FIGURE 16: The top-view projection of the scene on the
horizontal plane XwOwZw

compute the X coordinate – the lateral offset of point P1 with
respect to the axis OwZw:

X = [P1P10] = [p1p10] ·
[OwP10]

[OwZ1]
=

(u1 − u0)

[OwZ1]
· Z (25)

The length of the segment [OwZ1] where Z1 is the projec-
tion of the point p10 on the horizontal plane can be deduced
from the side view projection:

[OwZ1] = [Y1p10] = [Ocp10]·cos(α+γ) =
fy

cos(γ)
·cos(α+γ).

(26)
From equations (25) and (26) the the X coordinate is

computed:

X =
u1 − u0

fy
·

Z

cos (α+ γ)
· cos γ (27)

In our experiments a monocular infrared camera was used
for acquiring the sequences, hence the distance estimation
method from the monocular camera was implemented. The
top view projection was also used for computing the relative
speed on the horizontal direction (Ox). The speed was tem-
porally filtered by a low pass average filter of dimension 5.

The road context features are computed inside a set of
8 rectangles at the bottom of the bounding box, because
that is the place having a high probability of the pedestrian
touching the ground (when lower body occlusions are not
present) - see Figure 17 and Figure 18. The number above the
bounding box in Figure 17 represents the distance in meters
between the pedestrian and the ego-vehicle computed with
the distance estimation algorithm above, while the green part
of the image represents the result of the road segmentation
module.
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(a) Pedestrian on street

(b) Pedestrian outside the street

FIGURE 17: Rectangles in which road context features are
considered: (a) the pedestrian is on the road, (b) the pedes-
trian is outside the road, but very close to it. Road pixels are
marked with green.

The eight rectangles have a dimension proportional with
the size of the pedestrian bounding box. In each of these eight
rectangles the average number of road pixels is computed.
If a pedestrian is on the road, these average values will be
high in most of rectangles, exceptions being made by the two
rectangles that usually capture the feet, that will have a lower
street pixel average. If the pedestrian is outside the road these
averages will be low. The size of the eight rectangles is based
on the width and height of the bounding box as shown in
Figure 18. The dimension of the eight rectangles are either

FIGURE 18: The rectangles in which road features are
considered: for each of the eight rectangles in the lower
part of the pedestrian, the average number of road pixels is
computed.

equal to h
6
× w

4
or to h

6
× w

2
, where h is the height of the

bounding box and w is its width (both expressed in pixels).

These sizes have been chosen empirically.

V. EXPERIMENTS AND RESULTS

The proposed solution is based on a tight combination of
modules that provide the features for the action recognition
model. Each module was trained and evaluated separately.
The evaluation metrics and results for each module are de-
scribed in what follows.

A. PEDESTRIAN DETECTION AND TRACKING

The YOLO based pedestrian detector was trained on FLIR-
ADAS [48] dataset and fine tuned for the CROSSIR dataset.
Starting with the weights of the FLIR-ADAS model obtained
by [19] for our experiments we have trained YOLO on the
annotated pedestrians in our dataset. The training was done
for 20000 iterations. The model with highest mean average
precision is kept. We only consider pedestrian training sam-
ples with a minimum bounding box width of 30 pixels and
with no occlusions.

To compare the performance of the proposed far infrared
tracker with other state of the art solutions, we have used the
PTB-TIR benchmark dataset. In this dataset there are mul-
tiple thermal image sequences each having manual annota-
tions.The center location error (CLE) is an average euclidean
distance between the tracked object position and the ground
truth position for that object. If the CLE is within a given
threshold (20 pixels on the PTB-TIR benchmark) the tracking
is said to be successful at this frame. The precision score
measures the percentage of how successful is the tracking
on the data-set. Apart from the dataset, evaluation results
from multiple types of trackers on the given sequences are
available such that the strengths and weaknesses of each so-
lution can be observed comparatively. In the evaluation of the
proposed tracking solution on the PTB-TIR benchmark, we
have selected to include only the sequences that are related
to pedestrians as seen from a vehicle mounted thermal sensor
(since our tracker has been specifically tailored to track
pedestrians for the field of intelligent vehicles). The results of
the proposed solution on the benchmark are displayed in Fig-
ure 19, under the name OURS along with other representative
approaches from the literature. It is worth mentioning that
the proposed solution comprises no hardware acceleration
methods and the data association function was engineered.
Consequently we were able to monitor the impact of each
feature independently, while keeping a clear view on the
feature extraction part from the data association module. The
numeric results from Figure 19 are also displayed in Table 1.

