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ABSTRACT Objective: Epileptic seizure prediction based on scalp electroencephalogram (EEG) is of
great significance for improving the quality of life of patients with epilepsy. In recent years, a number of
studies based on deep learning methods have been proposed to address this issue and achieve excellent
performance. However, most studies on epileptic seizure prediction by EEG fail to take full advantage
of temporal-spatial multi-scale features of EEG signals, while EEG signals carry information in multiple
temporal and spatial scales. To this end, in this study, we proposed an end-to-end framework by using
a temporal-spatial multi-scale convolutional neural network with dilated convolutions for patient-specific
seizure prediction. Methods: Specifically, the model divides the EEG processing pipeline into two stages:
the temporal multi-scale stage and the spatial multi-scale stage. In each stage, we firstly extract themulti-scale
features along the corresponding dimension. A dilated convolution block is then conducted on these features
to expand our model’s receptive fields further and systematically aggregate global information. Furthermore,
we adopt a feature-weighted fusion strategy based on an attention mechanism to achieve better feature
fusion and eliminate redundancy in the dilated convolution block. Results: The proposed model obtains
an average sensitivity of 93.3%, an average false prediction rate of 0.007 per hour, and an average proportion
of time-in-warning of 6.3% testing in 16 patients from the CHB-MIT dataset with the leave-one-out method.
Conclusion: Our model achieves superior performance in comparison to state-of-the-art methods, providing
a promising solution for EEG-based seizure prediction.

INDEX TERMS Dilated convolution, multi-scale, patient-specific, scalp electroencephalogram (EEG),
seizure prediction.
Clinical and Translational Impact Statement— The proposed pre-clinical study provides a promising
solution for pediatric seizure prediction, which could timely forecast the occurrence of seizures from scalp
EEG signals for reducing the harm to patients.

I. INTRODUCTION
Epilepsy is a neurological disease with brain dysfunction,
and it has troubled humans for thousands of years. Generally,
epileptic seizures are accompanied by abnormal discharge
of brain neurons and affect the patient’s behavior. As indi-
cated by the World Health Organization (WHO), epilepsy

is one of the most common neurological diseases with
about 50 million people globally, and about 70% of patients
could become seizure-free with appropriate treatment [1].
Nonetheless, there are as yet 30% of patients who experience
the ill effects of intractable epilepsy. Hence, the study of
seizure prediction is especially valuable, which could timely
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forecast the occurrence of seizures from scalp EEG signals
for patients to take more active and effective intervention
measures.

Electroencephalography (EEG) is a powerful tool for
recording the brain’s electrical activity and is extensively used
in the diagnosis of people with epilepsy in medicine [2]–[5].
Over the last few years, studies have shown that epileptic
seizures can be predicted by EEG [6]–[9]. Most seizure pre-
diction studies divided the consecutive epileptic EEG signals
into three states: interictal (interval between seizures), pre-
ictal (before the seizure onset), and ictal (period of seizure).
In general, epileptic seizure prediction can be described as
a binary classification problem that distinguishes between
the preictal and interictal. Many advance methods have been
designed in the field of epileptic seizure prediction during the
decades.

Traditionally, the EEG-based seizure prediction method
focuses on feature extraction and classification. Researchers
manually constructed discriminative features of EEG signals,
such as time domain, frequency domain, and time-frequency
domain features. For example, Chisci et al. extracted coef-
ficients in the autoregressive models as features and classi-
fied them by improved support vector machine (SVM) [10].
Parvez et al. used phase correlation to explore EEG signals’
spatiotemporal relationship and distinguished preictal and
interictal by SVM [11]. Yuan et al. used diffusion distance to
extract the features and Bayesian linear discriminant analysis
classifier to classify the features [12]. These methods provide
a solid foundation for the prediction of epileptic seizures.

Recently, deep learning has been widely used, which could
extract discriminative features automatically. Truong et al.
applied convolutional neural network (CNN) to different
EEG datasets and demonstrated the effectiveness of deep
learning [13]. Daoud et al. took advantage of CNN in extract-
ing significant features and classified them by recurrent
neural network [14]. Ozcan et al. constructed a 3D rep-
resentation according to the position of the electrode and
applied 3D CNN with an image-based approach for seizure
prediction [15]. Wang et al. employed directed transfer func-
tion to explore the specific information exchange between
EEG channels and then used CNN for seizure prediction,
achieving satisfactory performance [16]. Yang et al. proposed
a dual self-Attention residual network to classify the features
obtained by the short-time Fourier transform (STFT) of EEG
signals [17].

