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Abstract

Low grade gliomas are the most frequent brain tumors in children and encompass a spectrum of histologic entities

which are currently assigned World Health Organisation grades I and II. They differ substantially from their adult

counterparts in both their underlying genetic alterations and in the infrequency with which they transform to higher

grade tumors. Nonetheless, children with low grade glioma are a therapeutic challenge due to the heterogeneity in

their clinical behavior – in particular, those with incomplete surgical resection often suffer repeat progressions with

resultant morbidity and, in some cases, mortality. The identification of up-regulation of the RAS–mitogen-activated

protein kinase (RAS/MAPK) pathway as a near universal feature of these tumors has led to the development of targeted

therapeutics aimed at improving responses while mitigating patient morbidity. Here, we review how molecular

information can help to further define the entities which fall under the umbrella of pediatric-type low-grade glioma. In

doing so we discuss the specific molecular drivers of pediatric low grade glioma and how to effectively test for them,

review the newest therapeutic agents and their utility in treating this disease, and propose a risk-based stratification

system that considers both clinical and molecular parameters to aid clinicians in making treatment decisions.
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Introduction
Tumors of the central nervous system (CNS) are the most

frequent solid tumors in children, with approximately 5.4-

5.6 diagnoses per 100,000 [48, 154, 155]. Of those diag-

nosed, 0.7 per 100,000 will succumb to their disease, making

CNS tumors the leading cause of cancer related death in

children [154, 155, 168]. Within this group, pediatric-type

low-grade gliomas (pLGG) are the most frequent, account-

ing for approximately 30% of all childhood brain tumors

[154, 155]. pLGG are defined as World Health Organization

(WHO) grade I or II malignancies and encompass a wide

array of histologies that can arise throughout the neuro-axis

(Fig. 1a-c) [131, 132].

Management of pLGG is intimately related to surgical

resection, and complete resection remains the most fa-

vorable predictor of patient outcome [225]. Often, this is

achievable for superficial lesions such as those arising in

the cerebral hemispheres or posterior fossa, but is not

always feasible for deep seated or highly infiltrative tu-

mors [225]. In these cases, progressive residual disease

has historically been treated with adjuvant chemotherapy

or radiation [12, 55, 122, 124, 135, 139, 157, 183, 189].

Importantly, these treatments are associated with long-

term sequelae and, particularly for radiation, increased

mortality [55, 71, 118, 138, 145]. These concerns are

poignant in a disease where 10-year overall survival (OS)

exceeds 90%. However, with progression-free survival

(PFS) at approximately 50%, up to half of patients will

require adjuvant therapy. As such, a more robust risk

stratification is required to help guide the type and in-

tensity of therapy warranted. In the past, the degree of
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surgical resection, histological diagnosis and age were

used to determine prognosis. However, more recently

the molecular underpinnings of pLGG have emerged as

a powerful tool to supplement the stratification of these

tumors.

In the last decade, significant molecular data has

emerged to suggest that pLGG near universally up-

regulate the RAS-mitogen-activated protein kinase

(RAS/MAPK) pathway [34, 96, 149, 229]. This data

has led to increasing use of targeted therapeutics that

supplement and/or replace older cytotoxic approaches.

As the era of targeted therapeutics inevitably arrives,

a concise classification scheme recognizing the mo-

lecular features of pLGG is needed. Here, we will

review the histological spectrum of pLGG, the mo-

lecular alterations that have been identified in these

entities and how to effectively test for them, and re-

view the newest therapeutic agents and their utility in

treating this disease. We conclude with proposing a

multi-faceted approach for stratifying pLGG that con-

siders clinical, histologic and molecular parameters

and aims to aid clinicians in their future treatment

decisions.

Morphologic Classification of pLGG

pLGG form a heterogeneous group of neoplasms that

encompass tumors of primarily glial histology, including

astrocytic and/or oligodendroglial, and tumors of mixed

Fig. 1. Magnetic resonance imaging (MRI) depicting pediatric low-grade glioma arising in the a. Cerebellum, b. Thalamus, and c. Occipital Lobe.

Hematoxylin and eosin (H&E) staining highlighting the hallmark histologic features of d. Pilocytic astrocytoma, e. Diffuse astrocytoma, f.

Pleomorphic xanthoastrocytoma, g. Ganglioglioma, h. Dysembryoplastic neuroepithelial tumour, i. Oligodendroglioma, and j. Angiocentric glioma
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neuronal-glial morphology. These tumors are considered

grades I and II according to the current WHO classi-

fication where they are distinguished from high grade

glioma on the basis of specific morphologic features

or, in the case of diffuse glioma, based on the ab-

sence of necrosis, mitoses and microvascular prolifer-

ation [131, 132, 166, 199]. Histologic diagnoses which

fall under the umbrella of pLGG and their hallmark

molecular alterations are listed in Table 1; their typ-

ical histologic features are depicted in Fig. 1d-j.

In many cases the different histologic entities are

readily distinguished, however cases of overlapping

morphology are well documented. These include, for

example, reports of histological overlap between pleo-

morphic xanthoastrocytoma and ganglioglioma [3, 62,

208] and between dysembryoplastic neuroepithelial

tumor and oligodendroglioma [70, 114]. In addition,

tumors which are classically well circumscribed, such

as pilocytic astrocytoma, may possess an infiltrative

component [34], leading to confusion and difficulty in

grading. A precise histologic diagnosis may be par-

ticularly challenging in deep seated midline tumors,

for which a small biopsy is often all that is available.

Rarely do these capture the true complexity of the

tumor and the classic morphologic features by which

diagnoses are made are often lacking.

In addition to these difficulties, pLGG overlap mor-

phologically with entities more commonly found in

adults. This creates confusion regarding appropriate

grading and treatment and is exacerbated by use of

similar terminology, namely diffuse astrocytoma and

oligodendroglioma. In the most recent WHO iter-

ation, both diffuse astrocytoma and oligodendroglioma

have been split based on the presence or absence of

IDH1 mutations, in addition to 1p/19q co-deletion for

the latter. Tumors with the morphology of oligo-

dendroglioma or diffuse astrocytoma in the pediatric

age group often do not have IDH1 mutations and/or

1p/19q co-deletion and are therefore considered

oligodendroglioma, NEC or, of even greater concern,

diffuse astrocytoma, IDH-wildtype. The latter raising

concern for molecular glioblastoma (GBM). Both of

these diagnoses may lead to conventional adult diffuse

glioma treatments involving cytotoxic chemotherapy

and radiation, particularly in the adolescent and

young adult age group. However, in IDH1 wild-type

cases, pediatric oligodendrogliomas most frequently

harbor alterations in FGFR1 including TKD-

duplications or SNVs or BRAF p.V600E (Table 1).

