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Abstract

For patients who fail conventional therapies, ability to access medical Cannabis may offer 
a therapeutic alternative that addresses their unmet clinical need. However, a paucity 
of clinical trial evidence has led to ambiguous pediatric dosing guidelines for medical 
Cannabis, a situation further complicated by the impact of developmental maturation of 
the pharmacokinetic (PK) and pharmacodynamic (PD) processes governing drug effect 
and dosing requirements. The pediatric population is very heterogeneous, and dissimilar 
developmental trajectories result in important differences in the rate and extent of can-
nabinoid absorption, distribution, elimination, and response both between and within 
pediatric age group classifications. These developmental changes will require the pre-
scribing caregiver to consider age-specific dosage regimens that may demand continual 
modification as the child ages. The chapter that follows emphasizes the impact of age-
related changes in PK and PD processes as important considerations in pediatric dosing 
recommendations for medical Cannabis.
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1. Introduction

Optimal dose selection is fundamental to appropriate clinical care. A comprehensive under-

standing of drug pharmacokinetics (PK) and pharmacodynamics (PD) and the factors that can 

influence the drug exposure-response (PK-PD) relationship is important to facilitate the opti-
mization of dosage regimens. In the pediatric patient, though, normal growth and maturation 
complicates dose selection and optimization. Experience has demonstrated that the usual 
practice of adjusting dose size according to body weight often results in inappropriate pedi-
atric doses as this practice ignores the impact of developmental changes on drug PK and PD 
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processes. To ensure appropriate clinical care, then, dosing recommendations need to consider 

age-related changes in PK and PD. This becomes particularly important for new therapeutics, 

which have limited clinical trial data and experience of use in the pediatric population.

Medical Cannabis herbal extracts are being considered as new therapeutics for the manage-

ment of pediatric conditions refractory to standard of care therapies. With no DIN (Drug 
Identification Number) designation, though, these herbal extracts have limited safety and effi-

cacy data in the pediatric population. The small number of clinical pharmacology trials with 

pharmaceutical grade cannabinoid products as well as anecdotal use lends some support for 

medical Cannabis in such conditions, but no rational pediatric dosing recommendations are 

available for these products. The known age-related changes in drug PK and PD, differences 
further complicated by existing comorbidities and concurrent medications likely to influ-

ence drug PK and PD, have left treating caregivers uncertain and reluctant to recommend 

an appropriate medical Cannabis dosage regimen to their patient. A greater understanding of 

the developmental changes in cannabinoid PK and PD, though, may help to mitigate these 

uncertainties.

This chapter will mainly address issues of developmental maturation of PK and PD processes 

as key determinants of medical Cannabis herbal extract dosage regimens (henceforth referred 
to as Cannabis extracts). The chapter will first summarize the therapeutic applications for 
Cannabis extracts in pediatric populations. It then will highlight the key physiological deter-

minants of PK and PD that undergo change with postnatal maturation and how such changes 

might lead to age-related cannabinoid PK and PD differences based on current understand-

ings from adult populations. Superimposed with normal developmental programming, dose 

selection must also consider the influence of pharmacogenetics, disease, and drug-cannabinoid 
interactions, and these are briefly discussed. This chapter will underscore developmental 
maturation of PK and PD processes as paramount to considerations of medical Cannabis dos-

ing of the pediatric patient.

2. Therapeutic applications

Many studies report the use of Cannabis to aid treatment of a diverse range of health con-

ditions and symptoms. Although Cannabis’ medical use dates back centuries with the first 
written records in China and India around 2900 BC and 900 BC, respectively, Cannabis was 

introduced to western medicine only in the nineteenth century [1, 2]. Today, potential indica-

tions for medical Cannabis include appetite stimulation, chronic pain, spasticity from multiple 

sclerosis or paraplegia, depression, anxiety, sleep problems, psychosis, glaucoma, Tourette’s 
syndrome, epilepsy, dementia, cancer, post-traumatic stress disorder, and osteoarthritis [3]. 

Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most extensively studied can-

nabinoids for medical use. Individually, these cannabinoids have demonstrated therapeutic 
benefit and pharmaceutical grade products are available on the market today. However, 
CBD’s ability to modulate THC’s well-known intoxicating activity along with a growing body 
of evidence for an entourage effect among the many cannabinoids of the Cannabis plant may 
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extend therapeutic benefit beyond the purified cannabinoid leading to greater interest in the 
use of Cannabis herbal extract preparations [4]. Such entourage properties may explain the 
varied therapeutic applications of Cannabis over the centuries.

Limited information is available on the therapeutic use of Cannabis in pediatric patients. 

Cannabis is usually considered when the clinical condition becomes intractable to other 

types of treatments [5]. This is seen, for example, in treatment of children with refractory 
epileptic encephalopathy, in particular Lennox-Gastaut syndrome and Dravet syndrome [6]. 

