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Abstract—Ubiquitous and accurate tracking of pedestrians
are an enabler for a large range of emerging and envisioned
services and capabilites. To track pedestrians in prevailing indoor
environments, inertial measurement units (IMUs) may be used
to implement foot-mounted inertial navigation. Today emerging
ultra-low-cost IMUs are taking a leading role in the advance-
ment of the IMU performance-to-cost boundary. Unfortunately,
the performance of these IMUs are still insufficient to allow
extended stand-alone tracking. However, the size, price, and
power consumption of single-chip ultra-low-cost IMUs makes it
possible to combine multiple IMUs on a single PCB, creating
an IMU array. The feasibility of such hardware has recently
been demonstrated. On the other hand, the actual gain of using
such multi-IMU systems in the pedestrian tracking application is
unclear. Therefore, based on an in-house developed IMU array, in
the article we demonstrate that foot-mounted inertial navigation
with an IMU array is indeed possible and benefitial. The error
characteristics of the setup and different ways of combining
the inertial measurements are studied and directions for further
research are given.

I. INTRODUCTION

Ubiquitous and accurate tracking of pedestrians are an

enabler for a large range of emerging and envisioned services

and capabilities. The currently available position dependent

services primarily relying on satellite based positioning sys-

tems, e.g. GPS, and less frequently on cellular and Wifi based

localization, have already significantly changed many aspects

of our daily lives. Unfortunately, the radio infrastructure based

pedestrian localization solutions have insufficient stand-alone

accuracy and robustness for many applications in prevailing

indoor environment. Consequently, inertial sensors and mag-

netometers are typically combined with motion models to

implement pedestrian dead reckoning to improve performance

and to cover up for the former technologies when they are

unavailable [1]. Motion models/heuristics can allow a rather

free placement of the inertial sensors (i.e., the use of built in

inertial sensors and magnetometers in smart phones or similar

products) but may also make the tracking performance limited

by the validity of the model rather than the performance

of the sensors. Further, the dependence on magnetometers

for heading tracking is problematic since magnetometers are

easily disturbed in indoor environments. To remedy this and

to improve the tracking performance, the inertial sensors may

be mounted on the feet to implement foot-mounted inertial

navigation, rendering simple and general motion models in

the form of zero-velocity-updates (ZUPTs) applicable. Re-

markable tracking performance has been demonstrated with

such a setups without the use of magnetometers [2]. However,

most of the foot-mounted inertial navigation research systems

are based on inertial measurements units significantly more

Fig. 1. Multi IMU platform pulled out from the sole of a shoe. The platform
provides pedestrian tracking through ZUPT-aided inertial navigation. The
measurements from the individual single-chip IMUs seen on the PCB are
combined to achieve improved pedestrian tracking performance. Close-up of
the platform can be found in Fig. 2 and tracking results in Fig. 3.

expensive and with a significantly larger foot-print than the

ultra-low-cost single-chip IMUs of typical consumer products.

A few foot-mounted inertial navigation systems built with

ultra-low-cost IMUs can be found in the literature [3,4].

However, they exploit magnetometers to cover up for the

shortcomings of the IMUs. Due to the large market size, the

ultra-low-cost IMUs are taking a leading role in terms of

the advancement of the performance-to-cost ratio. Therefore,

we would still like to use these sensors for foot-mounted

inertial navigation. Their performance is steadily improving

but is currently still insufficient for long term stand-alone

pedestrian tracking. However, the purposes they are made

for make size, price, and power consumption main objectives

of their development. Consequently, we may exploit these

properties to circumvent their insufficient performance. The

size, price and power consumption of single-chip ultra-low-

cost IMUs makes it possible to combine multiple IMUs on

a single PCB, creating an IMU array. The feasibility of such

hardware has recently been demonstrated [5,6,7]. Since the

inertial sensors are attached to each other they will sense the

same motion. Consequently, their measurements can be com-

bined to mitigate independent stochastic errors. (See [5] for a

summary of fundamental gains using an IMU array.) However,

actual test of pedestrian tracking by stand-alone foot-mounted

inertial navigation is still lacking. Further, there are many

conceivable dependent error sources. Consequently, the gain

of using an IMU array for foot-mounted inertial navigation



is unclear. Therefore, based on an in-house developed multi-

IMU platform, in this article we demonstrate that foot-mounted

inertial navigation with an IMU array is indeed possible and

beneficial but that fundamental difficulties remains in the com-

bination of the inertial measurements, preventing the potential

performance gain to be attained. We give initial results on the

characteristics of different methods for combining the inertial

measurements. In particular we look at the effect on random

and systematic errors of different strategies for combining the

measurement from multiple IMUs.

