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Abstract
Pediatric low-grade gliomas encompass a heterogeneous set of tumors of different histologies.
Cerebellar pilocytic astrocytomas occur most frequently followed by supratentorial diffuse
fibrillary astrocytomas. Recent research has implicated activation of the RAS/RAF/MEK pathway
in tumorigenesis of these tumors. Surgery is the mainstay of therapy. Overall survival rates for
patients whose tumors are completely resected are 90% or greater, 10 years from diagnosis.
Conversely, most optic pathway/hypothalamic, deep midline, and brain stem gliomas have
minimal potential for resection; these tumors can be difficult to treat and deserve special attention.
Combination chemotherapy is currently recommended as front-line adjuvant treatment for
progressive or recurrent tumors. Second-line radiotherapy can also improve overall survival but is
associated with more frequent and significant neurocognitive, endocrine, and other long-term
toxicities.
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Pediatric low-grade gliomas are a heterogeneous set of tumors. They encompass tumors of
astrocytic, oligodendroglial, and mixed glial-neuronal histology. Although their clinical
behavior can vary, the majority of low-grade gliomas are indolent and do not undergo
malignant transformation. Case reports have even described spontaneous regression of some
tumors.1,2 This is in contrast to adult low-grade gliomas that have a more aggressive
phenotype. One reason for the differences between the 2 populations may be the different
frequencies of histological subtypes. Pilocytic astrocytomas infrequently occur in adults but
are the leading histology in children. Conversely, diffuse gemistocytic astrocytomas, which
have been associated with an increased tendency toward malignant progression, are rarely
found in children.3 Low-grade gliomas are estimated to account for anywhere from 30% to
50% of central nervous system tumors in children.4-6

Discussion of gliomas can be confusing as it is a descriptive and not a pathological term.
Tumors are classified according to the World Health Organization (WHO) criteria, most
recently published in 2007, which describes their histological features and also provides a
grading or “malignancy scale.”3 Low-grade gliomas encompass grade 1 and grade 2 tumors
(Table 1).3 Grading is based on a number of factors including presence of necrosis, giant
cells, mitosis, endothelial proliferation, hyperchromatic nuclei, and pleomorphic cells. These
findings can be subjective, and retrospective studies have documented significant

Address correspondence to: Michael J. Fisher, Division of Oncology, Children's Hospital of Philadelphia, 34th and Civic Center Blvd,
Philadelphia, PA 19104; fisherm@email.chop.edu.
The authors have no conflicts of interest to disclose with regard to this article.
For reprints and permissions queries, please visit SAGE's Web site at http://www.sagepub.com/journalsPermissions.nav

NIH Public Access
Author Manuscript
J Child Neurol. Author manuscript; available in PMC 2010 November 1.

Published in final edited form as:
J Child Neurol. 2009 November ; 24(11): 1397–1408. doi:10.1177/0883073809342005.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.sagepub.com/journalsPermissions.nav


interpathologist disagreement on grading.7 Moreover, it can be difficult to distinguish a low-
grade from a high-grade glioma.8

Pediatric low-grade gliomas can be difficult to categorize as they can occur anywhere in the
central nervous system and comprise multiple different tumor histologies. Historically, the
cerebellum is the most prevalent location, and cerebellar low-grade gliomas account for 15%
to 25% of all pediatric central nervous system tumors. They are followed by hemispheric
(cerebral) gliomas (10%-15%), gliomas of the deep midline structures (10%-15%), optic
pathway gliomas (5%), and brain stem gliomas (2%-4%; Figure 1).4 Children with
neurofibromatosis type 1 account for the majority (over 70%) of the optic pathway/
hypothalamic gliomas.9 In fact, 15% to 20% of children with neurofibromatosis type 1 will
develop an optic pathway/hypothalamic glioma. Fortunately, only about half of them will
become symptomatic and require treatment, usually before the age of 5.10-13 Low-grade
brain stem gliomas include the dorsally exophytic, cervicomedullary, and focal brain stem
gliomas and are to be distinguished from the more aggressive diffuse intrinsic brain stem
gliomas.