However, studies supporting medical Cannabis suffer from small sample sizes and lack of 
dose standardization with variations in dose size, formulation, and frequency of administra-

tion. These limitations make it difficult to extrapolate data to the larger pediatric population 
[7]. Furthermore, Cannabis extract use has predated the usual pharmacology and toxicology 
testing applied to other marketed drugs. With virtually no toxicity and efficacy data, dose-
plasma concentration-response data, and information on Cannabis-drug interactions, the 

prescribing caregiver is apprehensive to recommend a Cannabis extract dosage regimen to a 
pediatric patient. This inability to define age-appropriate dosage regimens has compromised 
the acceptability of medical Cannabis as a viable therapeutic for pediatric medical conditions.

3. Pediatric dosing considerations

3.1. Medical cannabis dosage forms

Commercially available medical Cannabis includes the purified pharmaceutical preparations 
and the herbal extracts. The extracts contain well-defined proportions of the major psychoac-

tive cannabinoids, THC and CBD, and poorly documented quantities of other cannabinoids 
and terpenoids [4, 8, 9]. Nonmedical or recreational Cannabis have unknown contents of THC, 
CBD, and other components and should be avoided when used for medical benefit. Much 
of the anecdotal and observational human trial data usually correlates therapeutic benefit 
with content of THC or CBD or some ratio of THC to CBD [10]. Given the differences in the 
pharmacology of THC and CBD, different THC:CBD ratios are promoted within the range 
of possible clinical indications for medical Cannabis. For the pediatric patient, the choice of 

THC:CBD ratio, though, must acknowledge the known dose-related intoxicating effects of 
THC and the potential for adverse neurodevelopmental effects with cannabinoid exposure 
[11]. As well, the selection of Cannabis product should consider the presence of the second-

ary components that often contribute to the more unique characteristics of Cannabis extracts 
[4]. Little is known about the pharmacology of these secondary cannabinoids and terpenes 
and age-related differences in their PK and PD properties [4, 9]. With the current absence of 

product quality control on the composition of these other active Cannabis components, dose 

optimization of Cannabis extracts for different pediatric indications will need to principally 
focus on the specific THC:CBD ratio for now.

At present, age-appropriate formulations of Cannabis extracts are limited to oil-based oral prod-

ucts. Oral dosing is a challenging route of administration in the pediatric population as issues 
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with incomplete dose ingestion and product refusal negatively impact therapeutic outcomes 

[12, 13]. Often formulation development considers the adult patient and when used in the 

pediatric patient can be associated with reduced therapeutic efficacy and safety. For example, 
some excipients commonly used in adult formulations have well known safety concerns in the 
pediatric patient such as the common pharmaceutical formulation excipients propylene gly-

col, benzyl alcohol, and ethanol [14]. As well, factors such as ability to swallow, taste, texture, 
and smell that determine acceptability of an oral dosage formulation undergo developmental 

changes such that acceptable formulations in one pediatric age group may not be acceptable 

in another age group [12, 13]. Currently, medical Cannabis companies are actively pursuing 

product formulation development. Whether these efforts consider the unique requirements 
of the pediatric patient is uncertain, which will necessitate the treating caregiver to exercise 
caution when considering Cannabis product formulations for their pediatric patients.

3.2. Current dosing guidelines

Medical Cannabis dosing guidelines are largely unavailable for the pediatric patient. Such 

guidelines, though, should consider specific age strata since development and maturation 
result in age-dependent dosing requirements [15]. Recommended pediatric age strata are: 
pre-term newborn infants (born at less than 36 weeks of gestation), term newborn infants (age 

0 to <28 days), infants and toddlers (age 28 days to 23 months; infants >28 days to 12 months 
and toddlers >12 months to 23 months), children (age 2–11 years; preschool children 2–5 years 
and school age children 6–11 years), and adolescents (12–18 years). As with other drugs, the 
safety and effectiveness of the cannabinoids likely will vary between the different age strata. 
Consequently, pediatric clinical trials that determine plasma cannabinoid concentration-
effect relationships, efficacy, and safety within specific age strata will be required to develop 
optimal age-specific dosing recommendations.

In the absence of pediatric PK and clinical trial data, adult data become a starting point for 
pediatric dose selection. For simplicity, doses may be normalized to body weight and, in some 
cases, to body surface area. Dose scaling by body weight (or body surface area) requires dose 

adjustment according to the patient’s clinical state and clinical response until a dose is titrated 

to appropriate effect. This process could take some time to identify an appropriate dosage 

regimen for the pediatric patient, if at all. Furthermore, given possible ceiling effects of the 
cannabinoids, where dosing beyond a certain amount per body weight may not yield further 

pharmacological benefit, this approach has risk of adverse therapeutic outcomes.