II. FOOT-MOUNTED INERTIAL NAVIGATION

The rigid body dynamics dictates that the velocity v
(i)
k

of

the i:th IMU is physically connected to the acceleration via its

temporal derivative, and the position p
(i)
k

to the velocity via

its derivative. Similarly, the orientation q
(i)
k

(the quaternion

describing the orientation of the system) can be related to the

angular rate ω
(i)
k

through a simple differential equation. A first

order discrete approximation (ignoring the motion of the earth)

of the relations are given by
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where k is a time index, dt is the time difference between

measurement instances, f
(i)
k

is the specific force which is

measured by the accelerometers, and q
(i)
k−1f

(i)
k

q(i)⋆

k−1 − g is

the acceleration in the navigation coordinate frame where g =

[0, 0, g] is the local gravity. The triple product q
(i)
k−1f

(i)
k

q(i)⋆

k−1

denotes the rotation of f
(i)
k

by q
(i)
k

and (·)⋆ is the conjugate

transpose. Further, Ω(·) is the quaternion update matrix. Refer

to [8] for a detailed treatment of inertial navigation.

The measurements of the specific force f̃
(i)
k

and the angular

rate ω̃
(i)
k

can be modelled by
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where δf
(i)
k

and δω
(i)
k

denotes deterministic non-zero-mean

errors due to imperfect calibration, e.g., g-sensitivity, voltage

level induced gain errors, amplifier saturation, etc., and v
(i)
k

and w
(i)
k

are zero-mean stochastic errors. Starting from initial

estimates of the position, velocity, and orientation and by run-

ning the recursion (1) with measurements of the specific force

f̃
(i)
k

and the angular rate ω̃
(i)
k

provided by an IMU, estimates

of the position, velocity, and orientation
[

p̂
(i)
k

v̂
(i)
k

q̂
(i)
k

]⊤

for all time instances k are obtained. Unfortunately, the errors

in (2) will inevitably accumulate in the estimates leading to a

rapid error growth.

The rapidly growing errors would soon render the free-

inertial navigation position estimates useless. Fortunately, the

error accumulation can be cut and the errors partially compen-

sated for by applying feedback from motion models. With the

IMU placed on the foot, a general model imposing a minimum

of motion constraints can be applied via so called zero-velocity

updates (ZUPTs). In essence, the foot is assumed stationary if

linear motion is detected. See [9,10] for further details. The

ZUPTs are applied by making the reassignment
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where the feedback Kk is provided by the Kalman gain,

and dθ
(i)
k

is the correction in orientation. With the ZUPTs,

positions estimates with systematic δp
(i)
k

and random errors

wv
(i)
k

are archived [11]

p̂
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k

= p
(i)
k

+ δp
(i)
k

+wv
(i)
k
.

The systematic error will originate from δf
(i)
k

and δω
(i)
k

and

systematic errors induced by imperfections in the ZUPTs,

while the stochastic errors will originate from v
(i)
k

and w
(i)
k

.

The primary interest of this article is the two terms δp
(i)
k

and wv
(i)
k

and how these are affected by different ways of

combining the inertial measurements from multiple IMUs.

III. INERTIAL NAVIGATION WITH AN IMU ARRAY

Unfortunately, the ZUPTs cannot completely compensate

for the accumulated errors from (2). First, the heading and

position errors will not be observable [12] and secondly, the

implicity motion model of the ZUPTs will not be perfect [11,

13], making (3) introducing new errors. In summary, there will

be three remaining error sources in the position estimates of

the foot-mounted inertial navigation: 1) Errors introduced by

the ZUPTs 2) remaining errors from δf
(i)
k

and δω
(i)
k

; and 3)

remaining errors from v
(i)
k

and w
(i)
k

.

With multiple IMUs attached to each other, assuming that

measurements are transformed into a single reference frame,

multiple measurements (2) are obtained. This means that the

latter error wv
(i)
k

(or the source of the latter error, v
(i)
k

and

w
(i)
k

) can be averaged out. In contrast, the systematic error

δp
(i)
k

(or the sources δf
(i)
k

and δω
(i)
k

) can only be mitigated to

some extent. This is because, e.g. dynamic induced systematic

errors will not be zero-mean with respect to i [11]. Finally,

the errors induced by (3) will not change. This is because

in essence the signal to noise ratio for the zero-velocity

detection is large [10], and therefore, using multiple IMUs

will not significantly change the detection. In arriving at a

joint state estimate
[

p̂k v̂k q̂k

]⊤
we may either combine

multiple measurements to produce a joint inertial measurement
[

f̃k ω̃k

]⊤

from which a joint state estimate is derived or

combine multiple state estimate into a joint state estimate.1

A linear combination with some weighting gives the two

alternatives

p̂k ⇐

[

f̃k
ω̃k

]

=
∑

i

α(i)

[

f̃
(i)
k

ω̃
(i)
k

]

or p̂k =
∑

i

β(i)p̂
(i)
k
.