The 2 most common low-grade glioma histologies in children are the pilocytic (WHO grade
1) and diffuse fibrillary astrocytoma (WHO grade 2). The former occurs mainly in children
aged 5 to 19 years with a peak incidence in the 5- to 9-year-old age range.14 The age
distribution for diffuse fibrillary astrocytomas is older, with only 10% occurring below the
age of 20 years.15 Pilocytic astrocytomas can arise anywhere in the central nervous system;
however, they predominate in the cerebellum,16-18 optic pathway,19,20 and dorsally
exophytic brain stem.21 Conversely, diffuse fibrillary astrocytomas are more frequent in the
supratentorial region, deep midline structures, and the cervicomedullary region.3,22

Other, less common, low-grade glioma histologies in children include pilomyxoid
astrocytoma, pleomorphic xanthoastrocytoma, ganglioglioma, subependymal giant cell
astrocytoma, and oligodendroglioma. The term “pilomyxoid” astrocytoma was first
introduced in 1999 to describe a subset of pilocytic tumors with more aggressive clinical
behavior and has since been included in the most recent World Health Organization
classification of central nervous system tumors.23 Pilomyxoid astrocytomas (WHO grade 2)
tend to occur in very young children (mean age 18 months) and localize in the hypothalamic
region.24 Pleomorphic xanthoastrocytomas (WHO grade 2) have a propensity for the
supratentorial region, most often the temporal lobe, but their age distribution and clinical
phenotype are more similar to pilocytic astrocytoma. Gangliogliomas (WHO grade 2)
localize in the temporal lobes and have a mean age at diagnosis of 9.5 years.25

Intraventricular subependymal giant cell astrocytomas (WHO grade 1) occur almost
exclusively in children with tuberous sclerosis syndrome. Oligodendrogliomas (WHO grade
2) account for only 2% of brain tumors in children <14 years of age; the most common site
of occurrence is the frontal lobe. This review will focus on pilocytic astrocytoma and diffuse
fibrillary astrocytoma, as they account for the majority of pediatric low-grade gliomas and
approximately one quarter of all primary central nervous system tumors in children.15

Clinical Presentation
The clinical presentation for children with low-grade gliomas, regardless of histology, can
be grouped into generalizing and localizing symptoms. Almost 50% of children will have
had 6 months or longer symptom duration prior to the eventual diagnosis.26 Generalizing
symptoms are due to increased intracranial pressure from obstruction of the ventricles and
include headaches (particularly in the morning), nausea, vomiting, and lethargy. Physical
examination findings include decreased upward gaze, sixth cranial nerve palsies, and
papilledema. These are most often caused by tumors located in the cerebellum, optic chiasm/

Sievert and Fisher Page 2

J Child Neurol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



hypothalamus, dorsally exophytic brain stem (which arise from the floor of the fourth
ventricle and grow into the ventricle), and tectum (which obstruct the cerebral aqueduct).

Localizing symptoms are dictated by tumor location and include focal neurological findings,
seizures and endocrinopathies. In particular, cerebellar tumors are associated with ataxia and
dysmetria. The presentation of tumors of the cerebral hemisphere depends upon which lobe
is involved and includes seizures, hemiparesis, and behavioral changes. Children with
tumors of the hypothalamus and/or pituitary gland can suffer from obesity, failure to thrive,
diabetes insipidus, other endocrine dysfunction, and visual field deficits from compression
of the optic chiasm. Optic pathway gliomas may arise anywhere along the visual pathway
(Figure 2). Children with sporadic optic pathway gliomas are more likely to present with
chiasmal and postchiasmal involvement, whereas multifocal and bilateral optic nerve
involvement is seen almost exclusively in children with neurofibromatosis type 1.10,27

Children can present with decreased visual acuity, optic nerve atrophy, proptosis, or
strabismus. Low-grade gliomas of the brain stem are indolent by nature and often have a
long clinical course (months to years) before diagnosis. Although they do not significantly
infiltrate the brain stem, both the dorsally exophytic and cervicomedullary tumors can cause
lower cranial nerve deficits (dysphagia, dysarthria, abnormal breathing) and long tract signs
(hemiparesis, spasticity, hyperreflexia, Babinski's sign). The cervicomedullary gliomas also
present with torticollis, long tract signs, and sensory loss from involvement of the upper
cervical cord. Focal brain stem tumors are predominantly tectal in location and therefore
present principally with hydrocephalus, although cranial nerve deficits, hemiparesis, and
Parinaud syndrome are rarely seen.