Neurological studies show that the human brain is a com-
plex system whose function depends on coordinated activity
patterns over multiple temporal and spatial scales [18], [19].
For example, the alpha wave and delta wave are two classical
waveforms in EEG signals. The alpha wave has a duration
of 1/13 – 1/8 s (77 - 125 ms), and the delta wave with a
duration of 1/4 - 2 seconds (250 - 2000 ms) [20]. That is to
say, different wave in EEG signals may appear at different
time scales. Similarly, the abnormal discharges in EEG may
be associated with multiple distinct brain regions [21], [22].

Hence, the EEG signals are also associated with different
spatial scales.

Several multi-scale methods have been designed on
EEG-based seizure prediction in recent years. However, these
methods fail to take full advantage of temporal-spatial multi-
scale features of EEG signals so that the performance is still
limited. For example, Hussein et al. used STFT to extract
EEG signals’ time-frequency features and classified them
with a multi-scale CNN method [23]. Similarly, Wang et al.
designed a 3Dmulti-scale CNNmodel to classify the features
obtained by STFT of EEG signals [24]. Qi et al. extracted
preliminary features of EEG signals and then classified them
using a framework of the domain adaptation CNNmodel with
multi-scale temporal convolutions [25]. These methods still
rely on extracting features of EEG signals manually, which
has limited the prediction performance. To this end, in this
study, we propose an end-to-end multi-scale framework for
epileptic seizure prediction. The framework consists of two
stages: temporal multi-scale stage and spatial multi-scale
stage. In each stage, we fully explore the information of the
corresponding dimension. Specifically, we use different ker-
nel size to learn themulti-scale features of EEG signals. Then,
we utilize a dilated convolution block with different dilation
rates to further expand the receptive fields and systemati-
cally aggregate global information. Furthermore, we adopt
a feature weighted fusion method based on an attention
mechanism to achieve better feature fusion and alleviate the
redundancy existing in the dilated convolution block. Finally,
we evaluate our model on the CHB-MIT dataset with the
leave-one-out method.

The rest of this paper is organized as follows. Section II
introduces the used datasets and the proposed approaches.
Section III shows our experimental results, comparison and
hyperparameters selection. Section IV provides analysis and
discussion. Finally, section V presents the conclusion of our
work.

II. MATERIAL AND METHODOLOGY
A. DATA DESCRIPTION
The CHB-MIT scalp EEG database, [26], [27], collected
at the Children’s Hospital Boston, is used to train and test
the model for seizure prediction in this study. The dataset
recorded the long-duration EEG of 23 pediatric patients with
intractable epilepsy. All multi-channel EEG signals were
acquired with a 256 Hz sampling rate according to the 10-20
international system.

Following [15], we define some relevant parameters. The
preictal period is defined as 30 minutes before the onset of a
seizure. The intervention time is considered as the 1-minute
interval between the preictal period and the ictal period and
is excluded in the training data. According to the following
two conditions, the interictal period is defined: (1) more than
one hour before the onset of a seizure; (2) more than one
hour after the end of a seizure. In the case of two seizures
occurring at a short interval, the incoming seizure is not
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FIGURE 1. The proposed architecture of our model. Convolution unit of different scales has a different kernel size. The model parameters are
represented in Table 2, and the details of the dilated convolution block are showed in Fig. 2. The symbol c above is a concatenating operator.

TABLE 1. Data Information of the CHB-MIT Scalp EEG Database.

evaluated for the lack of preictal data. The minimum inter-
val is set to 15 minutes. To avoid the overfitting problem,
we select subjects with at least three seizures and whose
interictal duration was greater than three hours. In this case,
we select 16 patients for our experiments, and Table 1 shows
the subject information we used. To ensure the consistency
of the model, we consider the common 18 channels for each
patient. The consecutive recordings are divided into 4-second
EEG signals with 2-second overlapping as windows for
classification.

B. TEMPORAL-SPATIAL MULTI-SCALE CONVOLUTIONAL
NEURAL NETWORK WITH DILATED CONVOLUTIONS
To capture the multi-scale features of EEG signals,
we develop the temporal-spatial multi-scale convolutional
neural network with dilated convolutions. Figure 1 presents
the architecture of our proposed model. The input to the
model is the raw EEG signals that have not been prepro-
cessed. EEG signals have two dimensions: time dimension
(derived from different times) and space dimension (derived
from different channels). To focus on these two dimen-
sions, we not only perform convolution operations in the
time dimension but also in the space dimension. Specifi-
cally, we divided this process into two stages: the temporal
multi-scale stage and spatial multi-scale stage. In each stage,
we firstly explore the multiscale information of EEG signals
with different convolutional kernel sizes. Then we utilize a
dilated convolution block to expand the receptive fields fur-
ther and systematically aggregate global information. Finally,
the features are classified by 2D convolutional units. Table 2
shows the specific parameters of the structure in this study.