Other approaches exist to improve upon the simple extrapolation of body weight-adjusted 
adult doses. Allometric scaling approaches use body surface or body weight ratios and allo-

metric models to extrapolate adult doses to the pediatric patient [16]. An important limitation 

of this approach is an assumption of a linear correlation between demographic covariates and 

the dose, which is not the case for the pediatric patient due to developmental maturation of 

PK and PD processes [16–18]. Children differ not only in body weight but also show changes 
in body composition, organ size, and maturation, which influence PK as well as result in 
differences in the therapeutic window (range of exposure concentrations that result in drug 
efficacy) due to PD changes with age. The use of exponential scaling factors adjusted by body 
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size (and age) to predict dosages in pediatric patients is also limited by the complexity of these 
modeling approaches that precludes general application to many drugs [16–18]. Hence, we 

seem left with the current self-titration dosing model where doses, based on weight adjusted 

adult doses, begin low to moderate and are increased slowly, along with adjustments in dos-

ing interval, until the desired effect is achieved [19]. This empirical “trial-and-error” approach 

will not likely result in optimal dosing guidelines for the different pediatric age strata due to 
diverse developmental periods within this population [20, 21].

3.3. Accounting for growth and development in dosage selection

Changes in body size and maturation of the physiological and biochemical processes deter-

mining PK and PD must be considered during dosage selection. Normal growth results in a 
decreasing ratio of body weight to body surface area with age making it difficult to recom-

mend dosing according to patient body weight or body surface area consistent with adult 

guidelines [22]. For example, in an analysis of pediatric patients, dosing adjustments of 
hydrophobic drugs (cannabinoids are hydrophobic) based on body weight provided better 
clinical outcomes in patients between 1 month and 1 year of age, while dosing based on body 

surface area was best in older children [18]. As well, within and between the age strata matu-

rational changes in PK and PD processes occur at considerably different rates and patterns 
suggesting that dosage adjustments with long-term therapy may be necessary to ensure effi-

cacy and avoid risk of adverse events [23, 24]. Other clinical and demographic variables such 

as puberty, which bring hormonal changes known to influence PK in adolescents, and the 
patient’s clinical state, are known to influence dosing requirements [25]. Only with a greater 

understanding of the impact of such factors can we hope to rationally identify doses for dif-

ferent pediatric populations, particularly in the absence of robust clinical data. The following 

section addresses a key determinant of dosing requirements, the age-related changes in the 

PK processes acting upon a dose exposure.

4. Ontogeny of pharmacokinetic processes

4.1. Exposure and exposure route

For many drugs, dosage regimens are designed to attain and maintain drug concentrations 
within a therapeutic window, the range of concentrations that produce a desired effect. 
Pediatric therapeutic windows may be quite different from the adult due to PD differences, 
such as receptor ontogeny (maturation of receptor number and functionality), and organ 

specific distributional differences resulting in different tissue concentrations of drug to elicit 
pharmacological activity. Such differences can result in differences in efficacy and toxicity 
which brings into question use of pediatric therapeutic ranges based on adult clinical data. 

However, the absence of dose-concentration-response data in children results in a void of 

evidence that risks the development of arbitrary therapeutic ranges. This was evident with 

theophylline for neonatal apnea where the therapeutic range adopted in the early 1980s was 
inadequate and a considerable number of neonates were under-dosed [26]. Understanding the 
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therapeutic range of the cannabinoids for the different pediatric age-strata will be necessary 
to optimize dosing guidelines for Cannabis products. This will necessitate the use of popula-

tion PK/PD modeling approaches with medical Cannabis extracts and a greater understanding 
of the age-related changes in PK and PD processes governing drug effect.

The attainment of plasma concentrations within the therapeutic window depends on route 
of administration, dosing frequency, size of dose, and the PK acting on the administered 
dose. Knowledge of the volume of distribution (V

d
) is necessary in the design of a loading 

dose (the dose needed to quickly produce therapeutic concentrations, C
Ther

), where V
d
 and the 

bioavailable dose (F × Dose) determine the plasma concentration (Eq. (1)). Following a chronic 
dosing regimen, the mean steady state therapeutic concentration (C

SS,Ther
) is the result of the 

bioavailable dose, dosing interval (τ), and systemic clearance (Cl
S
) (Eq. (2)).

   C  
Ther

   =   
F × Loading Dose

  ______________ 
 V  

d
  
    (1)

   C  
SS,Ther

   =   
F ×  Dose ⁄ τ  ____ 

 Cl  
S
  
    (2)

With extravascular dosing (e.g., oral dosing), compounds must undergo absorption into the 
systemic circulation. Typically, less than 100% of the administered dose becomes available 
to the systemic circulation as presystemic mechanisms can limit the fraction of the oral dose 

that enters the systemic circulation as an unmodified compound (i.e., bioavailability (F)). 
Once absorbed into the blood supply, compounds distribute to the tissues of the body while 

systemic clearance mechanisms function to eliminate the compound. Hence, systemic expo-

sure is determined by the extent of absorption (bioavailability) and by the efficiency of the 
systemic clearance mechanisms, while organ specific exposure additionally depends upon 
tissue distribution properties of the compound. Age-related changes occur with all these PK 

processes such that a standard dosage regimen will produce different systemic and tissue-
specific exposure levels during pediatric development.

4.2. Oral absorption

The most common route of administration for pediatric patients is the oral route. The rate and 

extent of oral absorption is determined by the interaction of the physicochemical properties of 
the cannabinoid and its formulation with the physiological processes governing absorption. 