Diagnosis
Pediatric low-grade gliomas share similar characteristics on neuroimaging. On magnetic
resonance imaging (MRI), they tend to be hypointense on T1-weighted, hyperintense on T2-
weighted, and have varying degrees of enhancement on postgadolinium sequences. Pilocytic
astrocytomas usually appear as well-circumscribed tumors, often with a large cystic
component and an enhancing mural nodule (Figure 3). Diffuse fibrillary astrocytomas are
less circumscribed and typically do not enhance to a large extent (Figure 4).

Surgical biopsy, and total tumor resection when feasible, is recommended to verify tumor
histology. To preserve optic nerve function, many children with optic pathway/hypothalamic
gliomas do not undergo diagnostic biopsy if the MRI characteristics are consistent with low-
grade glioma, especially if there is a prior diagnosis of neurofibromatosis type 1. Biopsies of
deep midline and brain stem tumors are also to be pursued cautiously, especially if they are
asymptomatic and have not progressed on serial MRI evaluations.

Staging for the majority of tumors includes postoperative MRI of the tumor resection site to
determine extent of resection. This should be performed within 24 to 48 hours after surgery
to best distinguish residual tumor versus postoperative changes. Dissemination and
leptomeningeal involvement are uncommon; however, if suspected, MRI of the entire spine
and cerebrospinal fluid sampling for cytology should also be considered.18

Biology
The tumorigenesis of pediatric low-grade gliomas is not well understood. One of the
limiting factors has been failure to identify common molecular abnormalities in tumor
specimens. Traditional karyotype analysis has been unrevealing in multiple studies, with
chromosome 7 gain the only consistent finding, but present in a minority of tumors.28-32

Conventional genomic hybridization and the first generation of single nucleotide
polymorphism arrays also failed to identify consistent molecular abnormalities.33,34 More
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recently, multiple groups have reported a small nonrandom duplication in the 7q34 region in
the majority of pilocytic astrocytomas, identified using high-resolution single nucleotide
polymorphism arrays.35-39 The 7q34 duplication involves a known oncogene, BRAF, and
appears to result in upregulation of the RAS/RAF/MEK pathway (Figure 5). Studies looking
at adult tumors have also shown that the RAS/RAF/MEK pathway is activated in gliomas.40

Other biological mechanisms under investigation in low-grade gliomas include angiogenesis
and the tumor microenvironment, telomere maintenance, and glioma-associated antigens.
41-43

Pediatric low-grade gliomas do not harbor the same molecular abnormalities as their adult
counterparts. For example, adult low-grade gliomas show frequent TP53 mutations, present
in up to 88% of gemistocytic and 53% of diffuse fibrillary astrocytomas. TP53 mutations in
children appear to be restricted to 5% to 10% of low-grade gliomas that undergo malignant
transformation.44,45 Loss of heterozygosity of chromosomes 1p36 and 19q13, and in
particular codeletion at both loci, is a favorable prognostic factor in adults with
oligodendrogliomas (WHO grade 2) but has not been replicated in pediatric tumors.46

Tumors in children with genetic susceptibility syndromes such as neurofibromatosis type 1
and tuberous sclerosis syndrome provide some insight into the signal transduction pathways
involved in development of low-grade gliomas. The neurofibromatosis type 1 model shows
that inactivation of the tumor suppressor neurofibromin results in upregulation of the RAS
family of proteins, involved in a number of oncogenic signal transduction pathways in
astrocytes.47 Attempts to modulate this upregulation by the use of farnesyl transfererase
inhibitors have been largely unsuccessful. Mutations in 1 of 2 tumor suppressor genes, TSC1
and TSC2, result in tuberous sclerosis syndrome. These 2 genes form an intracellular
complex (called the tuberous sclerosis complex) that is also involved in the RAS pathway
and contains a guanosine triphosphatase–activating property for a small G protein, Ras
homologue enriched in brain. This homologue can directly activate mammalian target of
rapamycin.48 Interestingly, neurofibromatosis type 1 tumors have also been shown to have
increased mammalian target of rapamycin expression, albeit by a different mechanism
(Figure 5).49 Inhibitors of mammalian target of rapamycin, such as rapamycin, are effective
in causing regression of subependymal giant cell astrocytomas in patients with tuberous
sclerosis syndrome50 and trials are currently being considered for refractory low-grade
gliomas in patients with neurofibromatosis type 1.