1It is assumed that the IMU array is calibrated. See [14] for further details.
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Fig. 2. The in-house constructed IMU array platform holding 18 MPU9150
IMUs (9 on the top side and 9 on the bottom side) and an AT32UC3C2512
microcontroller. The displayed photo is of the actual size of the platform.

Another nonlinear combination method is the median denoted

by µ1/2
i(·) which gives

p̂k ⇐

[
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]
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)

.

Other non-linear combination methods are also conceivable.

What weighting to use for the mean case is not obvious and

will be discussed in the next section.

The different combination methods have different pros

and cons. Combining inertial measurement to form a single

measurement only works if the IMUs are rigidly attached to

each other while combining state estimates allows for more

flexibility. The former gives a computational cost which is

independent of the number of IMUs while the latter gives

a computational cost which is proportional to the number of

IMUs. Our experience (see next section) is that the approaches

gives similar results for short trajectories (the system is in

essence linear [15] making them equivalent). However, the

former approach is more practical for an implementation while

the latter is easier to use for analysis. However, note that the

latter method will break down for longer trajectories due to the

nonlinearity of the orientation, i.e. non-linearity of the system.

Consequently, in practice it would need to be applied on a step-

wise basis (see [12]) or similar. Further, the median gives a

statistically more robust combination than the weighted mean.

IV. EXPERIMENTAL PEDESTRIAN TRACKING RESULTS

To assess the feasibility of foot-mounted inertial navigation

using arrays of ultra-low-cost IMUs and to examine the

characteristics of different methods for combining the inertial

measurements, an in-house developed IMU array platform was

used. The platform contains 18 MPU9150 IMUs (9 on the

top side and 9 on the bottom side) and an AT32UC3C2512

microcontroller. The platform is shown in Fig. 2. Details of

the platform can be found in [5].

The following experiment was conducted: An agent

equipped with the IMU array in the sole of his shoe walked

in a 200 [m] straight line. The initial heading was set by first

letting him walk 8 [m] between two plates with imprints for

the shoes (colored circles in Fig. 3). The estimated translation

was then used as a base line, defining zero heading direction.

The walk and heading initialization was repeated 10 times.
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Fig. 3. Estimated individual trajectories, i.e. p̂
(i)
k

(black) and trajectories p̂k

(blue) resulting from taking the mean value of all measurements to construct
a joint inertial measurement.
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Fig. 4. Estimated trajectories p̂k (magenta) resulting from taking the median
of the inertial measurements rather than the mean (blue).

The estimated individual trajectories p̂
(i)
k

are shown in black

in Fig. 3. Further, the resulting trajectories from taking the

mean value with uniform weighting of all measurements

to construct a joint inertial measurement are displayed in

blue. This demonstrates the feasibility of foot-mounted inertial

navigation by an IMU array and the basic gain in using

multiple IMUs. The negligible difference between the mean

of the single IMU trajectories and the mean of the result of

the full IMU array shows that the system is essentially linear

for this trajectory. The result from applying the median of the

inertial measurements rather than the mean is seen in Fig. 4

where the resulting trajectories are plotted on top of those

produced by taking the mean. The median is seen to mitigate

the effect of some outliers.

Figs. 3 and 4 shows that there is clearly a gain in combining

multiple IMUs. In Fig. 5 the mean variance over all IMU

combinations and the variance for the worst IMU combination,

of the end position as a function of the number of IMUs
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Fig. 5. Performance (root-mean-square error) as a function of the number
of IMUs in length and lateral directions. Clearly, the errors (solid lines) does
not fall off as the square root of the number of trajectories (dashed lines) as
would have been the case if the errors were IID. However, the worst case
errors (red) improves more than the mean (black) errors.

is shown. If all error sources hade been independent and

identically distributed (IID) the lines should have overlapped

and the variance of the mean should drop as the inverse of the

square root of the number of, IMUs indicated by the dashed

lines in Fig. 5. This is clearly not the case and is primarily due

to the systematic error terms δp
(i)
k

. Fig. 6 shows the estimated

end points for different IMUs. It can clearly be seen that

the errors are dominated by the systematic components (mean

error), which vary significantly between different IMUs. To get

the expected performance gain, the different IMUs need to be

weighted by the error variance of the final position estimate.

The problem is that this is not known a priori and the effect

of the systematic errors δf
(i)
k

and δω
(i)
k

, and consequently the

error variance, will vary with the trajectory. An alternative is

to use a weighting with the sample variance of the individual

IMU from multiple calibration runs. This will minimize the

sample variance of p̂k and the systematic errors will have to

be delt with in some other way. How to perform the weighting

is subject to future research.

V. CONCLUSIONS

Using an array of ultra-low-cost IMUs is a feasible approach

to improve performance for foot-mounted inertial navigation

systems. The naive approach of combining the inertial mea-

surements by taking the mean value is possible but gives

suboptimal performance. Potentially, the weighted mean could

also be used to combine measurements but how to weight the

measurements is not clear.
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