With oral ingestion of cannabinoids, time (Tmax) to maximum concentrations (Cmax) varies on 

average from 1 to 6 h, and bioavailability is low and quite variable (4–12%) in adults due to 
extensive first pass effects [27, 28]. As well, first-pass metabolism following an oral adminis-

tration results in production of active metabolites (e.g., 11-hydroxy-THC, 7-hydroxy-CBD) 
with potent psychoactive effects that contribute to the pharmacology of the cannabinoids [27]. 

Age-related differences in Tmax, Cmax, and F may cause important differences in the onset and 
intensity of effect of an oral cannabinoid dose.

Growth and maturation of gastrointestinal absorption processes variably influence both 
absorption rate and extent (i.e., bioavailability), a key determinant of the effective dose. 
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pH dependent passive diffusion, biliary excretion, and gastrointestinal (GIT) transit times 
undergo considerable change with maturation [29]. Gastric pH is high at birth, becomes acidic 
in the first 24 h, returns to neutral pH values within the first 10 days of life, and subsequently 
decreases to adult pH levels within the first year or two of life [16]. Intestinal tract pH tends 
to be similar with the adult at all pediatric age groups [30]. Although impact of pH is likely 

limited on cannabinoid bioavailability (as these are neutral compounds), the higher gastric 

pH might reduce the extent of THC degradation [31]. Biliary excretion, though, is lower in the 
neonate (2–4 mM) than the adult (5–6 mM) in the first weeks of life, which is due to imma-

turity of the hepatic transporters responsible for their biliary excretion rather than ability to 
synthesize bile salts [32, 33]. As hydrophobic molecules, this may reduce cannabinoid bio-

availability due to lower GIT solubilization in the first months of life. Gastrointestinal motility 
is also reduced at birth and gastric emptying and intestinal peristaltic function likely become 

similar to adults in the first weeks of life [34, 35]. This suggests Tmax is likely to be similar with 

adults within a month of birth, although differences in motility may not influence Cmax.

Other gastrointestinal physiological factors that have importance on the extent of absorption 
(i.e., bioavailability) include gastrointestinal permeability and first pass effects. All cannabi-
noids undergo passive permeation across the gastrointestinal epithelium. Intestinal permeabil-
ity is initially high at birth given the leakiness of the epithelial tight junctions, but with junction 

closure within the first week of birth overall permeability becomes lower than adult due to a 
smaller intestinal absorptive surface area [36]. Passive transport mechanisms likely reach adult 

values within 4 months of birth. First-pass effects have a longer maturational trajectory. First 
pass effects include the activity of microbiota and gut luminal enzymes, enzymes and trans-

porters of the gastrointestinal epithelia and liver. In adults, the low and variable bioavailability 
of CBD and THC is due to pre-systemic elimination by cytochrome P450 enzymes, principally 
CYP3A4 and CYP2C’s, expressed in the intestinal and hepatic epithelium [37]. Intestinal and 
hepatic CYP3A4 expression and hepatic CYP2C expression principally contribute to consider-

able first-pass metabolism and the low oral bioavailability of cannabinoids [38]. With devel-

opment, hepatic CYP2C expression reaches adult levels by 6 months, exceeds adult levels in 
childhood, and returns to adult levels after puberty [39]. CYP3A4 undergoes a slower matura-

tion with considerable increases in the first 6 months but does not reach adult levels until after 
2 years of age [40, 41]. CYP3A4 activity also exceeds the adult in early childhood and returns to 
adult levels after puberty. Their developmental maturation suggests bioavailability is likely to 

be higher in neonates and infants until these enzymes reach adult expression levels. The xeno-

biotic transporters also contribute to first-pass effects. THC is a substrate of efflux transporters 
including p-glycoprotein (MDR1) and BCRP, while CBD only inhibits these efflux transporters. 
These transporters undergo rapid ontogeny in the first 6 months of life to reach adult values 
by 2 years of age, but may not contribute to age-related differences in bioavailability beyond 
6 months of age [42]. The immaturity of these transporters can further enhance THC bioavail-
ability relative to the adult.

Bacterial activity within the gastrointestinal tract lumen may influence first pass metabolism. 
Whether cannabinoids undergo bacterial metabolism is unknown, but glucuronide metabo-

lites may undergo deconjugation in the gut lumen. Children from 3 to 15 years of age showed 
no differences in activity of bacterial enzymes such as beta-glucuronidase, beta-glucosidase, 
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and other enzymes and intestinal bacterial colonies approach adult characteristics by 1–4 years 
of age [43]. The gastrointestinal microbiome also influences the regulation of drug metaboliz-

ing enzymes and transporters, but information in the pediatric patient is lacking. A multitude 
of factors can influence the microbiome including age, disease, diet, and drug exposure, and 
our understanding of their impact during development is limited.