Recently, the entity polymorphous low-grade neuroepithe-

lial tumor of the young (PLNTY) was described [88].

These tumors invariably possessed oligodendroglioma-like

cellular components and highly infiltrative morphological

features, yet boast a benign clinical course uncommonly

seen in classic IDH–mutant oligodendroglioma [31, 88].

These tumors do not harbor IDH1 mutations, but rather

FGFR2/3 fusions (discussed further below) or BRAF

p.V600E. IDH1 wild-type diffuse astrocytoma most fre-

quently harbor BRAF p.V600E mutations, accounting for

Table 1 Histological diagnosis and the common molecular

events of WHO-recognized pLGG. RTK: receptor tyrosine kinase,

SNV: single nucelotide variant

Histological Diagnosis Common Molecular Events

Glial Tumors

Pilocytic Astrocytoma KIAA1549-BRAF (70-80%)
FGFR1-TACC1 (3-5%)
FGFR1 SNV (3-5%)
BRAF p.V600E (3-5%)
Other BRAF Fusions (2-5%)
CRAF Fusions (2-5%)
PTPN11 SNV (2-5%)
KRAS/HRAS SNV (2-5%)

Subependymal Giant Cell
Astrocytoma

TSC1/2 SNV (85-95%)

Diffuse Astrocytoma BRAF p.V600E (20-40%)
MYBL1 alteration (5-10%)
KIAA1549-BRAF (5-10%)
FGFR1 SNV (2-5%)
H3.3 p.K27M (2-5%)
IDH1 p.R132H (2-5%)
Other RTK SNV/Fusions (2-3%)

Pleomorphic Xanthoastrocytoma BRAF p.V600E (80-90%)

Oligodendroglioma FGFR1-TKD duplication (10-20%)
FGFR1 SNV (10-20%)
BRAF p.V600E (5-10%)
FGFR1-TACC1 (3-5%)
IDH1 p.R132H (3-5%)
1p/19q co-deletion (3-5%)

Mixed Glioneuronal Tumors

Ganglioglioma BRAF p.V600E (40-50%)
KIAA1549-BRAF (10-15%)

Desmoplastic Infantile
Astrocytoma and Ganglioglioma

BRAF pV600E/D (40-60%)
FGFR1 SNV (5-10%)
KIAA1549-BRAF (2-5%)

Dysembryoplastic
Neuroepithelial Tumor

FGFR1-TKD duplication (20-30%)
FGFR1 SNV (20-30%)
FGFR1-TACC1 (10-15%)
Other RTK SNV/Fusions (5-10%)
BRAF p.V600E (5-10)

Papillary Glioneuronal Tumor SLC44A1-PRKCA (80-90%)

Rosette-forming Glioneuronal
Tumor

PIK3CA SNV (20-30%)
KIAA1549-BRAF (20-30%)
FGFR1 SNV (20-30%)

Angiocentric Glioma MYB (80-90%)

Chordoid Glioma of Third
Ventricle

PRKCA SNV (80-90%)

Polymorphous Low-Grade
Neuroepithelial tumor of the
Young (PLNTY)

BRAF p.V600E (30-40%)
FGFR2/3 Fusions (30-40%)

Multinodular and vacuolating
neuronal tumor (MVNT)

MAP2K1 SNV/Indel (50-60%)
BRAF p.V600E (5-10%)
Other BRAF SNV (5-10%)
FGFR2 Fusions (3-5%)
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~40% of cases (Table 1). In addition, they sometimes con-

tain KIAA1549-BRAF fusions, FGFR1 SNVs, or MYB or

MYBL1 alterations. The latter alterations were originally

described in series of pediatric diffuse astrocytomas [174,

212] and reports thus far suggest they have a benign clin-

ical course without therapy [31]. Recently, these have been

termed isomorphic diffuse glioma [223]. In these cases,

misdiagnosis may result in over-treatment, leading to po-

tentially harmful sequelae.

In recognition of the increased understanding of the

molecular underpinnings of diffuse gliomas in adults,

IDH1 mutation and 1p/19q deletion status were incor-

porated into the most recent WHO revision in order to

improve diagnostic reproducibility and provide import-

ant prognostic information for patients [132]. A similar

incorporation of molecular features into the classifica-

tion of pLGG will help to more accurately identify these

entities and, importantly, distinguish them from adult-

type gliomas, which carry a worse prognosis and require

more aggressive therapy.

The Molecular Landscape of pLGG
Up-regulation of the RAS/MAPK Pathway

The last decade has produced unparalleled insights into

the underlying biology of pLGG. Importantly, we now

know that the majority of pLGG are driven by a single

genetic event resulting in up-regulation of the RAS/

MAPK pathway [34, 96, 149, 229]. Our first indications

of RAS/MAPK involvement in pLGG pathogenesis came

from Neurofibromatosis Type I (NF1) patients of whom

10-15% develop low-grade glioma [14, 196, 218]. Since

then, molecular profiling efforts have uncovered

additional alterations within this pathway with such

frequency that many have postulated that pLGG is a

"one-pathway disease" [34, 96, 149, 229]. An overview of

the most common RAS/MAPK pathway alterations in

pLGG is shown in Fig. 2.

Neurofibromatosis Type 1

Neurofibromatosis Type I (NF1) is the most common

inheritable tumor predisposition syndrome worldwide

and is associated with a wide range of clinical mani-

festations including skin pigmentation abnormalities,

learning disabilities, seizures, and vasculopathies [16,

19]. NF1 is caused by a germline mutation in the

NF1 tumor suppressor gene, which encodes neurofi-

bromin, a GTPase-activating protein that functions as

a negative regulator RAS [61, 89, 177]. 10-15% of

children with NF1 will develop a low-grade glioma

within the optic pathway, with an additional 3-5%

arising outside of the optic pathway [14, 195, 196,

218]. NF1-associated gliomas usually show loss of the

wild-type allele and, as a result, neurofibromin's en-

dogenous function as a negative regulator of RAS is

lost. Typically, NF1-pLGG are asymptomatic and in-

dolent, requiring no therapeutic intervention and in

some cases, regress without treatment [87, 119, 126,

127, 159]. However, in cases of clinical deterioration

(most commonly vision loss), chemotherapy, and not

radiation, is the first line of treatment [87, 119, 126,

127, 159, 197].