Treatment and Outcomes
Surgery remains the mainstay of therapy for pediatric low-grade gliomas, and gross total
resection is the most consistent prognostic factor for prolonged progression-free and overall
survival.26,51-55 As such, treatment decisions for children with low-grade gliomas can be
stratified into 3 main groups as follows: (1) children with tumors that have been fully
resected, (2) children with tumors that have undergone subtotal resection, and (3) children
with tumors that have undergone biopsy only or no surgical approach is feasible. The latter
group deserves special attention and usually involves tumors in the deep midline
supratentorial region, optic pathway/hypothalamus, and brain stem.

Low-grade gliomas in the cerebellum and superficial cerebrum are most amenable to
resection. Children in whom a gross total resection has been achieved, confirmed by
surgeon's report and/or postoperative brain MRI within 24 to 48 hours of surgery, often do
not need any further therapy. In several series, complete resection was associated with 10-
year overall survival rates of 90% or greater and rare tumor recurrences.18,26,51,53,56,57

Therefore, postoperative management is directed toward close clinical and radiographic
follow-up, especially if the tumor histology has concerning features. Reports are conflicting
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because of the difficulty distinguishing the prognostic effect of histology from that of extent
of resection, but tumor histology does appear to be an independent predictor of progression.
Nonpilocytic, and specifically diffuse fibrillary, histology is more highly associated with
progression, recurrence, and anaplastic transformation, although the latter is rare in children.
8,26,51,54,55 Children have better survival than adults,58-61 but the role of age as a prognostic
factor within children is unclear.18,55,62-64

The treatment decision for children with subtotal resection has been controversial. If the
likelihood of functional impairment is minimal and the neurosurgeon thinks it is feasible, a
repeat surgery can be attempted to remove the residual tumor.65,66 Others advocate a “wait
and see approach” with follow-up brain MRI at 3- to 6-month intervals.67-69 Because the
tumors tend to be indolent by nature, the decision for a repeat resection or adjuvant
treatment can be postponed until there is either measurable progression by neuroimaging or
clinical symptoms. This interval may last several years and some tumors may never
progress. In 1 series looking at 128 children with subtotal resection of low-grade gliomas,
58% had no evidence of tumor progression 7 years from diagnosis.57 A prospective
intergroup study between Children's Cancer Group and Pediatric Oncology Group (prior to
the creation of the Children's Oncology Group) of 660 children reported a 5-year
progression-free survival of 45% to 65% for residual tumor of any size.68 In addition, the
value of postoperative adjuvant radiotherapy for residual low-grade glioma is unclear.
Although it may improve progression-free survival,51,52,70 studies suggest this does not
necessarily translate into improved overall survival, especially in children.51,57,58 Other
studies show no advantage in progression-free survival with immediate irradiation.26,57

Thus, adjuvant therapy should be reserved for when tumors progress and re-resection is not
feasible. The role of radiotherapy and chemotherapy in this setting will be discussed below.

Low-grade gliomas in the supratentorial midline areas are often not amenable to initial
resection (Figure 4). For this cohort of children, observation until radiographic progression
has been an accepted approach if there are minimal clinical symptoms. When progression
occurs, adjuvant therapy should be considered. Historically, focal radiotherapy was used in
this setting with standard doses of 45 to 54 Gy.71-75 Although the data looking at the impact
of radiotherapy on overall survival are conflicting, retrospective studies combining adults
and children reveal improved survival associated with administration of conventional
radiotherapy.59,76,77 Other studies focused on children reveal the value of radiotherapy,
particularly for optic pathway/hypothalamic gliomas (10-year progression-free survival of
65%-90%).73,74,78,79 In addition, it appears that almost half of irradiated low-grade gliomas
in children have at least a 25% reduction in tumor size.79,80 Despite these potential benefits,
the risks of radiotherapy to the developing nervous system have been well documented.81-86

Radiotherapy of low-grade gliomas of the cerebral hemisphere is associated with both
hormone deficits and cognitive impairment.51,87,88 Treatment of optic pathway/
hypothalamic gliomas can result in endocrine dysfunction,73,74,89 cerebrovascular disease,
90,91 secondary malignant neoplasms,92 and neurocognitive deficits,20,79,93 particularly in
young children.