Overall, postnatal development of pH, gastrointestinal motility, and first-pass mechanisms 
should reach maturity by 5 years of age [17] at which time the rate and extent of oral absorp-

tion should have similarity to adult estimates. The variable rate and pattern of maturation, 
though, will lead to large ranges in Tmax, Cmax, and bioavailability estimates between the dif-

ferent pediatric age classes. Since variability in blood concentrations is principally inversely 

proportional to oral bioavailability, we may expect important differences in the oral dose 
requirements needed to attain equivalent plasma concentrations and therapeutic responses. 
Variable bioavailability will challenge treating caregivers on advising doses indicated by age, 

and individualization of dosage regimens will remain necessary. This expectation, though, 
creates opportunity for development of pediatric dosage formulations that considers both the 

potential age influences on cannabinoid liberation from the dosage formulation and the need 
to provide higher and more consistent oral bioavailability. Effective oral formulations promise 
more consistent dosage recommendations and reductions in the risk of under- or overdosing.

4.3. Distribution

Age-related differences in the extent of tissue distribution (i.e., volume of distribution, V
d
) 

will impact intensity and duration of cannabinoid activity. In adults, the high plasma protein 
binding characteristics (>97% bound in the adult) [44] of the cannabinoids result in a small 

central V
d
 (2.5–3 L). The cannabinoids undergo rapid and extensive distribution into lipo-

philic tissues (e.g., brain and adipose) and the highly perfused tissues (e.g., heart, lung, and 

liver) resulting in a large steady state V
d
 with reports ranging from 2.5–3 to 10 L/kg [27, 45]. 

The slow redistribution of cannabinoids from tissues, in particular adipose, as well as entero-

hepatic recirculation lead to long half-lives ranging from 1.5 to 5 days or longer for THC and 
1–2 days for CBD, and even longer for the metabolites [27, 45]. Since the V

d
 is an important 

determinant of half-life, which, in turn, is used to guide the dosing interval, the expected 
age-related differences in cannabinoid V

d
 are likely to lead to differences in half-lives between 

the pediatric age strata and a possible need to consider such differences in the dosing interval.

Body composition, plasma and tissue protein binding, and physicochemical characteristics of 
the cannabinoids will influence the extent of their distribution (i.e., V

d
). For many compounds, 

V
d
 demonstrates a linear relationship with body size. In the pediatric population, body size 

can change from less than 1 kg to up to 100 kg or more with development. Consequently, 
V

d
 expressed on a per body weight basis will show tremendous variability in the pediatric 

population. Ratio of fat, muscle, and intracellular and extracellular water also changes with 
maturation. At birth, total body water is 75%, and total body water-to-fat ratio is the highest 
in neonates and young infants with total body water reaching adult values by 6 months [46]. 

However, older infants and toddlers tend to have the highest fat-to-body water ratio only to 

reach adult ratios in later childhood [46]. Although higher body fat to water ratio may suggest 
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higher V
d
 for the hydrophobic cannabinoids in these age groups, studies with other highly 

lipophilic drugs suggest that the V
d
 was not different between adults and infants [47]. Past 

infancy, then, the V
d
 might be similar between children and adults for the cannabinoids [47]. 

The lipophilic nature of the cannabinoids, though, raise concerns with childhood obesity and 

whether obese children should be dosed based on actual or ideal body weights [48].

Plasma protein binding is an important physiological determinant of V
d
 and the unbound 

fraction in the blood. In adults, cannabinoids bind extensively to lipoproteins and albumin 
where the unbound fraction can range from 1 to 5% [44, 45]. In the pediatric population, the 
plasma levels of albumin and alpha

1
-acid glycoprotein, the two major plasma binding pro-

teins, are lower at birth and increase gradually to reach adult values by 1–3 years of age [49]. 

Lipoprotein and triglyceride levels also rise gradually during the first year of life, with fur-

ther increases in childhood and adolescence [50]. Consequently, neonates and infants might 
exhibit lower bound fractions of the cannabinoids due to lower lipoprotein and albumin 
concentrations. These age dependent increases in plasma proteins might also mean higher 

distribution volumes in the neonate and infant and a lower Cmax.

With high binding characteristics, seemingly small differences in binding, though, may result 
in large differences in the availability of cannabinoids to bind to their therapeutic targets. The 
unbound concentration is known to better reflect the pharmacodynamics of highly bound 
drugs [51], and a greater unbound fraction coupled with a lower elimination capacity for 

the cannabinoids (see section below) would enhance the availability of cannabinoids at their 

pharmacological sites of action. This can result in more intense pharmacological or toxico-

logical responses and possibly a need to adjust doses to ensure equivalent PD responses. In 
addition to the amount of protein available for binding, binding affinity shows age-related 
changes. The presence of endogenous competitors for plasma protein binding sites, such as 

bilirubin and free fatty acids, is higher in the neonate [52], and along with exogenous competi-
tors (e.g., co-administered drugs) may further increase the unbound cannabinoid concentra-

tion with subsequent enhancements in their pharmacological or adverse effects. Either way 
this might necessitate a dose reduction.