Despite their benign course, NF1-pLGG arising in

younger children (<2 years) and/or outside of the

optic pathway are recognized as being at a higher risk

of progression and/or death [59]. Historically, NF1-

pLGG are not biopsied due to their precarious loca-

tion and the lack of clinical utility of the additional

information obtained. However, a recent study uncov-

ered that NF1-pLGG do harbor additional genetic al-

terations [37]. Most commonly, these were additional

aberrations affecting the RAS/MAPK pathway or

those involving transcriptional regulators. Further-

more, the mutational profile of NF1-pLGG was dis-

tinct from NF1-high grade glioma (HGG), which

instead harbored alterations in TP53, CDKN2A and

ATRX. Therefore, obtaining a biopsy from, at mini-

mum, patients deemed higher risk, may prove valu-

able in identifying patients that require refined and/or

novel treatments and distinguishing them from NF1-

HGG, particularly in adults.

KIAA1549-BRAF

Early studies examining copy number alterations in

pilocytic astrocytoma identified focal gains at 7q34

which included the BRAF gene [44, 167]. Further

work by Jones et. al. refined this discovery, showing

that this gain was the result of a tandem duplication

resulting in the formation of a novel oncogenic fu-

sion, KIAA1549-BRAF [99]. This rearrangement re-

sulted in the N-terminal regulatory domain of BRAF

being lost, leading to downstream up-regulation of

the RAS/MAPK signaling pathway [99]. Five separate

KIAA1549-BRAF exon-exon junctions have been de-

scribed including 16;9, 15;9, 16;11, 18;10, and 19;9 in

order of prevalence [99, 60, 200, 211], all resulting in

the loss of BRAF's regulatory domain. Subtle clinical

differences between fusion variants have been noted

but whether their underlying biology differs, and if

additional roles of KIAA1549 exist, remain unknown

[57, 78, 116, 181].

KIAA1549-BRAF is the most frequent molecular alter-

ation in pLGG, and is significantly enriched in pilocytic

astrocytoma and in tumors arising in the posterior fossa/

cerebellum (Fig. 3a, b). Despite this enrichment, add-

itional studies have confirmed KIAA1549-BRAF in a

spectrum of histologies and CNS locations [60, 90, 97,

100, 116, 171, 200, 211, 229]. In total, KIAA1549-BRAF

accounts for 30-40% of pLGG at the population level
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[186]. Due to its predilection for arising in highly cir-

cumscribed histologies (pilocytic astrocytoma) and in

surgically amenable locations (cerebellum), tumors with

a KIAA1549-BRAF fusion are often amendable to

complete surgical resection and have excellent overall

survival and rarely progress [11, 80, 84, 123]. However,

when arising in deep seated regions of the brain where

complete surgical resection is not possible, progression

is more common [123]. The presence of KIAA1549-

BRAF can aid in tumor diagnosis as it is not found in

adult-type diffuse glioma and, with rare exceptions, con-

firms a pLGG diagnosis [78, 116, 178, 181]. Further-

more, it is helpful in identifying tumors susceptible to

targeted therapeutics (discussed further below).

Other BRAF Fusions

In addition to KIAA1549-BRAF, BRAF rearrangements

involving other fusion partners including RNF130 [97],

SRGAP [99], FAM131B [32], CLCN6 [97], GNAI1 [97],

MKRN1 [97], GIT2 [81], and FXR1 [229] among others

have also been documented. As with KIAA1549-BRAF,

these fusions result in the removal of BRAF's N-

regulatory domain and result in constitutive up-

regulation of the RAS/MAPK pathway. As these fusions

are extremely rare and often identified in isolated case

studies, whether their impact on patient outcome differs

from KIAA1549-BRAF remains unclear. However, in

contrast to KIAA1549-BRAF, these non-canonical fu-

sions are frequently observed in hemispheric and/or

Fig. 2. a. Schematic of the RAS/MAPK alterations identified across pediatric low-grade glioma. b. Average frequencies of RAS/MAPK alterations

identified in pediatric low-grade glioma at the population level. c. Alteration types identified in pediatric low-grade glioma
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brainstem lesions and tend to arise in older children and

adolescents. Further, despite also primarily arising in PA,

they are also seen in an array of less common histologies

[32, 60, 81, 97, 229]. Whether these unique clinical fea-

tures are related to a different mechanism of tumorigen-

esis remains to be investigated.

BRAF p.V600E

Mutations in BRAF, primarily in which a valine is re-

placed with a glutamic acid at position 600 (p.V600E),

act as a phosphomimetic within the RAS/MAPK path-

way, rendering it constitutively active [64, 222]. In

pLGG, the prevalence of the BRAF p.V600E mutation

varies notably depending on the histology and location

of the tumor (Fig. 3a, b). Pleomorphic xanthoastrocy-

toma (40-80%) [46, 68, 85, 191], diffuse astrocytoma (30-

40%) [190, 191] and ganglioglioma (25-45%) [85, 123,

164, 191] frequently harbor BRAF p.V600E, while in

pilocytic astrocytoma (5-10%) [85, 123, 191] or glioneur-

onal tumors (5%) [191, 47, 49], BRAF p.V600E is less

common. Supratentorial lesions are also more likely to

harbor BRAF p.V600E as compared to cerebellar lesions,

while the inverse is true for KIAA1549-BRAF (Fig. 3a)

[34, 46, 49, 171]. Importantly, despite these enrich-

ments, BRAF p.V600E is neither histologically nor

spatially restricted [47, 123, 171]. In addition to

p.V600E, rare cases of BRAF p.V600D and BRAF

p.V504_R506dup have been described in desmoplastic

infantile astrocytomas/gliomas and pilocytic astrocy-

toma, respectively [27, 72, 107].

As a group, pLGGs with BRAF p.V600E have worse

OS and PFS compared to other pLGG [28, 35, 50, 123,

Fig. 3. Distribution of molecular alterations as it pertains to a. tumor location and b. tumor histology. Plots were created using https://rawgraphs.

io Accessed December, 2019
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158]. Further, BRAF p.V600E pLGG, especially in the

context of co-occurring CDKN2A deletions (discussed

further below), are significantly more likely to transform

into HGG; an event which may occur 10-20 years after

the initial diagnosis [142]. While not exclusive to this

entity, transformation has been most commonly describe

for pleomorphic xanthoastrocytoma which has been sug-

gested to be within the same family as epithelioid GBM

[4, 63, 210]. These "pleomorphic xanthoastrocytoma-

like" GBM carry a better prognosis compared to other

GBM, but are still significantly worse when compared to

pLGG [117]. The increased likelihood of malignant be-

havior in pleomorphic xanthoastrocytoma and in BRAF

p.V600E mutated tumors with CDKN2A deletion has led

to a debate regarding the prognostic significance of

BRAF p.V600E alone [101]. Future studies utilizing ex-

tensive cohorts with long-term follow-up will be re-

quired to address these questions conclusively.

FGFR1

FGFR1 is a receptor tyrosine kinase (RTK) that plays a

key role in signal transduction via activation of its intra-

membranous tyrosine kinase domain (TKD) [69, 216].

