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Pedestrian dead reckoning (PDR) can be used for continuous position estimation when satellite or other radio signals are not
available, and the accuracy of the stride length measurement is important. Current stride length estimation algorithms, including
linear and nonlinear models, consider a few variable factors, and some rely on high precision and high cost equipment. 
is
paper puts forward a stride length estimation algorithm based on a back propagation arti�cial neural network (BP-ANN), using
a consumer-grade inertial measurement unit (IMU); it then discusses various factors in the algorithm. 
e experimental results
indicate that the error of the proposed algorithm in estimating the stride length is approximately 2%, which is smaller than that of
the frequency and nonlinear models. Compared with the latter two models, the proposed algorithm does not need to determine
individual parameters in advance if the trained neural net is e�ective. It can, thus, be concluded that this algorithm shows superior
performance in estimating pedestrian stride length.

1. Introduction

Global navigation satellite systems (GNSS) play an important
role in daily life; however, in some places satellite signals may
be severely degraded or may not be received at all, leading to
issueswith continuous navigation [1]. Location based services
(LBS) are useful to individual users, so inertial navigation
and pedestrian dead reckoning (PDR) have been studied
to help overcome the limitations of satellite signals. Inertial
navigation requires accurate initial alignment and heading
information in real time, and owing to the dri of gyro, it
must be combined with other information for positioning.

is will increase the complexity of the use of information
fusion algorithms and hardware, thereby raising the cost of
pedestrian positioning.

PDR can achieve continuous position estimation when
satellite signals cannot be used. When the sensor is attached
onto the body or a handheld device, PDR can achieve better
positioning performance than traditional inertial navigation,
even when a tactical level sensor is used [2]. PDR comprises
four phases: step detection, step (or stride) length estimation,
heading estimation, and navigation results update. Because

accelerometers placed on the body are motion-sensitive, the
data can be processed to detect steps [3]. PDR has become
an e�ective positioning technology, and acceleration signal
statistical parameters can be used to estimate stride length.
Step detection algorithms include the zero crossing method,
peak detection method, and autocorrelation method [4, 5].

e stride length estimation algorithm is complex, because
there may be a variety of motion patterns during walking
or running. 
e patterns include walking slowly, walking
normally, walking rapidly, and running.

PDR is related not only to the number of steps but also
to step length; this di�ers greatly among individuals and is
also related to the speed of walking. 
e step length can vary
by nearly 40% among pedestrians walking at the same speed
and up to 50% throughout the range of walking patterns of
an individual [6].
e simplest approach to estimation of step
length is to take this as a constant model for one person [7];
however, this model cannot well adapt to a change of pace.
A linear relationship between step length and pedestrian
height was presented in [8], but the variation of step length
during walking had been neglected. Yang and Li identi�ed a
close relationship between the frequency and step length and
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Figure 1: Consumer-grade IMU used in this research.

proposed an algorithm to estimate step length based on the
step frequency in paper [9]; the authors of paper [10] adopted
this linearmodel for PDR.However, step length is also related
to acceleration variance [11], vertical velocity [12], and so
on, so simply considering step frequency is not su�cient.
Taking into account step intervals, acceleration variance, and
inclination, the step length can be modeled by a multivariate
equation [13]. A nonlinear model with only one coe�cient
was proposed to estimate step length [14, 15]; however, this
model’s coe�cient may vary between di�erent pedestrians.
Chen et al. proposed a method to detect movement of the
body by measuring electromyogram (EMG) signals of leg
muscles [16], but it is inconvenient for pedestrians to bind
EMG sensors to the gastrocnemius. Toth et al. developed a
step length estimation algorithm based on arti�cial neural
networks and fuzzy logic [17], which signi�cantly improved
the accuracy of thismethod; however, a backpack systemwith
a variety of sensors was used, so the structure was complex
and the cost was relatively high. BP-ANN has also been used
to characterize steps by Anacleto et al. [18], but only to learn
gait behavior rather than to estimate step length.


e aim of this paper is to propose a universal model
based on BP-ANN to estimate pedestrian stride length; this
model does not need to predetermine pedestrian parameters
each time, which is di�erent from the frequency model in
[9, 10] and the nonlinear model proposed in [14, 15]. In order
to do so, we used the trained net based on 13 test subjects’ data
to estimate stride length of three other subjects; the results
have veri�ed the feasibility of this algorithm.


is paper is organized as follows: the sensor hardware
used in experiments is presented in Section 2.1. Data collec-
tion and processing, and di�erent models for data �tting, are
described from Sections 2.2–2.5. Experiments and results are
given in Section 3. Finally, Section 4 concludes the paper and
discusses the research direction for future work.