Relevant to the cannabinoids is the possible influence of age-related differences in the volume 
of the brain and the permeability of the blood-brain-barrier. Brain volume is larger in younger 
children and approaches adult values at 4–6 years of age [53]. THC but not CBD is a substrate 
for P-glycoprotein (P-gp, ABCB1) and breast cancer resistance protein (BCRP, ABCG2) [54], 

while both cannabinoids inhibit P-gp and BCRP activity [55, 56]. These transporters func-

tion to limit permeation of THC and other drug substrates across the blood-brain-barrier and 
expedite their elimination from the brain, while CBD brain uptake and removal is not influ-

enced by these transporters [54]. This might suggest a longer residence time of CBD in brain 
tissue relative to THC and a potential disconnect between plasma levels and the psychoactive 
effects of these compounds. As an inhibitor of efflux transporters, CBD might also modu-

late brain disposition of THC, which could explain, in part, its known ability to modulate 
THC psychoactive effects [57]. Important cannabinoid-drug interactions might ensue with 
co-administration of other efflux transporter substrates with a concomitant risk for brain 
accumulation of these drugs and potential adverse effects. Finally, known pharmacogenetic 
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polymorphisms in these transporters result in reduced activity, which may enhance brain 

penetration and residence, increase the psychoactive effects, and, in turn, risk Cannabis depen-

dence or possibly brain disorders [58]. Although ontogeny of these transporters at the blood-

brain-barrier is unknown, developmental maturation of the efflux transporters may result in 
a developmental vulnerability to THC use.

4.4. Elimination

The lipophilic cannabinoids are eliminated primarily through hepatic metabolic clearance. 

Hepatic clearance depends on three physiological determinants, plasma protein binding, 

hepatic blood flow, and intrinsic clearance (the overall ability of the liver to metabolize a 
compound). The cannabinoids appear to fall within the class of intermediate to high extrac-

tion ratio compounds (systemic clearance ranging from 600 to 1190 mL/min for THC and 
960 to 1560 mL/min for CBD) [59, 60], suggesting that hepatic clearance is influenced vari-
ably by hepatic blood flow, intrinsic clearance, and plasma protein binding or predominantly 
by the hepatic blood flow at the highest hepatic clearance values. All determinants undergo 
developmental maturation. Hepatic metabolic clearance of the cannabinoids principally 

involves cytochrome P450 enzyme-mediated metabolism. The metabolites generated from 
P450 enzyme reactions may undergo further phase II enzyme conjugation reactions for their 
subsequent renal or biliary excretion. An understanding of the contribution of Phase I and 
II enzymes is important as the rate and pattern of their maturation tend to follow different 
developmental trajectories.

Cannabinoids are principally metabolized by CYP3A4, CYP2C9, and CYP2C19 [45, 61]. As 

a superfamily of enzymes, the developmental trajectories of P450 enzymes are grouped into 
three characteristic classes [62]. CYP3A4 and CYP2C enzymes are class II enzymes, where 
enzymes are expressed at low levels at birth and gradually increase postnatally to achieve 
adult values within a year or two of age [62]. For instance, CYP2C19 activity is less than one-
third adult values at birth, surges to 50% of adult activity in the first month of postnatal life, 
and reaches adult values at 1 year of age [39]. After 1 year, the hepatic clearance of CYP2C19 
substrates show similarity to adult values [62]. Although CYP3A4 is the most abundant 
hepatic P450 enzyme in the adult, the predominant CYP3A isoform at birth is CYP3A7, while 
CYP3A4 expression is only 10% of adult levels [62, 63]. A developmental switch is observed 

such that CYP3A4 activity increases concomitantly with reductions in CYP3A7 activity. By 
1 year of age, CYP3A4 activity is 75% adult levels, while CYP3A7 activity is considerably 
reduced [62, 63]. Although the two isoforms share 95% identity in their nucleotide sequence, 
differences in substrate specificities are noted for the two isoforms as well as a lower metabo-

lism rate by CYP3A7 [64]. No study has evaluated the metabolic activity of CYP3A7 against 
CBD and THC, but CBD was identified as an inhibitor of this CYP3A isoform [65].

CBD, THC, and their respective metabolites also undergo phase II metabolism principally 
by the UDP-glucuronosyltransferase (UGT) enzymes. UGT1 and UGT2 families are involved 
in drug metabolism and typically more than one isoform contributes to the metabolism of 

a single compound [66]. Generally, the UGT enzymes have 25% activity in young infants 
relative to adult levels with adult levels achieved within 6–30 months of birth [66]. However, 
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individual UGT enzymes undergo different maturation patterns leading to considerable vari-
ability reported in the glucuronidation capacity of newborns and infants.

The developmental pattern of the major cannabinoid metabolizing enzymes suggests that 
systemic clearance and oral bioavailability may change throughout the pediatric period. 

Neonates and infants may demonstrate lower systemic clearance and higher oral bioavail-
ability due to reductions in hepatic metabolism, but adolescents may have similar values 

to the adult. Interesting children ages 2–12 may require larger weight adjusted doses. In a 
mechanistic-based analysis, for drugs almost solely eliminated by CYP3A4 children required 
higher (~2 times) doses corrected for body weight relative to the younger child and adult, 
although similar weight-corrected doses between children and adults were required for drugs 

eliminated solely by CYP2C19 or UGT isoforms to achieve equivalent plasma concentrations 
[17]. Given the contribution of both P450 enzymes to the elimination of cannabinoids, higher 
weight adjusted doses may be required in children relative to the adult due to higher systemic 

clearance or first-pass metabolism.