While FGFR1 mutations and/or fusions are only present

in 3% of adult GBM [176, 202], it is the second most

commonly altered gene in pLGG. FGFR1 alterations in

pLGG arise via three mechanisms: FGFR1 mutations,

FGFR1-TACC1 fusions and FGFR1-TKD duplications

[97, 171, 229]. FGFR1 mutations primarily consist of

p.N546K and p.K656E and occur in 5-10% of patients

[97, 171, 229]. As with BRAF alterations, these are histo-

logically and spatially enriched, most frequently arising

in dysembryoplastic neuroepithelial tumors, other glio-

neuronal tumors, and in midline brain structures (Fig.

3a-b). In these tumor subtypes, FGFR1 mutations occur

in up to 20% of patients, and in rare cases may be germ-

line events [97, 136, 179, 191]. However, FGFR1 muta-

tions have also been reported in pilocytic astrocytoma,

oligodendroglioma, and other histologies, and therefore

are not histologically restricted [11, 67, 97, 171, 187,

229]. FGFR1 TKD-duplication and FGFR1-TACC1 fu-

sions have each been described in 2-3% of tumors, [97,

171, 187, 229]. As with FGFR1 mutations, FGFR1 TKD-

duplication is more common in dysembryoplastic neuro-

epithelial tumors and other glioneuronal tumors, while

FGFR1-TACC1 is more common in pilocytic astrocy-

toma. However, neither of these alterations are histologi-

cally restricted, also appearing in oligodendroglioma and

diffuse astrocytoma, for example (Fig. 3a-b) [97, 171,

187, 229]. All of these alterations result in FGFR1 auto-

phosphorylation [97, 229], leading to up-regulation of

the RAS/MAPK pathway. In contrast to BRAF alter-

ations, the upstream location of FGFR1 (and the other

receptor tyrosine kinase alterations described below) can

result in up-regulation of the PI3K/AKT/mTOR pathway

as well as depicted in Fig. 2a.

Despite being the second most common alteration in

pLGG, the clinical manifestations of FGFR1 alterations

are still not well described. Becker et al., in their descrip-

tion of FGFR1 mutations in pilocytic astrocytoma, noted

that mutated tumors had a worse prognosis than their

wild-type counterparts [11]. Whether this worsened out-

come is due to the alteration itself or the propensity for

FGFR1 mutated tumors to arise in the midline is un-

known. Importantly, FGFR1 mutations often contain

additional alterations, most frequently a second event in

FGFR1 resulting in an FGFR1 “dual hit” [97, 229]. In

addition, co-occurring alterations in BRAF, KRAS, NF1,

PTPN11 and H3F3A have also been reported [97, 171,

187, 229]. Except for H3F3A, whether these additional

alterations impact patient prognosis is yet to be estab-

lished. However, the propensity for FGFR1 mutations

(but not TKD duplication or FGFR1-TACC1) to co-

occur with additional alterations is interesting and may

provide insight into the underlying pathogenesis of these

tumors.

CRAF Fusions

Fusions involving CRAF (RAF1), a human homolog of

the v-raf gene implicated in cell proliferation and sur-

vival, are infrequently identified in pLGG, most com-

monly in pilocytic astrocytoma. These include QKI-

RAF1 [131, 229], FYCO-RAF1 [229], TRIM33-RAF1 [43],

SRGAP3-RAF1 [98, 99], and ATG7-RAF1 [95, 96] among

others. As with non-canonical BRAF fusions, CRAF fu-

sions have been shown to up-regulate the RAS/MAPK

pathway [93, 98, 99]. Due to the rarity of CRAF fusions,

their clinical implications are unclear.

NTRK Fusions

The neurotrophic tyrosine receptor kinase (NTRK) fam-

ily of genes play key roles in CNS development [75, 213,

219] and has long been implicated in a variety of cancers

[192, 213]. NTRK fusions have been identified in various

histological subtypes of pLGG, albeit at very low fre-

quencies. These alterations include SLMAP-NTRK2,

TPM3-NTRK1, ETV6-NTRK3 and RBPMS-NTRK3 [97,

171, 215, 229]. All these fusions are predicted to drive

tumorigenesis via aberrant dimerization of the NTRK

kinase domain, resulting in constitutive downstream ac-

tivation that, at least in part, impacts both the RAS/

MAPK and PI3K/AKT/mTOR pathways [104, 108, 148].

These results have led to several clinical trials using tar-

geted agents against NTRK (discussed below).

KRAS Mutations

A small subset of non-BRAF mutated pLGG harbor mu-

tations in KRAS, an upstream molecule in the RAS/
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MAPK pathway (Fig. 2). Reports on the frequency of

KRAS mutations in pLGG range from 1-5% and primar-

ily arise in pilocytic astrocytoma [94, 95, 97, 164, 229].

Most frequently, these are p.G12D or p.Q61H/K, al-

though one report noted both novel and dual KRAS mu-

tations within 2 patients [97]. Importantly, KRAS

mutations are also seen in high grade gliomas and there-

fore cannot be used as a diagnostic marker for pLGG.

Given the success of inhibiting downstream effectors of

KRAS mutations in other cancer types [74], identifying

these mutations in pLGG may offer access to targeted

treatment approaches.

PTPN11 Mutations

PTPN11 (or SHP-2) is a tyrosine phosphatase adaptor

protein within the RAS/MAPK pathway known to cause

Noonan syndrome [182]. With regards to pLGG, specif-

ically pilocytic astrocytoma, PTPN11 alterations have

been reported in approximately 2% of cases [95, 97].

Interestingly, in these studies 82% of PTPN11-mutant

cases also harbored alterations in FGFR1, suggesting that

the two are biologically linked. In the original report de-

fining the mutation, the authors noted that PTPN11

over-expression alone did not significantly activate the

RAS/MAPK pathway, but did when in the presence of

FGFR1 mutations [97]. The authors suggested that

PTPN11 alone was insufficient to promote transform-

ation, but instead played a modifying role in FGFR1-mu-

tant pLGG. Future work in GBM proposed that PTPN11

is essential for maintaining a glioma stem cell population

during transformation [180] and for activating PI3K/

AKT/mTOR signalling [129]. This suggests that mTOR

inhibitors may be more effective than RAS/MAPK inhib-

itors in pLGG harboring these alterations.

ALK Fusions

The anaplastic lymphoma kinase (ALK) gene is thought

to play a key role in the development and function of

the nervous system and chromosomal alterations and

gain of function mutations in it have been reported in a

plethora of pediatric cancers [29, 30, 106, 137, 220].