2. Methods

2.1. Sensor Hardware. 
e hardware utilized in the trials
was a consumer-grade IMU consisting of MPU6050, and

the dimensions of the printed circuit board (PCB) are
15.2mm × 15.2mm × 2mm. Figure 1 shows the IMU used
in the research. Its operating voltage is 3 V–6V, and the
measurement range of the three-axis MEMS accelerometer
is ±16 g. 
e sensor data can be transmitted from 0.1 to
200Hz to a smartphone using Bluetooth. 
e IMU can
output acceleration, angular velocity, magnetic intensity, and
air pressure. In this paper, acceleration was analyzed and is
discussed in detail.

2.2. Data Collection. 
e acceleration waveforms di�er when
an IMU is placed on di�erent parts of the body. In order
to improve the accuracy of step detection and stride length
estimation, the IMU is usually placed on the foot or leg. Lower
placement is more sensitive to phases of the walking cycle [3].
When the IMU is attached to the foot, it can better re�ect
pedestrianmovement, and step detection is alsomore reliable
[19]; for data collection in this paper therefore, the IMU was
attached to the foot. Because stride length not only is related
to walking patterns, but also varies with di�erent pedestrians,
we collected data from 13 test subjects using di�erent walking
patterns; these included walking slowly, walking normally,
walking rapidly, and running. 
e data sampling rate was
100Hz. 
e test was conducted in the straight corridor of
the Second Floor, Building 9003, Tsinghua University. 
e
experimental site and the placement of the IMU are shown
in Figure 2.

2.3. Data Analysis. As shown in Figure 3, the walking cycle of
a pedestrian can be divided into two main phases: the stance
phase and the swing phase.
e stance phase starts with a heel
strike moment and ends with a toe o� moment, with each
phase corresponding to a footstep [20]. Because the e�ects of
heel strikes and toe o� moments are distinct, in most cases it
is not di�cult to localize them. 
e data from the three-axis
accelerometer was collected during walking but cannot be
double integrated directly because of the error accumulation;
instead, the accelerometer was used as a pedometer—similar
to [21]—and the stride length was estimated based on the
statistical characteristics of acceleration data.
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Figure 2: 
e experimental site and placement of the IMU.
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Figure 3: 
e two phases of a walking cycle.


e �-axis, �-axis, and �-axis output data of the
accelerometer are de�ned as ��, ��, and ��, respectively. In
the test, the �-axis corresponds to forward direction while
�- and �-axes correspond to leward direction, and to the
direction given by the cross product of � and �, respectively.
Figure 4 shows how the data of ��, ��, and �� changed when
one test subject walked normally.

It can be seen that ��, ��, and �� show certain cyclical
characteristics, especially in the case of �� due to its regular
change with foot up-and-down movements [10]; this con-
forms to the characteristics of vertical acceleration discussed
in papers [22, 23]. However, to avoid the e�ects of sensor tilt
and body swing, themagnitude of the acceleration but not the
acceleration component is used for stride length estimation
as shown in (1). 
is is because the acceleration magnitude
is a robust feature of the footstep and is insensitive to the
orientation of the sensor unit [24, 25].

� = √�2� + �2� + �2� , (1)

where � is the acceleration magnitude.
Use of the acceleration component for stride analysis is

illustrated in Figure 5, where an obvious cyclical characteris-
tic can be seen. It is clear that each walking cycle has a period
with a sharp change of waveform, and an approximately
constant period, and that the two periods correspond to
di�erent phases.

2.4. TwoCommonModels forData Fitting. In order to analyze
the e�ects of estimating stride length with di�erent models,

Table 1: Data from test subject number 1, for four walking patterns.

Walking pattern Acc
Vmax � (g) Acc

Vmin � (g) �� (m)

Normally
4.80 −2.11 1.58

4.96 −1.86 1.62

Rapidly
8.56 −3.12 1.82

9.39 −3.11 1.87

Slowly
2.44 −1.28 1.36

2.19 −1.02 1.33

Running
12.06 −6.88 2.07

11.18 −6.51 2.00

this section illustrates the use of the two common models
used for data �tting.