To defer radiotherapy and its adverse effects, especially in infants and young children,
chemotherapy is now the front-line adjuvant therapy for children with progressive low-grade
gliomas. The combination of carboplatin and vincristine has been shown to result in tumor
reduction or stable disease and a 3-year PFS of 68%.94 Unfortunately, up to 40% of children
experience hypersensitivity reactions with carboplatin, more common with increased
number and frequency of doses.95,96 An alternative regimen of 6-thioguanine, procarbazine,
lomustine (CCNU), dibromodulcitol, and vincristine has also been shown to be effective,
with a 3-year PFS of 45%.97 Because of side effects and drug availability, dibromodulcitol
was not included in a randomized Children's Oncology Group protocol comparing
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thioguanine/procarbazine/CCNU/vincristine (TPCV), with the combination of carboplatin
and vincristine. Preliminary results of this study show a trend for improved event-free
survival for the TPCV regimen, but this is not significant.98

Initial management of optic pathway/hypothalamic gliomas is usually observation with
serial MRI scans and ophthalmologic examinations.27,99 Most tumors remain indolent, and
when they progress, it is often slow in pace.100,101 A concurrent diagnosis of
neurofibromatosis type 1 appears to be associated with a favorable progression-free survival
and lower likelihood of visual morbidity.10,63,102-104 Location is also important; tumors in
the anterior visual pathway (optic nerves and chiasm) have a better visual outcome than
tumors involving the hypothalamus and optic tracts/radiations.105,106 Treatment is reserved
for patients with a documented decline in visual acuity or significant tumor progression on
MRI scan with associated symptoms and signs. Rarely, treatment is advocated at diagnosis
for patients with severe visual impairment, extensive tumor, and/or involvement of the
posterior visual pathway. Surgical resection is rarely pursued because of the risk of further
visual decline as well as the endocrinologic and cerebrovascular risks. Exceptions include
unilateral optic nerve tumors with absent or severe impairment of vision and painful or
disfiguring proptosis. Tumor debulking is sometimes undertaken for large chiasmal/
hypothalamic tumors that cause hydrocephalus via obstruction of the third ventricle or exert
mass effect on surrounding structures. Although radiotherapy for optic pathway/
hypothalamic glioma is associated with excellent, long-term, progression-free survival, its
use is rarely advocated because of the profound risk of unacceptable morbidity (as described
above), particularly in patients with neurofibromatosis type 1. Therefore, chemotherapy,
specifically carboplatin with vincristine, has become the mainstay of initial therapy for optic
pathway/hypothalamic gliomas.27 To date, this regimen is associated with the best
progression-free survival, especially in patients with neurofibromatosis type 1, and allows
radiotherapy to be deferred until patients are older.94,107 Other regimens, such as TPCV, are
avoided in patients with neurofibromatosis type 1 because of their underlying leukemia
predisposition108-111 and the risk of secondary leukemia associated with lomustine and
procarbazine.112-114

Brain stem gliomas also constitute a unique category of low-grade gliomas, and specific
location provides guidance for treatment. The primary treatment for dorsally exophytic brain
stem gliomas is surgical (Figure 6A). However, aggressive surgery to achieve a gross total
resection is not advocated, due to the risks associated with this approach and because the
majority of patients remain progression free after near total resection.21,115 Tumors that
recur can be controlled with repeat resection and/or radiotherapy. Chemotherapy is primarily
used to delay radiotherapy in young patients. Cervicomedullary gliomas tend to grow slowly
and are often managed conservatively with close observation for an extended period of time
(Figure 6B). Evidence of radiographic or clinical progression should prompt referral to
neurosurgery. Gross total resections are possible, but more often the tumor cannot be
removed completely without unacceptable risk. For tumors that progress following surgery,
adjuvant therapy is recommended. Five-year progression-free survival after initial surgical
management exceeds 60%.22,116 Tectal gliomas also tend to be indolent and rarely cause
functional impairment (Figure 6C). Progression occurs in 15% to 25% of tumors.117