These alterations are most commonly fusion events that

result in ectopic expression of the ALK fusion protein

[6]. This results in up-regulation of the RAS/MAPK and

PI3K/AKT/mTOR pathways [73, 143]. Despite the fre-

quency of ALK alterations in pediatric cancer, reports of

its presence in glioma are rare and often exist in isolated

case reports [1, 147, 152]. The most frequently reported

alterations are CCDC88A-ALK and PPP1CB-ALK, both

resultant fusions from a larger chromothripsis event [1,

73, 147, 152]. Recently, ALK alterations were shown to

form a unique clinical subgroup of infantile glioma that

require would likely benefit from a refined treatment ap-

proach [73].

ROS1 Fusions

ROS1 is an orphan tyrosine receptor with no known lig-

and nor definitive function despite speculation for a role

in cell proliferation and differentiation. In pLGG,

GOPC-ROS1 is the result of an intrachromosomal dele-

tion that results in a constitutively active kinase fusion

product sufficient to promote neoplastic transformation

both in vitro and in vivo [26, 40]. Although GOPC-ROS1

represents the most common ROS1 alteration in gli-

omas, CEP85L–ROS1, ZCCHC8-ROS1, and KLC1-ROS1

have also been reported [33, 40, 146]. The use of tar-

geted agents against ROS1 in lung cancers has shown

dramatic clinical efficacy [54, 198], which has resulted in

interest regarding their use in glioma.

MAP2K1 Alterations

Alterations including p.Q56P and small in-frame dele-

tions in MAP2K1 were frequent in a small cohort of

multinodular and vacuolating neuronal tumors (MVNT)

[163]. Within pLGG, this alteration appears to be

enriched for this histological subtype, as follow-up work

looking into the molecular landscape of ganglioglioma

did not identify any further MAP2K1 alterations [164].

However, MAP2K1 is altered in other non-pLGG tumors

including lung and colorectal cancers and thus, as with

KRAS, is not specific to these entities. These alterations

in other malignancies have shown up-regulation of the

RAS/MAPK pathway and may have a similar mechanism

in MVNT [18, 23, 156].

Other Rare RAS/MAPK Alterations

Recurrent alterations involving FGFR2/3 (rather than

the more frequent FGFR1) have been identified in a

recently defined tumor type, PLNTY, which carries a

good prognosis [88]. These occur exclusively as fusion

events, most commonly as FGFR2-KIAA1598 and

FGFR2-CTNNA3 but also rarely as FGFR3-TACC3. In

contrast to FGFR1-TACC1, FGFR3-TACC3 is ex-

tremely rare in pLGG, but arises in ~3% of IDH1/2

wild-type adult GBM. Therefore, paying close atten-

tion to the histologic features is important for tumors

harboring this fusion [45, 152].

PDGFRα mutations have been reported in low grade

glioneuronal tumors of the septum pellucidum [204],

despite more typically being associated with HGG in the

context of other mutations [109, 193, 207, 226, 227].

The clinical implications of these rare alterations are not

yet fully understood.

Non-RAS/MAPK Related Alterations in pLGG

The degree of molecular data converging on the RAS/

MAPK pathway has justifiably led to speculation that

pLGG is a “one-pathway” disease [34, 96, 149, 229].

However, despite this, several alterations with
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seemingly no direct impact on RAS/MAPK signalling

have also been described. It may be that these aberra-

tion do, in fact, impact this pathway via mechanisms

not yet discovered. We discuss these non-RAS/MAPK

alterations below.

MYB alterations

Myb proto-oncogene protein (c-MYB) is a member of

the myeloblastosis family of transcription factors

named after the avian myeloblastosis virus gene (v-

Myb) which causes myeloid leukemia in chickens. It

plays an important role in the control of proliferation

and differentiation of hematopoietic and other pro-

genitor cells and has well described proto-oncogenic

functions in both human leukemia and solid tumors

where it is thought that super-enhancers to c-MYB,

as a consequence of chromosomal translocation, cause

overexpression of c-MYB [160, 230]. MYB’s involve-

ment in pLGG was first described in 2010 by Tate-

vossian et al. who identified MYB amplification in 2

of 14 diffuse astrocytomas and a focal deletion of the

terminal region of MYB in 1 of 2 angiocentric gli-

omas [212]. The authors concluded that 60% of dif-

fuse astrocytomas displayed MYB up-regulation at the

protein level, but were unable to identify a unifying

genetic event responsible for the observation. This

finding was later confirmed, when 22% (8/36) of dif-

fuse cerebral gliomas, including diffuse astrocytoma

and angiocentric glioma, were shown to have a MYB

3’ truncating fusion or, less commonly, amplification

resulting in elevated expression at the protein level

[229]. More recently, Bandopadhayay et. al. published

that 10% (16/172) of their pLGG cohort contained

MYB alterations, most commonly as MYB-QKI fu-

sions, including 19/19 (discovery and validation co-

horts) angiocentric gliomas [8]. This fusion was

shown to likely function via a tripartite mechanism of

MYB protein activation, MYB overexpression and the

loss-of-function of QKI [8]. Work investigating the

genetics of uncommon low-grade neuroepithelial tu-

mors showed that 87% and 41% of angiocentric gli-

oma and diffuse astrocytoma, respectively, harbored

MYB alterations [171]. MYB-ESR1, MYB-PCDHGA1,

MYB-LOC105378099, MYB-MMP16, MYB-

LOC154902, and MYB-MAML2 in addition to MYB-

QKI have also been identified [31, 171, 229]. Import-

antly, MYB alterations are histologically restricted to

angiocentric and diffuse gliomas.

MYBL1 alterations

MYBL1 (MYB Proto-Oncogene Like 1) is a closely re-

lated family member of MYB, and is thought to likewise

act as a transcriptional regulator critical for prolifera-

tion and differentiation. Although commonly grouped

together due to their overlapping biological function,

much less is known about MYBL1 compared to

MYB-driven tumors. Originally described in Ramkis-

soon et. al. in 28% (5/18) of diffuse astrocytomas,

these MYBL1-driven tumors showed a partial duplica-

tion with truncation of its C-terminal regulatory

[174]. The common breakpoint immediately preceding

the C-terminal regulatory domain in these cases sug-

gest the potential formation of a functional, truncated

gene product. However, the concise downstream func-

tional consequence of this event remains to be fully

elucidated [174]. More recent reports of MYBL1 alter-

ations in pLGG suggest MYBL1 alterations may be

even rarer, being found in 2/17 (12%) [171], 7/50

(14%) [8], and 1/17 (6%) [229] diffuse astrocytomas.

No other histological diagnoses have been reported to

harbor MYBL1 alterations.