As shown in (2), an empirical nonlinear model can be
used to estimate the stride length [14, 15, 25–27].

� = 	 × 4√Acc
Vmax − Acc

Vmin, (2)

where � is the stride length, Acc
Vmax (or AccVmin) is the

maximum (orminimum) vertical acceleration in a stride, and
	 is the personalized parameter.


is model seems simple because it has only one coef-
�cient, but in order to �nd the maximum and minimum
vertical acceleration in each stride, initial alignment must
be completed [28]. 
is can be done using accelerometers
and magnetometers, and we can then obtain the vertical
acceleration by utilizing acceleration measurements as in
[27, 28]. Figure 6 shows the variation in vertical acceleration
of test subject number 1 at normal walking speed.

In order to get the value of 	 of test subject number 1,
we examined the eight sets of data shown in Table 1, where
Acc

Vmax � is themean value ofmaximumvertical acceleration
in the same walking pattern, Acc

Vmin � is the mean value of
minimum vertical acceleration, and �� denotes the mean
value of stride length. In eachwalking pattern, the test subject
walked twice, and two sets of data were collected.

According to the data, we can �nd the nonlinear model
with the lowest sum of square errors of test subject number 1
as follows:

� ≈ 0.55 × 4√Acc
Vmax − Acc

Vmin. (3)


e frequencymodel is also widely chosen to estimate the
stride length [9, 10, 24, 29]; this model is shown as follows:

� = � × � + �, (4)

where� is the walking frequency and � and � are coe�cients.
It must be pointed out that the parameters of this model may
vary between pedestrians. As shown in Figure 7, this gives a
linear model of test subject number 1:

� = 1.62 × � − 0.09. (5)

2.5. BP-ANN Analysis. 
is paper uses BP-ANN to estimate
pedestrian stride length. 
e BP-ANN model simulates the
linear or nonlinear characteristics of biological neurons and
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Figure 4: (a) 
e variation of ��, ��, and ��. (b) A partially enlarged view of the portion circled by the red ellipse.
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Figure 5: (a) 
e variation in the acceleration of one test subject walking normally. (b) Magni�cation of the section delineated by a red
rectangle.

is a powerful study system. It can achieve nonlinear mapping
between inputs and outputs. It consists of an input layer,
hidden layer, and output layer, and its classical architecture
is shown in Figure 8. Its weights and thresholds are continu-
ously adjusted, to approximate the desired input and output
mapping relationship.


e active function of the hidden layer is the sigmoid
function presented in (6), while the output layer is a linear
function

 (�) = 1
1 + �−� , (6)

where � is the independent variable.


e input of neurons in the hidden layer can be described
as

V� =
�0
∑
�=1
����� + ��, (7)

where V� is the input of the �th neuron in the hidden layer,���
is the connectionweight of the �th neuron of the input layer to
the �th neuron of the hidden layer, and�� denotes the input of
the �th neuron of the input layer. �0 is the number of neurons
in the input layer, and �� is the threshold of the �th neuron of
the hidden layer.
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Figure 6: 
e variation in projected vertical acceleration of test
subject number 1 at normal walking speed.
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Figure 7: 
e frequency model of test subject number 1.


e outputs of neurons in the hidden layer can be
formulated as (8) by using the sigmoid function shown in (6):

�� =  (V�) , (8)

where �� is the �th neuron’s output in the hidden layer and V�
is the same as for (7).


e output of BP-ANN is

�̂ =
�1
∑
�=1
����, (9)

where �̂ is the output of the neuron network, �1 is the number
of neurons in the hidden layer,�� is the connection weight of
the �th neuron in the hidden layer to the output layer, and the
de�nition of �� is the same as for (8).