Therefore, management is directed toward resolution of the hydrocephalus via shunting or
endoscopic third ventriculostomy. Patients are then observed and biopsy and adjuvant
therapy reserved for patients with radiographic and clinical progression.117-120

Future Directions
Despite the excellent overall survival for these patients, the management of pediatric low-
grade gliomas remains a challenge. Because a number of these tumors will be indolent, the
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treatment must not be worse than the disease. The focus of therapy is to provide long-term
survival with as few potential long-term sequelae as possible. Fortunately, complete
resection is able to provide cure for many children. When this is not possible, front-line
chemotherapy regimens, such as the combinations of carboplatin and vincristine, or TPCV
can result in stable disease or even tumor regression for an extended period of time.
Unfortunately, there are few, proven, effective, second-line chemotherapy regimens for
refractory or recurrent low-grade gliomas. Cisplatin plus etoposide has been evaluated in a
small group of children with unresectable low-grade gliomas with a reported 3-year
progression-free survival of 78%;121 however, this approach should be taken cautiously
given the risk of moderate-to-severe hearing loss and secondary leukemia with these agents.
122-124 Weekly vinblastine is promising with initial studies indicating stable disease in the
majority of children who were switched to it because of carboplatin sensitivity125 or
recurrent/refractory disease.126 Temozolomide as a single agent has shown to be active in
pediatric low-grade gliomas127-129 and is currently being explored in combination with
other agents. More recently, the combination of bevacuzimab and irinotecan, a regimen used
to treat high-grade gliomas, has been shown to result in objective durable responses.130

Additionally, as we learn more about the signal transduction pathways that lead to pediatric
low-grade glioma tumorigenesis, molecularly targeted drugs may also be developed as
therapeutic options.

Radiotherapy should also be considered for refractory or recurrent tumors, especially in
older children. In considering the use of this modality, careful consideration of the long-term
morbidity of radiotherapy, particularly the potential neurocognitive effects, must be
weighed. Multiple studies confirm the adverse impact of whole brain irradiation on
intelligence quotient (IQ) in survivors of pediatric brain tumors.86,131,132 Focal radiotherapy
to tumors of the cerebral hemispheres and optic pathway can also affect IQ79,85,93 and is
associated with the child's need for special education.20,51 Other neurocognitive effects of
radiotherapy to the brain include memory impairment and attention problems, and these
effects are not limited to young children.133-135

Newer approaches to minimize the long-term morbidity of radiotherapy are being evaluated.
Conformal radiotherapy with a tighter margin around the tumor achieved a 2-year actuarial
event-free survival of 88% in 38 children with low-grade astrocytoma.136 More
sophisticated techniques, such as intensity-modulated, proton andstereotactic radiotherapy,
have been developed that enable delivery of targeted therapy to the tumor while limiting
exposure to surrounding normal brain tissue.137-140 One large study of 50 children with low-
grade gliomas treated with stereotactic radiotherapy reported a 5-year progression-free
survival of 82.5%.140 Although the short-term progression-free survival for this and other
studies appear equivalent to conventional radiotherapy,137-140 the long-term toxicity,
particularly neurocognitive, has yet to be carefully evaluated.