MYB and MYBL1 alterations were originally described

in diffuse gliomas of childhood. They are more likely

to arise in young children (median age 5 years) and

are significantly enriched for the cerebral hemi-

spheres, although infrequently they occurred in the

diencephalon or brainstem [31, 25, 38]. A recent

single-centre pediatric study showed a 10-year OS

and PFS of 90% and 95%, respectively, suggesting that

these lesions are indolent [31]. These alterations have

also been described in the adult age group where they

represented ~50% of so-called isomorphic diffuse gli-

oma (a subtype of IDH1 wild-type, BRAF p.V600E

negative diffuse astrocytoma) in both children and

adults [223]. These tumors, despite their diffuse astro-

cytoma morphological features, had a good prognosis.

When clustered on t-SNE via methylation analysis,

both MYB and MYBL1 tumors cluster together, and

the authors conclude that they reflect a single tumor

entity [31]. However, this hypothesis merits further

investigation as more of these rare cases, in particular

those harboring MYBL1 alterations, are reported.

IDH1 Mutations

Mutations in IDH1 are present in ~70% of grade II,

grade III, and secondary GBM in adults, most frequently

at position p.R132 [7, 15, 77, 228]. Despite their fre-

quency in adults, IDH1 mutations in pediatric glioma

are rare, with reports ranging from 0-17% of cases [7,

41, 77, 169, 228]. As with adult tumors, the IDH1 muta-

tion is usually in the context of either 1p/19q co-

deletion or is associated with TP53 and ATRX mutations

and as such, likely represent the lower end of the age

spectrum of adult-type IDH-mutant glioma [103, 130].

There is a significant correlation between IDH1 alter-

ations and patient age. In one report, IDH1 mutations

were identified in 5% of pediatric gliomas which collect-

ively had a median age of 16 [41]. Likewise, a report
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from the Children’s Oncology Group noted a 16% inci-

dence of IDH1 mutations, all of which occurred in pa-

tients over the age of 14 [169]. In adults, IDH1

mutations are associated with a better prognosis and re-

sponse to chemotherapy as compared to IDH1/2 wild-

type glioma [76, 86, 140, 151, 188]. While the clinical

impact of IDH1 mutations in children is far less under-

stood, it is likely that they will not behave in the same

indolent way as most other pLGG over the long term. It

is plausible that these tumors are in fact adult malignan-

cies that have been identified early. As such, these tu-

mors should be more closely followed than true pLGG

[92].

H3F3A Mutations

Mutations in histone variant H3F3A (H3.3) were first

described in pediatric high grade glioma, specifically dif-

fuse intrinsic pontine glioma (DIPG), where they are

present in approximately 65% of tumors [109, 134, 193,

207, 226, 227]. H3.3 p.K27M is exclusively observed in

tumors arising in the midline, including the pons, di-

encephalon/thalamus and spinal cord [66, 109, 134, 193,

207, 226, 227]. Although more frequent in HGG, H3.3

p.K27M has been reported in pLGG including pilocytic

astrocytoma [82, 153], ganglioglioma [102, 112, 158] and

diffuse astrocytoma [187, 205]. In one series of pediatric

thalamic glioma, H3.3 p.K27M was noted in 12% of low

grade cases [187]. Interestingly, H3.3 p.K27M has been

shown to co-occur with additional hotspot mutations,

including BRAF p.V600E, FGFR1 p.N546K or p.K656E,

and NF1 mutations [102, 112, 158, 187]. Patients with

H3.3 p.K27M pLGG have the potential to live longer

than patients with H3.3 p.K27M glioma with high grade

histologic features. Indeed, there are reports of survival

of up to 10 years post-surgery in rare cases [82, 102,

112, 153 158], although most patients succumb to their

disease within 1-3 years. In this regard, despite their

comparatively longer survival, these tumors tend to

mimic the clinical impact of H3.3 p.K27M in HGG in

that they invariably progress and cause death, starkly

contrasting the excellent survival of non-H3.3 p.K27M

mutant pLGG as described above.

Secondary Alterations in pLGG

CDKN2A Deletion

Homozygous and hemizygous losses involving 9p21 are

frequent in adult infiltrating glioma and GBM [13, 150,

163]. One of the consequences of this deletion is the loss

of the tumor suppressor CDKN2A, which endogenously

functions as a G1 cell-cycle regulator [125, 184]. Homo-

zygous deletion of CDKN2A is also observed in pLGG,

albeit at a lower frequency than in adult glioma [10, 161,

162, 165, 170]. Reports suggest that CDKN2A loss

ranges in frequency from 6-20% in pLGG, with

significant enrichment in pleomorphic xanthoastrocy-

toma [17, 51, 84, 190]. Likewise, CDKN2A deletion fre-

quently co-occurs with BRAF p.V600E, suggesting that

it likely acts as a second molecular hit, promoting es-

cape from cell cycle regulation [17, 84, 85, 91, 173,

190]. Tumors harboring both BRAF p.V600E and

CDKN2A deletion comprise a distinct clinical subtype

of pLGG prone to transformation into secondary HGG

[142]. This is in line with reports showing that co-

occurrence of CDKN2A deletion with BRAF p.V600E is

associated with escape from oncogene-induced senes-

cence [91, 173] and with having a worse OS and PFS

[85]. Interestingly, several reports have also shown that

pediatric grade I gliomas harboring CDKN2A loss, des-

pite their rarity, have a more aggressive clinical course

consistent with that of a higher histological grade [173,

190] and co-occurrence of CDKN2A deletion with

BRAF fusions has been described in anaplastic astrocy-

toma with piloid features [178]. As such, pLGG with

CDKN2A deletions, especially in the context of BRAF

p.V600E or with possible high grade histologic features,

should be considered as high risk tumors that warrant

close clinical follow-up.

Molecular Tests and Platforms for profiling pLGG

Currently, a wide array of clinically-certified laboratory

methods are used to molecularly profile pLGG. How-

ever, no "gold standard" exists for testing the array of

potential molecular events and various strategies may be

used depending on tissue quality/quantity and budget.

As detailed above, one should strive to have tools which

can identify SNVs and gene fusions. Simple and robust

tests which can be used to detect common alterations

such as BRAF fusions and BRAF p.V600E allow molecu-

lar characterization of almost two thirds of pLGG.

Below, we discuss some of the common testing strat-

egies used to molecularly profile pLGG and include their

tissue requirements, cost, turn-around time, and target-

specific applicability (Table 2).

Immunohistochemistry

Immunohistochemistry (IHC) is a simple and robust test

which can identify specific alterations in most laboratories.

IHC is capable of detecting protein specific expression in-

dicative of the tumor's underlying mutational status in a

timely, cost-effective manner while requiring very little tis-

sue in the process. With respect to pLGG, IHC has been

faithfully utilized in the detection of BRAF p.V600E [21],

H3.3 p.K27M [221] and IDH1 p.R132H [22] and can be

used on formalin-fixed-paraffin-embedded (FFPE) tissue.