In this paper, �ve variables which may be closely related
to stride length are studied, using data collected from 13
test subjects aged 22–29. 
ese variables include mean stride
frequencies �stride, maximum acceleration in a walking cycle
accmax, acceleration standard deviation �acc, mean acceler-
ation acc�, and height of test subjects ℎ. 
ese parameters
were chosen because many papers have illustrated that they

Input layer

Hidden layer

Output layer

Figure 8: 
e classical architecture of BP-ANN.

are closely correlated with stride length [3, 8, 9, 14, 15];
for example, [3] found that the acceleration variance and
maximum acceleration value had a correlation with stride
length which reached 76% and 68%, respectively, and [8]
proposed using pedestrian height to estimate stride length.
In this paper, we propose that the stride length is estimated
from BP-ANN with these �ve parameters.


e elements of input vector�	 are as follows:�1 = �stride,
�2 = accmax, �3 = �acc, �4 = acc�, and �5 = ℎ. 
e desired
network output is �stride �. 
e BP-ANNmodel can approach
the desired output by training the network. 
e Neural
Network Toolbox (NNT) in MATLAB is used to build the
BP-ANN model, and the data collected from 13 test subjects
were randomly divided into three parts: 70% of the data for
training and 30% of the data for validation (15%) and testing
(15%). 
e training data is used to train a neural net, with
the details of the training algorithm as follows: First, the
data are processed by Function (7), using a random weight
matrix � and a random threshold �. 
en, the data are
processed by Function (8) in the hidden layer. Finally, output
values from the hidden layer are handled by Formula (9),
and the output value of BP-ANN can be obtained. To make
the output values approach the target values, parameters �
and � are dynamically adjusted; there must be a criterion
to judge when to stop training however, so the validation
data are used to determine the training time. 
e default
condition is that when the error is not reduced six times
consecutively, the training will end. We can then �nd the
training net corresponding to the lowest error. 
e test data
are used to test the e�ect of the neural network. By adjusting
the number of neurons in the hidden layer and conducting
cross validation, we found that there is a superior e�ect when
the number is 10.

In Figure 9(a), the abscissa represents the target value,
the ordinate represents the output value, and the �t line
represents the functional relationship between the target
value and the output value. In theory the slope of the �t line
should be one; namely, that � (the output value) was equal
to � (the target value), but this is very di�cult to achieve.
Instead the value of �, which is the relevance between the
actual outputs of BP-ANN and the target values, becomes
an important criterion when judging the e�ect of �tting.
It indicates that the data �tting result is better when � is
closer to one. It can be seen that the values of � in the
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Figure 9: (a) 
e e�ect of ANN with 10 neurons in the hidden layer. (b) 
e training error histogram of BP-ANN. (c) 
e cross validation
results of all data parts.
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Figure 10: (a) An experiment was completed on the Bauhinia playground of Tsinghua University. (b) Collection of data from test subject A.

training part (upper le), validation part (upper right), test
part (lower le), and the whole of the data part (lower right)
are relatively high. Figure 9(b) shows the BP-ANN training
errors. Instances in the �gure denote the count of the errors,
with the range of the errors divided into 20 equal-length
segments, or 20 bins. 
e unit of the horizontal coordinate
is the meter. 
e �gure shows that the errors are small
and relatively concentrated, meaning that, in most cases,
the errors of the estimated values are within a small range.
Figure 9(c) shows � as the relevance between outputs and
target values in all data parts, while� is the number of cross
validations. 
e range of � is from 0.953 to 0.982 when cross
validating, so the ANN is stable and the e�ect of �tting, or the
matrixes of weight and threshold obtained, is good.

3. Experiments and Results

To verify the performance of the proposed model, more
experiments were conducted. First, to further compare the
e�ects of three di�erent models including frequency, nonlin-
ear, and BP-ANN, the data of three new test subjects named
A, B, and C were collected. 
ese subjects covered a route of
30m in the same building each time and used the same IMU
at a sampling rate of 100Hz. 
e height of test subjects A,
B, and C was 1.72m, 1.81m, and 1.75m, and their ages were
27, 23, and 24, respectively. Table 2 shows that where �, �,
and 	 are de�ned in (2) and (4), the frequency model and
nonlinear model coe�cients of test subjects A, B, or C can be
obtained aer data processing, using the method described
in Section 2.4.


e feasibility of our BP-ANN model was then assessed
by an experiment carried out on the Bauhinia playground of
Tsinghua University. As shown in Figure 10, test subjects A,
B, and C walked around the playground using both normal
and diverse walking patterns.
e output rate of the IMU had
been con�gured as 100Hz, and the ground distance covered
was 500m.


e variation in acceleration of subject A is shown in
Figure 11. As we can see, the characteristics of a cycle are

Table 2: Coe�cients of three di�erent test subjects.