Quantitatively and qualitatively P450 and UGT enzymes show considerable variation in their 
developmental maturation both within and between the age strata. A consequence of this varia-

tion may be altered cannabinoid metabolite profiles relative to the adult. After oral administra-

tion in the adult, extensive first-pass metabolism results in the production of high circulating 
levels of bioactive hydroxylated metabolites of CBD and THC [27]. These active metabolites 

contribute to the pharmacology of Cannabis herbal extracts. A further consideration is the 
genetic polymorphism of P450 and UGT enzymes which divides the population into poor 
metabolizers and fast metabolizers (e.g., CYP2C’s) or results in extensive variability in meta-

bolic rates (e.g., CYP3A4) [67]. The impact of genetic polymorphism in the different pediatric 
age classifications is unknown. A few drugs with available data suggest that phenotype does 
not relate to genotype at birth, but enzyme maturation will eventually result in phenotype-
genotype relationships similar to the adult. Hence, postnatal maturation of P450 and UGT 
enzymes has considerable influence on therapeutic efficacy and toxicity because metabolism 
determines oral bioavailability, hepatic metabolic clearance, and the active metabolite profile.

Renal and biliary excretion mediates the elimination of the cannabinoid phase I and II enzyme 
metabolites. Elimination by the kidney occurs by glomerular filtration and tubular secretion. 
Neonates are born with reduced glomerular and tubular function, which is further compro-

mised in the preterm neonate due to incomplete nephrogenesis [68]. Profound anatomical 

and functional changes in the kidney occur following birth that include enhancements in 

renal blood flow, redistribution of blood flow in the kidney, improvements in glomerular 
filtration efficiency, and the growth and maturation of renal tubules and tubular processes. 
These changes result in rapid attainment of renal elimination function within the first year of 
age [68]. Maturation of glomerular filtration processes precedes tubular processes, such that 
glomerular filtration rate reaches adult levels by 6 months of age and tubular reabsorption 
and excretion processes mature to adult levels by 1 year of age [68]. The excretion rate in 
toddlers and preschool children, though, can exceed adult levels but subsequently returns 

to adult levels in childhood [68]. The anatomical and functional immaturity of the kidney 

and the discordance in the maturation of glomerular and tubule function can contribute to 

considerable interindividual variability in renal elimination in pediatric patients.
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4.5. Transporters

Transporters are categorized into ATP-Binding Cassette (ABC) and Solute Carrier (SLC) families. 
ABC proteins are efflux transporters expressed apically at tissue-blood interfaces and function to 
limit penetration of compounds into these tissues. Maturation of ABC transporters can result in 
a developmental vulnerability to THC use. ABC transporter ontogeny as well as genetic varia-

tion (polymorphisms) is known to influence treatment response to drugs and increase risk for 
psychiatric disorders in pediatric populations as a result of altered disposition to the brain [69]. For 

example, the common P-glycoprotein (ABCB1) genetic variant C3435T, which results in altered 
p-glycoprotein expression, was associated with increased risk of Cannabis dependence [58]. As well, 

transporter ontogeny and genetic polymorphisms can contribute to the interindividual variability 

in response to Cannabis. In general, the ontogeny of ABC and SLC transporters is poorly known.

5. Ontogeny of pharmacodynamic processes

Dosing considerations of the pediatric patient not only need to acknowledge the impact of age-

related changes in PK processes, but also the maturation of the endocannabinoid system and 

how this will influence PD and the relationship between exposure and response. Very little 
data, though, are available from human clinical studies on the developmental maturation of 

the endocannabinoid system and how these may influence cannabinoid pharmacology. What 
is known is that the endocannabinoid system is expressed early in fetal life and plays a critical 
role in normal neurological development. Cannabinoid receptor populations and levels of the 
enzyme systems and endocannabinoids are dynamic in pediatric development particularly 
during adolescence [70]. Some data suggest daily high dose exposure to THC may pose a risk 
to normal neurological development, although the data are not available for CBD [71].

The lack of data on PD ontogeny and age-specific exposure-response relationships risks 
development of inappropriate therapeutic ranges. In the absence of any data, the treating 
caregiver may apply therapeutic ranges in adults or older pediatric age groups to younger 

pediatric age classes on the assumption of a similar exposure-response relationship to help 
inform dose selection [72]. Yet drawing from examples with other drugs, changes in receptor 
density expression with maturation have altered the efficacy and safety of drugs in children, 
such as reduced PD sensitivity to propofol resulting in overdosing and subsequently myocar-

dial failure, metabolic acidosis, multiorgan failure, and death [73]. Given that the endocan-

nabinoid system undergoes continued development, therapeutic windows are likely to be 

different among the different pediatric age strata.