However, this approach is limited to those alterations with

available antibodies.
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Fluorescent in situ Hybridization

Fluorescent in situ hybridization (FISH) allows for

visualization of both gene fusions and copy number

events at a single cell resolution. In pLGG, FISH has

been used in the identification of BRAF [214], FGFR1

[179], ALK/ROS1/NTRK1/2/3 fusions [73], and MYB/

MYBL1 alterations [174, 212]. It can also be used for

identifying co-occurring CDKN2A deletions. FISH is

widely available and can be used on FFPE material but is

relatively labor-intensive, and can only test for a single

alteration at a time.

Droplet Digital PCR

Point mutations can be also detected using polymerase

chain reaction (PCR) techniques. If available, the advan-

tage of droplet-digital PCR (ddPCR) is its ability to faith-

fully detect mutations at very low variant allele

frequencies related to low quality or highly diffuse input

material. In addition, ddPCR's ability to do high through-

put testing makes the test affordable when run at capacity.

In this process, single fragments of DNA are partitioned

into oil-based droplets and amplified using standard Taq-

Man probes designed against the desired target [172]. As

each individual droplet is devoid of competition, each

DNA fragment is amplified, allowing for unparalleled

sensitivity. ddPCR can identify not only point mutations

such as BRAF p.V600E [123], H3.3 p.K27M [187], IDH1

p.R132H [187], and FGFR1 p.N546K and p.K656E [58]

but also CDKN2A deletions [123], KIAA1549-BRAF [5],

and FGFR1 TKD-duplication [58] based on copy number

comparisons. This technique is very robust on degraded

DNA, including from FFPE material, and requires min-

imal technical hands-on time. However, it is difficult to

multiplex and requires access to expensive equipment.

NanoString nCounter

The NanoString nCounter system is a hydridization

based platform capable of detecting fusion transcripts in

a multiplexed fashion [186]. NanoString panels can be

used to screen for the common fusions such as those in-

volving BRAF (including both the canonical KIAA1549-

BRAF and the non-canonical fusions described above)

and FGFR1-TACC1 [186] as well as for rarer fusions in-

cluding those involving ALK, ROS1, NTRK, and MET

[73]. This technology is robust on FFPE material, re-

quires minimal technical hands-on time and bioinfor-

matic analysis is relatively simple. However, input

requirements are relatively high (200-500ng of RNA),

the fusion partner and exact breakpoint must be known

and it requires access to expensive equipment.

SNP Array

In cases where no specific alterations can be found using

the gene specific tools, or when copy number alterations

have a role in tumor management, genome-wide SNP

arrays can be used. SNP arrays are a probe-based mo-

lecular profiling technique optimized for the detection of

copy number variants. Their use in pLGG molecular

profiling includes the identification of BRAF and FGFR

fusions, MYB and MYBL1 alterations and CDKN2A de-

letions. SNP arrays are robust with FFPE material, but

require expensive reagents, long technical hands-on time

and batching of samples as well as a moderate amount

of input material (100-200ng of DNA) and access to ex-

pensive equipment.

Next generation sequencing panels

In recent years, the use of next-generation sequencing

(NGS) platforms for the molecular characterization of

solid tumors has gained significant popularity [113, 175,

209]. These platforms range from approximately 300-

500 gene targets (or more) and often include most of

those altered in pLGG. Sequencing based approaches

have the benefit of simultaneous detection of most clin-

ically relevant alterations in a single test from which

diagnostic, prognostic and therapy decisions can be

made. However, tissue quality requirements, which are

generally higher as compared to the other technologies,

technical hands-on time and downstream analysis are

more complicated and time-consuming leading to longer

turn-around-times and cost. Access to expensive equip-

ment is also required, all of which limit the use of these

approaches globally. Nevertheless, in the cases where the

tools above cannot identify the pLGG molecular driver,

NGS approaches are highly advantageous.

Methylation Profiling

DNA methylation profiling is another tool which can aid

in the diagnosis of tumors arising in the CNS [20]. This

method is particularly useful in aiding the diagnosis of

difficult tumor entities and is robust on FFPE material.

In addition, current arrays can detect copy number alter-

ations, albeit at a lower resolution than SNP arrays.

However, the utility of the methylation classifier may be

less robust in pLGG, possibly due to frequent inclusion

of normal tissue in these tumors [20]. Furthermore,

methylation profiling remains expensive, is subject to

batch effects, and must be run in sets of 8. Further, the

utility of methylation profiling as it pertains to tumor

diagnosis requires further investigation.

Molecular pLGG diagnostic algorithm

Given the array of molecular alterations and their overlap

amongst different tumor histologies, devising a simple

testing recommendation for pLGG can be difficult. Ultim-

ately, as proposed by Miklja et. al. [141], there are two pri-

mary approaches to the problem (i) sequential testing of

specific alterations in a tier-based approach or (ii) upfront
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NGS panels optimized for pLGG. The latter may be used

in centers with access to this technology and for whom

cost is not an issue. For other centers the use of a sequen-

tial testing strategy is largely supported by the fact that the

vast majority of pLGG harbor a single molecular driver

within a subset of recurrently altered genes. These events

primarily occur as either gene fusions or mutations, but

almost never both. Rarely, exceptions arise where multiple

mutations, either within the same gene or in other trad-

itional pLGG targets, arise. These are almost exclusively

observed with mutations and not gene fusions. The crux

of this strategy lies in its ability to accurately identify a

molecular driver prior to the number of tests conducted

exceeding the cost and turn-around-time of an NGS based

approach. A possible testing strategy highlighting the most

probable molecular alterations present based on the

tumor's clinical features is included in Fig. 4.

Targeted Molecular Therapies for pLGG
BRAF Inhibitors

First generation BRAF inhibitors including dabrafenib

and vemurafenib have shown excellent results in melan-

oma patients harboring BRAF p.V600E and are now be-

ing investigated for their utility in pLGG [79, 206]. A

series of case reports utilizing these agents in a single

agent approach showed excellent results with most

reporting a complete response [2, 24, 42, 121, 185, 203].

These findings were recently confirmed in a larger co-

hort of BRAF p.V600E tumors, in which either of these

BRAF inhibitors induced significant cytoreduction and

prolonged survival in patients [123]. These results led to

a multi-institute phase I clinical trial, where initial find-

ings using dabrafenib reported an impressive overall re-

sponse rate of 41% [110] A follow-up trial optimizing

the dosing safety and tolerability is currently underway

(NCT01677741). Despite their efficacy in BRAF p.V600E

tumors, first generation BRAF inhibitors result in para-

doxical activation of RAS/MAPK signalling when used

in KIAA1549-BRAF or BRAF wild-type tumors [201].