Test subject A B C

� 1.05 2.11 1.67

� 0.45 −0.32 −0.11
	 0.54 0.61 0.57

closely related to the walking pattern. When walking slowly
or normally, there is an obvious stationary phase in each
cycle. Moreover, the maximum value of a running cycle
is considerably larger than that when walking slowly or
normally.

For each walking cycle, we can �nd its time interval Δ�
and calculate the stride frequency in real time by using

�stride =
1
Δ�. (10)

We can then use formula (11) based on the vector
(� = [�stride accmax �acc acc� ℎ]) and the net previously
obtained, to estimate stride length � in every cycle:

� = sim (net, �) . (11)

Because a real-time measurement of individual stride
length is di�cult, the mean error of the stride length is
replaced by the error of the calculated distance. 
e reasons
for this are as follows: First, it is feasible to compare the
calculated distance value with the real distance value, as an
index to test the feasibility and validity of the stride length
model [30]. If the e�ect of the stride length estimation is good,
the error of the calculated distance will be small. Second, we
de�ne the following variables: #
 is the estimated covered
distance,#� is the real distance, and � is the number of strides
to cover the distance; this can be counted because of the
periodic change in acceleration. Additionally, �
 is the mean
value of the estimated stride length, �� is the mean value of
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Figure 11: (a)
e variation in acceleration of subject A with di�erent walking patterns. (b)
e variation in acceleration during slow walking.
(c) 
e variation in acceleration at normal speed. (d) 
e variation in acceleration during running.

the stride length, and$� is themean error of the stride length.
We can then obtain the following equation:

$� =
%%%%�� − �
%%%%
��

=
%%%%#�/� − #
/�%%%%

#�/�
=
%%%%#� − #
%%%%

#�
. (12)


erefore, the error of the calculated distance can be used to
evaluate the e�ect of the stride length estimation algorithm.

We can �nd the calculated distance value# by using

# =
�
∑
�=1
� �, (13)

where � � is the estimated value of stride length at the �th
walking cycle and � denotes the number of walking cycles.


e values of distance calculated by the threemodels, and
the errors, are shown in Table 3. As can be seen, compared to

Table 3: 
e calculated distance values and the errors of the three
models.

Test subject A B C

Frequency
model

476.3m (4.74%) 522.6m (4.52%) 474.9m (5.02%)

Nonlinear
model

481.2m (3.76%) 484.1m (3.18%) 482.8m (3.44%)

BP-ANN
model

489.7m (2.06%) 491.5m (1.70%) 490.6m (1.88%)

the frequency and nonlinear models, the error is reduced to
about 2% by using the BP-ANN model. It should be pointed
out however that [29] used wavelet transform and a moving
average �lter to preprocess the raw data, with the error of the
stride length estimation at about 0.43%; and [28] proposed
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the use of a sensor-fusion algorithmwith the error reduced to
0.2%. 
e errors were smaller, but the walking characteristic
parameters were for a speci�c individual, so the generality
and practicability of the algorithms were limited. In this
paper, we wanted to �nd a universal model so that the BP-
ANN trained net could be applied to others; the results show
that themethod is practical, but that further work needs to be
done to improve the precision of the model.

4. Conclusions and Future Scope

In this paper, a pedestrian stride length estimation algorithm
based on BP-ANN was proposed. Five variables in the
walking cycle were used as the input vector to the BP-ANN.
To assess the validity and feasibility of our algorithm model,
further experiments were carried out on the playground.
e
experimental results show that the error of our proposed
algorithm in estimating stride length is approximately 2%,
which is smaller than that of the frequency and nonlinear
models. Furthermore, it does not need to predetermine the
coe�cients when using the BP-ANN algorithm. 
erefore,
the proposed algorithm performs better in estimating pedes-
trian stride length, but more work is needed to further
improve the precision of the results.


is paper provides a way to estimate stride length, but
it is not the conclusive solution. In future work, we would
consider designing a system in which the BP-ANN is trained
for an individual walker only, in which case the precision of
the results would probably improve. Additionally, with the
increasing use of big data, more data can be used to train
the ANN, and the proposed algorithm may display a higher
accuracy. 
e above ideas will be a focus of future work.
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