Despite these advances in therapy, it is becoming increasingly recognized that a number of
pediatric long-term survivors have significant adverse outcomes that are not always
associated with radiotherapy. Cerebral hemisphere location, younger age at diagnosis, and
hydrocephalus requiring a shunt have all been found to be significant predictors of lower
cognitive performance on IQ scales.135 Children with infratentorial tumors can have
significant language, cognitive, behavioral, and social dysfunctions.141-144 A combined
analysis of Children's Cancer Group (CCG-9891) and Pediatric Oncology Group
(POG-9130) data of 103 children with low-grade cerebellar astrocytomas treated with
surgery alone revealed an elevated risk of cognitive and adaptive-behavioral impairment that
was not associated with complications of the tumor or surgery.145 Similar deficits were
found in 93 children with extracerebellar tumors treated with surgery alone.146
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Therefore, even in the absence of radiotherapy, parents of children with low-grade gliomas
must be properly counseled not only on the risk of tumor progression or recurrence but also
the risk of neurocognitive and behavioral impairments. Physicians caring for children with
low-grade glioma should consider early referral to neuropsychologists for baseline
evaluations that may identify potential deficits in learning and processing, so that
appropriate interventions can be put in place. Outcomes research needs to focus not just on
the effects of radiotherapy and IQ but more on specific cognitive domains associated with
the regions of brain affected by the tumor and treatments. In addition, a better understanding
of the adaptive, social, and behavioral outcomes of survivors of pediatric low-grade glioma
is essential.
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Figure 1.
Distribution by location of pediatric low-grade gliomas. Shown are the approximate
frequencies of low-grade gliomas compared with all pediatric central nervous system
tumors.
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Figure 2.
Postgadolinium magnetic resonance (MR) images of (A) optic nerve glioma (axial), (B)
optic chiasm/hypothalamic glioma (coronal), and (C) optic tract/radiation tumor (axial).
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Figure 3.
Sagittal postgadolinium magnetic resonance image of a pilocytic astrocytoma of the
cerebellum.
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Figure 4.
Axial magnetic resonance images of a right thalamic fibrillary astrocytoma status
postbiopsy. A, Heterogeneous and hyperintense on T2-weighted images. B, Minimal
enhancement on postgadolinium imaging. The patient had left hemiparesis. Because of its
location, the tumor was treated with chemotherapy.
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Figure 5.
Pediatric low-grade glioma tumorigenesis. BRAF, an oncogene implicated in malignant
melanoma and other carcinomas, may be involved in the tumorigenesis of sporadic low-
grade gliomas. A BRAF fusion gene with increased kinase activity upregulates the
downstream MEK/ERK pathway and results in increased transcriptional activity and cellular
proliferation. Low-grade gliomas in children with susceptibility syndromes also reveal some
of the pathways leading to tumorigenesis; inactivation of the tumor suppressor
neurofibromin in neurofibromatosis type 1 results in RAS activation and upregulation of the
RAS/RAF/MEK pathway; in tuberous sclerosis, mutation in 1 of 2 tumor suppressor genes,
TSC1 or TSC2, can lead to direct activation of the mammalian target of rapamycin pathway.
Neurofibromatosis type 1 tumors also reveal increased mammalian target of rapamycin
expression, albeit by different mechanisms.
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Figure 6.
Magnetic resonance (MR) images of low-grade gliomas of the brain stem. A,
Postgadolinium sagittal image of a dorsally exophytic glioma. B, Postgadolinium sagittal
image of a cervicomedullary glioma. C, T2-weighted sagittal image of a tectal glioma.
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Table 1

Key Histological Features of Pediatric Low-Grade Gliomasa

Astrocytic tumors

 Grade 1

  Pilocytic astrocytoma—biphasic pattern, rosenthal fibers, microcysts, eosinphilic granular bodies

  Subependymal giant cell astrocytoma—large gangliod astrocytes

 Grade 2

  Diffuse astrocytoma (fibrillary,b gemistocytic, or protoplasmic)—nuclear atypia with very rare or absent mitoses, microcysts containing
mucinous fluid

  Pilomyxoid astrocytoma—prominent mucoid matrix, angiocentric arrangement of monomorphous, bipolar tumor cells, rosenthal fibers,
eosinophilic granular bodies

  Pleomorphic xanthoastrocytoma—pleomorphic and lipidized cells, surrounding reticulin network, eosinophilic granular bodies

Oligodendroglial tumors

 Grade 2

  Oligodendroglial—monomorphic cells, uniform round nuclei, perinuclear halos, microcalcifications, mucoid/cystic degeneration, dense
network of branching capillaries

Neuronal and mixed neuronal-glial tumors

 Grade 1

  Ganglioglioma—combination of neoplastic, mature ganglion cells, and neoplastic glial cells

  Gangliocytoma—irregular groups of large, multipolar neurons with dysplastic features

  Desmoplastic infantile ganglioglioma—prominent desmoplastic stroma, poorly differentiated neuroepithelial cells, deeply basophilic
nuclei

  Dysembryoplastic neuroepithelial tumor—hallmark “specific glioneuronal element”

a
WHO Classification of Tumors of the CNS. 3rd ed.3

b
Most diffuse astrocytomas in children are fibrillary.
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