B. ROAD SEGMENTATION

The training of ERFNet [55] was done using the Adam
optimizer [74], with a batch size of 6, momentum of 0.9,
weight decay of 2e−4 and a starting learning rate of 5e−4.
The learning rate is set every epoch according to the formula
below:

lri =

(

1− (i− 1)

m

)0.9

(28)
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Precision Results
Method Tracking Precision Score
ECO [61] 89.8%
SRDCF [62] 88.8%
DeepSTRCF [63] 88.8%
OURS 85.6%
Staple [64] 83.6%
MLSSNet [65] 83.4%
CFNet [66] 83.3%
VITAL [67] 82.8%
ECO-HC [68] 82.4%
TADT [69] 77.9 %
MCFTS [70] 77.6 %
HDT [71] 75.8%
HCF [72] 75.6%
SiamFC [73] 74.5 %

TABLE 1: Comparative evaluation for various tracking solu-
tions

FIGURE 19: Comparative evaluation of the tracking solution
with respect to the precision of the solution

where i is the current epoch number and m is the total num-
ber of epochs over which the model is trained. Convergence
is achieved after 150 iterations with a segmentation accuracy
of 83.78% obtained on the test set. The training set contains
500 labeled images, the validation set contains 147 images
and the test set contains 200 images.

Figure 20 shows some segmentation results. The original
images are shown in the top part of the figure, while the
bottom row of Figure 20 displays in green the pixels having
a high probability to belong to the road.

C. DISTANCE ESTIMATOR EVALUATION

For the quantitative assessment of the proposed monocular
distances estimator, firstly a static scenario was considered
(Figure 21). A person with known height (YGT

) was placed
in 5 different static positions (a .. e) with precisely measured

(a) Images

(b) Segmentation results

FIGURE 20: Qualitative results for the road segmentation:
top row contains the infrared images and the bottom row
shows the segmentation results: road pixels are marked with
red

depths (ZGT
). For each position of the person, a pair of

points, the lowest and the highest image coordinates along
the persons vertical median axis, were manually selected
and the absolute (ZMae

) and relative (ZMre
) depths errors

were estimated (Table 2 - columns 3,4), according to (22) by
averaging the results over 3 consecutive static image frames.

FIGURE 21: Static scenario used for quantitative evaluation
of the distance estimator with a pedestrian positioned in 5
known locations

Even a person’s height estimation is not relevant for the the
pedestrian cross-action recognition problem, its evaluation
is an important clue for the overall assessment of the pro-
posed monocular measurement model, since both the depth
and height estimations of the objects are very sensitive to
the accurate selection of the object’s base point (the image
projection of the lowest contact point of the object with
the ground/road) and its top-most point in the 2D image.
Therefore the absolute (YMae

) and relative (YMre
) height

errors were estimated (Table 3 - columns 3,4) for the same
pairs of manually selected points for each person’s instance
(a .. e), according to (24), again by averaging the results over
3 consecutive static image frames.

The same measurement pattern was performed for lowest
and the highest mid points of the 2D bounding box provided
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by the pedestrian detector module, and the obtained absolute
(ZPDae

) and relative (ZPDre

) depths errors and the obtained
absolute (YPDae

) and relative (YPDre

) height error are pre-
sented in the last 2 columns of Tables 2 and 3, respectively.
The errors for the manually selected points (columns 3,4) and
for the automatically detected points (columns 5,6) are of the
same order, ranging mostly bellow 5% which is more than
acceptable for a near-depth range urban scenario, and are
comparable with the performances of more precise sensors
(i.e. stereo vision [75]), considering the simplified flat road
assumption.