6. Other factors

6.1. Safety and adverse effects

The toxicity of cannabinoids is generally considered quite low. In adults, cannabinoids have 
a number of central nervous system effects that include intoxication, appetite stimulation, 

Recent Advances in Cannabinoid Research192



disruption of psychomotor behavior, short-term memory impairment, antinociceptive 

actions, and anti-emesis. Lethal doses are unknown, but the size of a single lethal dose is 
likely to be very high. The apparent low toxicity in adults, though, cannot necessarily trans-

late to a low adverse effect potential in pediatric patients. Very little information exists on 
the pediatric specific adverse effects of Cannabis. Further, its use as an adjunct therapy in 

conditions such as pediatric seizure creates uncertainty—are the reported adverse effects the 
result of the cannabinoid or due to a cannabinoid-drug interaction? Experience with other 
drugs suggests that the immature physiological system predisposes pediatric patients to an 

increased risk for adverse effects [74]. It is these examples that highlight the concern among 
the treating caregiver of the safety of Cannabis use in pediatric patients. Unfortunately, the 

typical short-term clinical trial is inadequate to determine safety of medical Cannabis on 

growth and maturation. Pharmacovigilance over the long-term will be necessary, and this 

will require reevaluation of the original cohort of patients in clinical trials years after termi-

nation of the trial.

6.2. Pharmacokinetic and pharmacodynamic interactions

In pediatric patients, medical Cannabis is typically administered as an add-on to standard of 

care therapies. This practice can result in clinically relevant competitive interactions involv-

ing metabolic enzymes, transporters, or plasma protein binding sites, and at times pharmaco-

logical receptors. Cannabinoids are known to inhibit the metabolism of drugs that share the 
same P450 enzymes, with inhibition constants in the low micromolar range [37]. Conversely, 
drug substrates of CYP2C and CYP3A4 can slow the metabolism of the cannabinoids. A well-
known interaction is the co-administration of CBD with clobazam in refractory pediatric 
epilepsy where CBD is reported to increase clobazam and norclobazam (active metabolite) 
circulating concentrations due to inhibition of CYP2C19 [75]. Interactions between CBD and 
THC are also possible. CBD is known to competitively decrease the metabolism of THC 
resulting in its persistence in the body [76]. Higher ratios of CBD:THC can attenuate THC-
induced effects and can produce more THC active metabolites [77]. P450 enzyme induction 
is possible in all pediatric age classes and can result in clinically significant enhancements 
in the elimination of cannabinoids and shorter half-lives. Without dosage regimen adjust-

ments, enzyme induction and inhibition can result in concentrations outside the therapeutic 
window.

Other PK and PD interactions of concern include interactions at efflux transporters and impact 
of disease. The exposure-response relationship can be affected by clinically relevant interac-

tions at the efflux transporters expressed at the blood brain barrier. Such interactions can 
alter the brain distribution of the pharmacologically active cannabinoid fraction to enhance 

cannabinoid response at a given Cannabis dose. Although our understanding of the impact of 

disease on cannabinoid PK and PD is very limited, clear examples exist where dosing recom-

mendations depend upon the specific comorbidity under treatment. As well, some childhood 
diseases result in unique pathophysiological changes not present in the adult precluding a 

simple extrapolation of dose from adult experience. In the absence of data, pediatric patients 
will need close monitoring to ensure effective, safe therapy in the presence of disease and 
other comorbidities.
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6.3. Perspectives on the use of medical cannabis in pediatric populations

We face a clinical and ethical dilemma in the use of medical Cannabis in pediatric popula-

tions. Product quality, limited age-appropriate formulations, the lack of PK and efficacy data 
spanning the specific pediatric age categories, the possible adverse effects of Cannabis on nor-

mal growth and development, and limited pediatric-specific safety data cause considerable 
uncertainty regarding the use of medical Cannabis and identification of an appropriate dosage 
regimen. It is not surprising that treating caregivers hesitate to give medical authority for use. 
Just as the regulatory agencies have identified a critical need for pediatric data in new drug 
development, so must the medical Cannabis field recognize the danger of inadequate safety and 
efficacy data and inadequate regulation of Cannabis product quality. To realize the full advan-

tages of medical Cannabis, well-powered and rigorous clinical trials will be needed. Ethical 
justification for such studies should weigh toward benefit of the need to understand its safety 
and effectiveness in different pediatric age strata. Such studies must acknowledge the impact 
of physiological maturation and clinical variables on dose requirements and have sufficient 
power to enable evaluation of these factors on cannabinoid PK and PD. In fact, our current 
knowledge of the impact of maturation on PK and exposure-response relationships invalidates 
the practice of empirical methods for dose selection despite their simplicity for treating care-

givers. Pediatric clinical trials for medical Cannabis should be considered mandatory and such 

trials should focus on both PK and the target PD outcome. Finally, a framework for assess-

ing and reporting adverse effects and benefits should accompany the use of medical Cannabis 
in the pediatric population. Eventually, these studies will make possible the development of 
pediatric dosage regimens that are safe and precisely address the therapeutic need. Until then, 

the treating caregiver can rationally approach dose selection in different pediatric age groups 
with an understanding of the impact of growth and maturation on cannabinoid PK and PD.
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