This was the case in a trial of sorafenib, which caused

accelerated tumor growth and resulted in the early ter-

mination of the trial [105]. To rectify this issue, second

generation "paradox-breaker" agents were designed to

inhibit BRAF without causing paradoxical RAS/MAPK

activation [217]. Of note, CRAF fused pLGG were unre-

sponsive to both first and second generation BRAF in-

hibitors [93]. This was attributed to the robust protein-

protein interactions mediated by the CRAF fusion part-

ners [93]. This highlights the necessity of careful mo-

lecular characterization of pLGG prior to making

treatment decisions, and emphasizes the risk of conduct-

ing trials without proper molecular characterization.

Fig. 4. Molecular testing decision tree for pediatric low-grade glioma. *The frequency with which tumors harbor an FGFR1 mutation and

additional mutations justifies continued testing regardless of status. AG: angiocentric glioma, DNET: dysembryoplastic neuroepithelial tumour,

GNT: glioneuronal tumor, ODG: oligodendroglioma, PA: pilocytic astrocytoma, GG: ganglioglioma, PXA: pleomorphic xanthoastrocytoma, DA:

diffuse astrocytoma
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MEK Inhibitors

For pLGG that are not suitable for type I BRAF inhibi-

tors (NF1-pLGG, KIAA1549-BRAF fused, etc.), MEK in-

hibition has emerged as a promising therapeutic

strategy. Currently, four MEK inhibitors including selu-

metinib [9, 56)], trametinib (NCT03363217), cobimetinib

(NCT02639546), and binimetinib (NCT02285439) are at

various stages of clinical testing. For selumetinib, both

phase I and II trials have been completed [9, 56]. The

phase I study focussing on NF1-associated and sporadic

refractory or progressive pLGG showed that 32/38 pa-

tients exhibited either stability or reductions in tumor

size [9]. Similar results were seen in a Phase II study,

where use of selumetinib in recurrent pLGG boasted im-

pressive results, with 40% of NF1 patients achieving par-

tial response and only 1 patient progressing while on

treatment [56]. Given these positive results, efforts to

evaluate the use of selumetinib upfront in newly diag-

nosed patients both as a single agent or in combinations

are under way. The trial of trametinib involving 6 pa-

tients resulted in 2 partial and 3 minor responses, while

1 patient had progressive disease [115].

FGFR1 Inhibitors

Due to its functional importance and frequent implica-

tions in cancer, multiple small molecular inhibitors of

FGFR have been developed, some of which are in clinical

trials for an array of malignancies. These include

AZD4547 (NCT02824133) for treatment of malignant

glioma harboring FGFR-TACC fusions [65] and several

others previously reviewed [36]. Results from these trials

will inevitably influence the applicability of these agents

in pediatric glioma.

ALK/ROS1/NTRK Inhibitors

Alterations in ALK, ROS1 and NTRK are relatively rare

in pLGG. Conveniently, alterations in these genes are

common in adult malignancies including lung and

colorectal cancer and as such, targeted agents with

federal approval have already been developed and

tested. These include Crizotinib (NCT00939770) [144],

ceritinib (NCT02336451) [111], and cabozantinib

(NCT00704288) [224], as well as many investigational

agents, such as brigatinib (ALK/ROS1) [39], entrectinib

(ROS1/TRK) [128], and larotrectinib (TRK) [83, 194],

the latter of which was recently approved in the treat-

ment of TRK-altered cancers (NCT02122913) [83]. In

pediatric glioma specifically, both entrectinib and laro-

trectinib have shown potent anti-tumor effects

(NCT02637687, NCT02576431) [52, 53, 120]. These

results have led to a current phase I/Ib study being

conducted in pediatrics to evaluate Entrectinib in pri-

mary CNS tumors (NCT02650401).

The Future of pLGG Classification
The importance of molecular testing in tumor diagnos-

tics is increasingly recognised and became formalised for

brain tumors in the most recent WHO classification

[132]. As we gain a better understanding of the molecu-

lar underpinnings of pLGG, it is becoming evident that,

while certain histologies may be enriched for particular

molecular events (and vice versa), they are not exclu-

sively associated with a particular event. Furthermore,

while classic morphologies exist for the entities encom-

passed within the umbrella of pLGG, there remain cases

with overlapping features between histologic categories,

as was discussed above. Importantly, whether a particu-

lar molecular event carries the same prognostic signifi-

cance across different pLGG entities is currently unclear.

Given this, a layered diagnostic approach is recom-

mended where both the histologic classification and mo-

lecular findings are reported in an integrated diagnosis

[133]. Most importantly, pLGG need to be distinguished

from their adult-type counterparts as both clinical man-

agement and long term outcome are drastically different.

A comprehensive risk based classification of pLGG lies

in an integrated model, utilizing clinical, imaging and

molecular information to concisely categorize tumors

based on their potential clinical risk (Fig. 5) [95, 97, 123,

171, 229, unpublished data]. The scheme we propose

here attempts to incorporate these factors into one tool.

For example, a pLGG with typically benign histology, a

KIAA1549-BRAF fusion, and arising in a child between

3-12 years would typically be viewed as low risk and a

"watch and wait" strategy may be employed, followed by

less aggressive therapies if the tumor were to progress.

In contrast, a tumor in an unfavorable location or highly

disseminated with high risk molecular features will re-

quire close clinical follow-up and a more aggressive

therapeutic approach (Fig. 5). This schematic approach

would also allow for amendments incorporating adjunct

strategies such as the methylation classifier [20] or other

novel molecular targets upon their discovery.

Conclusion

The era of precision medicine for pLGG has arrived.

Molecular stratification of pLGG resulting in significant

clinical implications is currently available and has been

seen in trials for specific inhibitors such as BRAF

p.V600E- and MEK-inhibitors. The expected availability

of FGFR-targeted agents, as well as other tyrosine kinase

inhibitors for rare fusions, makes precision diagnostics

key to the management of these patients. Indeed, the

current National Cancer Institute–Children’s Oncology

Group Pediatric MATCH trial (NCT03155620) aims to

match actionable mutations to 9 investigational therap-

ies, providing a glimpse into the future of pLGG treat-

ment. In this context it is important to be aware of

Ryall et al. Acta Neuropathologica Communications            (2020) 8:30 Page 14 of 22



which methods are available to be used that are not reli-

ant on expensive NGS-based technologies, and here we

provide a testing pipeline to aid in testing decisions.

Importantly, molecular stratification is only one factor

influencing the behavior of pLGG. Other factors such as

age, tumor location, and histopathology are required to

inform a comprehensive approach to prognostication

and treatment of pLGG. We therefore propose a pLGG

risk classification schema that utilizes the breadth of

clinical and molecular information available to best

equip clinicians as we transition to this new era of pLGG

classification and treatment.
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