# ZGT
ZMae

ZMre
[%] ZPDae

ZPDr
[%]

a 2960 -105 -3.55 -255 -8.60
b 5203 -149 -2.87 31 0.60
c 7042 -115 -1.64 -138 -1.95
d 9950 -70 -0.71 147 1.48
e 12635 -12 -0.09 256 2.03

TABLE 2: Depth evaluation in a controlled scenario

# YGT
YMae

YMre
[%] YPDae

YPDr
[%]

a 1860 -33 -1.77 -78 -4.21
b 1860 -54 -2.90 -84 -4.53
c 1860 -49 -2.63 -26 -1.42
d 1860 -12 -0.65 0 -0.02
e 1860 -2 0.11 28 1.49

TABLE 3: Height evaluation in a controlled scenario

For the lateral position estimation (X coordinate), GT data
was not acquired for each person’s instance from the static
(controlled) scenario but the width of the furthest structure
visible in the image (the door contour visible in the back-
ground of Figure 21) was assessed. So, at approximately 13m
depth, for the 2.653m width structure an absolute width error
of -38 mm corresponding to a relative width error of -1.43%
was obtained. Obviously, accuracy of X coordinates can be
offset-ed by the imprecise alignment between the OCZC and
OEZE axes (Figure 14) during the sensor’s setup, but it can
be minimized by carefully align the principal point of the
thermal camera (white cross from Figure 21) with the OEZE

axis of the ego-vehicle.
The lateral movement of the pedestrian was assessed

by computing the relative speed component (between the
pedestrian and ego-car) along the OEXE axis in a dynamic
sequence. The image positions of the mid-bottom point of the
tracked pedestrians’ bounding-boxes (Figure 22.a), provided
by the pedestrian detection and tracking modules, were trans-
formed in metric coordinates (22, 24, 27) and mapped in the
top-view image (Figure 22.b). The horizontal component of
the pedestrian’s speed is computed as the temporal derivative
of the X coordinates against the time difference between two
consecutive frames (∆t = 40ms ⇔ fr_rate = 25fps):

vrelX =
X(t)−X(t−∆t)

∆t
=

∆X · fr_rate

1000
[m/s] (29)

For the dynamic scenario presented in Figure 22 the hori-
zontal component of the relative speed vX was computed for

FIGURE 22: Dynamic scenario used for quantitative eval-
uation of the the horizontal component (along OEXE axis)
of the relative speed between pedestrians and the ego-car: a.
perspective view with tracked bounding-boxes; b. Top view
projection of the scene, showing the segmented road sur-
face (magenta) and the reference position of each pedestrian
(green cross)

the whole sequence summing about 60 frames. Figures 23
and 24 show the row values (red plots) of the vX component
for two tracked pedestrians crossing the street in front of the
ego-car. The row speed components were temporally filtered
with a mean low-pass filter of size 5 (green plot) as they are
used by the action recognition module. The blue dotted plots
represent the average row speed components over the entire
sequence and show the general movement behavior of the
pedestrians: pedestrian with ID=8 is crossing the street by
walking from left to right with an average speed of 1.54 m/s
(5.5 km/h) while pedestrian with ID=11 is crossing the street
by running from right to left with an average speed of -2.93
m/s (-10.5 km/h).

The difference between the oscillating raw speed and the
smoothed one are mainly due to the instantaneous variations
of the bottom-center point of the pedestrian (v1, u1) as
provided by the pedestrian detector, which influence the X
coordinate of the pedestrian’s position according to (21), (22)
and (27) and secondary due to the fact that the pedestrian
speed is not constant and follows a stepping induced pat-
tern. However the smoothed speed components have lower
standard deviations (0.3 .. 0.4) for both pedestrians being
approximately half of the ones computed for the raw speed
components (0.6 .. 0.8) and can be used as input features for
the cross-action recognition classifier,

D. CROSS ACTION RECOGNITION EVALUATION

For evaluation we have used time series of various lengths
extracted from the test dataset. The length of the time series
represents the minimum number of frames before the action
can be recognized. The metrics used for evaluation are accu-
racy and F1-score. During the experiments we have varied the
length of the time series from 3 to 20 frames and measured
the metrics for each length. Table 4 presents these results.

A good accuracy for a time series having a short length
means the system can predict the cross or not cross action
based on less information about the evolution of the features
in time. The accuracy chart and the evolution of the F1-score
for various time series lengths is also shown in Figure 25.
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FIGURE 23: Horizontal component of a pedestrian crossing
the street from left to right: red plot - raw speed, green plot -
filtered speed with a mean low-pass filter of size 5; blue plot
- average speed over the entire sequence

FIGURE 24: Horizontal component of a pedestrian crossing
the street from right to left: red plot - raw speed, green plot -
filtered speed with a mean low-pass filter of size 5; blue plot
- average speed over the entire sequence

Length Accuracy % F1-score % Precision % Recall %
3 0.9216 0.9311 0.9505 0.9126
4 0.9028 0.9124 0.9572 0.8715
5 0.9038 0.9133 0.9569 0.8735
6 0.9036 0.9129 0.9599 0.8703
7 0.9078 0.9173 0.9551 0.8824
8 0.9122 0.9207 0.9626 0.8824
9 0.9118 0.9200 0.9650 0.8790
10 0.9087 0.9179 0.9535 0.8849
11 0.9156 0.9248 0.9535 0.8978
12 0.9067 0.9143 0.9505 0.8807
13 0.9319 0.9395 0.9528 0.9266
14 0.9105 0.9193 0.9562 0.8851
15 0.9128 0.9212 0.9500 0.8941
16 0.9275 0.9342 0.9595 0.9103
17 0.9184 0.9268 0.9500 0.9048
18 0.9328 0.9412 0.9412 0.9412
19 0.9173 0.9272 0.9333 0.9211
20 0.9085 0.9171 0.9540 0.8830

TABLE 4: Cross action recognition accuracy for various time
series lengths

FIGURE 25: Cross action accuracy for various lengths of the
time series in the test set

FIGURE 26: Cross action evaluation: F1-score for various
lengths of the time series in the test set

It can be noticed that for all time series lengths, varying
from 3 to 20, the accuracy is above 90% with a precision
higher than 93%. This means the proposed model predicts the
pedestrian actions correctly, considering a minimum amount
of information gathered for at least 3 frames. The measures
presented in Table 4 are average measures for all pedestrian
instances.

We also measure the evolution of the cross probability, in
relation with pedestrian distance from the car for each of the
scenarios depicted in Figures 3 and 4. These measurements
are highly dependent on the content of the sequences. Most
of the sequences in the CROSSIR dataset contain pedestrians
that are at a distance from 3 to 30 meters with respect to the
vehicle.

In the scenario with pedestrians walking or running to-
wards the road and crossing continuously not far from the
car (2-12 meters) the average cross probability is shown
in Figure 27. We also depict the minimum and maximum
cross probabilities. It can be noticed from Figure 27 that the
minimum cross probability has a value greater than 50%,
while the average cross probability for this scenario is close
to 90%.

Figure 28 shows the evolution of the cross probability for
the scenario in which pedestrians are standing close to the
curb and starting to cross. It depicts the average, minimum
and maximum cross probabilities. It can be noted that the
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FIGURE 27: Cross action probability for the continuous
cross scenario

cross probability starts increasing from a distance of 20
meters. This fact is due to the nature of the test sequences
in the dataset for which pedestrians are crossing the street in
front of the car, their distance with respect to the car being in
the range 5 to 30 meters.

FIGURE 28: Cross action probability for the start to cross
scenario

Figure 29 shows the evolution of the cross probability
(average, minimum and maximum values) for scenarios in
which pedestrians are on the road and start to cross or are
already engaged in a cross action. This situation appears
when the car turns on a street where a pedestrian is on
the road, engaged in a cross action with the direction of
movement perpendicular to the direction of the car, or the
pedestrian’s movement direction is parallel to the direction
of the car. It can be noticed that the cross probability in this
situation starts to increase if the pedestrian is situated at a
distance smaller than 38 meters.

A similar analysis was performed for predicted cross prob-
ability on not cross scenarios. When pedestrians are standing,

FIGURE 29: Cross action probability for the pedestrian on
road cross scenario

walking or running parallel to the road they do not enter the
drivable area and their direction of motion is parallel to the
road. Figure 30 shows the evolution of the cross probability
in this case. It can be noted from Figure 30 that the average

FIGURE 30: Cross action probability for not cross scenario
in which the pedestrian is standing next to or moving parallel
to the road

cross probability is bellow 40%, which is typical for such
situations.

For the case in which pedestrians are walking or running
towards the road and then stop without crossing the street
the evolution of the cross probability is presented in Figure
31. In this situation it can be noticed that as the pedestrian is
getting closer the cross probability increases around of 50%
average value and then it decreases. Minimum and maximum
cross probabilities are also depicted and it can be observed
the maximum cross probability reaching as high as 99% .
This case is typical for the sequences in which the pedestrian
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comes towards the car quickly and stops in the last moment
very close to the car.

FIGURE 31: Cross action probability for not cross scenario
in which the pedestrian is approaching the road and stops

A comparison with other methods is shown in Table 5.
Even if those methods are trained for color images, we have
used similar algorithms and features that can be computed
from the infrared images. For computing the gait information
we have employed the pose extraction algorithm proposed
by [76], [77], [78]. AlexNet is trained for gait (walking /

Method Accuracy

SVM and gait information [46] 88.75%
LSTM + bounding box information [79] 80.5%
ACF pedestrian detector [6] + LSTM 78.2%
R-CNN pedestrian detector [80] + LSTM 82.2%
Proposed method 93.28%

TABLE 5: Cross action recognition accuracy – comparison
with other methods

standing) estimation by [46] and the model is modified in
order to provide features on top of which a SVM classifier
is trained. We have used as context the road information
provided by the semantic segmentation module. Due to the
nature of the infrared images we could not include pedestrian
crossing signs or traffic lights which are not distinguishable
in the heat map of the infrared image.

Two other pedestrian detectors, namely Aggregated Chan-
nel Feature (ACF) [6] pedestrian detector and Regions with
CNN features (R-CNN) [80] were used as baseline pedes-
trian detectors with the purpose of result comparison. The
pedestrian bounding box information was combined with
motion, distance and road features and fed to the LSTM
action recognition model.

The execution time for the proposed method was measured
on an onboard computer having the following features: i7-
3770K CPU with 16GB of memory and an NVidia GeForce
RTX 2080 Ti. The execution time for extracting the features
provided by the pedestrian detection and tracking module is

26ms, for computing the features given by the road segmen-
tation and pedestrian distance estimation is of 13ms, while
the LSTM inference time is of 10 ms.

Figure 32 presents results of the action recognition module
in different scenarios. The road segmentation mask is over-
lapped over the images, the detected and tracked pedestrians
are marked with either green (if they do not cross) or red
(if they cross), the distance of the pedestrians with respect
to the car is shown above the bounding box, while the cross
probability is written under the bounding box.

For example the start to cross scenario in which the pedes-
trian is walking towards the road and he / she starts to cross
the road. In Figure 32 a) we show the pedestrian distance with
respect to the car and the cross probability. If the action is a
not-cross action the pedestrian bounding box is green, and if
the pedestrian is crossing the system displays a red bounding
box. The continuous cross scenario is shown in Figure 32 b)
with pedestrian distances in various ranges: far or closer to
the car.

The not cross scenarios when the pedestrian comes to-
wards the road and stops or when the pedestrian is walking
parallel to the road are shown in Figure 33 a) and b). Some
demonstrative videos and the CROSSIR dataset are available
at 2.

VI. CONCLUSION

A modular system for detecting, tracking and recognizing
the pedestrians’ actions in far infrared images was presented.
The contributions of the proposed approach reside in an
original time series based cross action recognition model
that estimates the pedestrian locations in the scene, their
speed and direction of movement, and recognizes with a high
accuracy the cross or not cross actions.

The infrared setup is useful for day and night driving
conditions, for low visibility environments with fog, snow
or heavy rain. The proposed model is based only on the
information provided by a monocular infrared camera. Using
the known system setup we are able to estimate the pedestrian
distance with respect to the ego vehicle. Based on a robust
pedestrian detector combined with an original tracking algo-
rithm capable to extract motion and direction information,
we integrate road segmentation data, in order to build a time
series prediction model that recognizes the pedestrian cross
action.

For the evaluation of the model we also propose and
share towards the scientific community an annotated dataset,
CROSSIR that can be used for pedestrian detection, tracking
and action recognition in infrared images. Experiments with
various time length series show that the proposed solution
achieves an accuracy over 90% for all cross and not cross
scenarios captured in the proposed dataset.
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(a) Start to cross action

(b) Continuous cross

FIGURE 32: Results for cross action recognition: the segmented road is marked with light gray, pedestrians that do not cross are
marked with a green bounding box, pedestrians performing a cross action are marked with a red bounding box. The pedestrian
distance with respect to the ego-vehicle is noted at the top-left corner of the bounding box, while the cross probability (a number
between 0-100) is shown at the bottom left corner of the bounding box.

(a) Not-cross: stop scenario

(b) Not-cross: walk parallel to the road

FIGURE 33: Results for not cross actions: the segmented road is marked with light gray, pedestrians that do not cross are
marked with a green bounding box. The pedestrian distance with respect to the ego-vehicle is noted at the top-left corner of the
bounding box, while the cross probability (a number between 0-100) is shown at the bottom left corner of the bounding box.
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