1) MULTI-SCALE LEARNING WITH DIFFERENT KERNEL SIZE:
Motivated by the multi-scale properties of human brain func-
tion, we designed the multi-scale framework to explore the
information of EEG signals. Specifically, we use different
convolution kernel sizes to learn the multi-scale features of
EEG signals. In the convolution layer, the convolution ker-
nels slide over EEG signals, and the operation is defined as
follows:

y(i, j) = (s ∗ h)(i, j)
=

∑
m

∑
n

s(i+ k, j+ l) · h(k, l) (1)
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TABLE 2. The parameters of our model.

Where s is the signal, h is the convolution kernel, k and l are
the sizes of the kernel, and y is the output vector. Accordingly,
kernels with different sizes capture information at different
levels.

In the temporal multi-scale stage, the convolution kernels
with larger sizes focus on the long-term temporal informa-
tion, while the ones with smaller sizes are concentrated the
local information. Then, the max-pooling layer is added after
the convolutional layer for feature dimension reduction. In the
spatial multi-scale stage, by considering the specific mul-
tiscale relationship between EEG channels, the convolution
kernels with larger sizes focus on the information exchange
over a large area of the brain, while the smaller ones pay
attention to the local area.

2) DESIGN OF THE DILATED CONVOLUTION BLOCK:
Recently, dilated convolution has become popular, as it makes
the kernel have a larger receptive field without increasing
the number of additional parameters. The difference between
dilated convolution and traditional convolution is the convo-
lution kernel. Only part of the positions are parameters to
be learned in the dilated convolution kernel, and the other
positions are filled with 0.

The formula of dilated convolution is defined as:

y(i, j) =
∑
m

∑
n

s(i+ k · r, j+ l · r) · h(k, l) (2)

where r is the dilation rate. It can be seen that the recep-
tive field of dilated convolution is larger than traditional
convolution under the same number of parameters. Besides,
dilated convolution can also aggregate global information
more effectively.

Figure 2 shows the structure of the dilated convolution
block and the visualization of dilated convolution. We set
the dilated convolution rate to 1, 2, 5 for the parallel paths,
respectively. For better feature fusion, we adopt an attention-
based approach. First, we pass each feature map obtained by
parallel dilated convolution through a global average pooling

FIGURE 2. (a) The architecture of dilated convolution block and (b) the
visualization of dilated convolution (kernal_size = 3, dilation_rate =

1, 2, 5).

layer. Then, we use the full connection layers with activation
functions to learn their weights. Finally, the weighted fused
feature map is considered as the output of the dilated convo-
lution block. The overall attention process can be described
as:

Gi = GAP(Di) (3)

βi = σ1(Dense(Gi)) (4)

αi = σ2(Dense(βi)) (5)

F =
3∑
i=1

αi · Di (6)

where Di is the feature map obtained by dilated convolution
with different dilation rates, GAP denotes the global average
pooling operations, Dense denotes the fully connected layer.
σ1, σ2 denotes the sigmoid function and the SoftMax function
respectively. αi is the weight of the feature map Di, and F is
the final output of the dilated convolution block.

3) DESIGN OF THE CLASSIFICATION NETWORK:
The classification network still consists of convolutional
layers and pooling layers. A global average pooling layer
compresses the representation after several consecutive con-
volution layers and pooling layers. Also, 10% dropout is used
in our network to avoid overfitting. Finally, the vector is
fed into a fully connected layer with the sigmoid activation
function:

f (x) =
1

1+ e−x
(7)

and a score from 0 to 1 is obtained.

4900209 VOLUME 10, 2022



Y. Gao et al.: Pediatric Seizure Prediction in Scalp EEG Using Multi-Scale Neural Network With Dilated Convolutions

C. TRAINING AND TESTING
In our experiments, the training and testing of the model
are for specific patients. While training, we use an improved
cross-entropy, namely focal loss as the training loss [28] to
automatically downweight the contribution of easy examples
during training and rapidly focus themodel on hard examples.
Specifically, the standard form of cross-entropy is defined as
the following:

Ls = −
n∑
i=1

p(xi) log q(xi) (8)

the binary form is defined by:

Lb = −
n∑
i=1

−yi log(y′i)− (1− yi) log(1− y′i) (9)

and the focal loss is described as:

Lf =
n∑
i=1

{
−α(1− y′i)

γ log(y′i), yi = 1
−(1− α)(y′i)

γ log(1− y′i), yi=0
(10)

where n is the number of training samples, y′i is the output
of the network, yi is the real label for the ith sample. The
parameter α is utilized to balance the negative and positive
samples, and γ is utilized to balance the hard and simple
samples.

Cross-validation is a statistical method of evaluating and
comparing learning algorithms by dividing data into two
segments: one used to train a model and the other used to
validate the model [29]. Following the work in [15], EEG
data are divided into the training set, validation set, and
test set for each patient. Specifically, we use leave-one-out
cross-validation to split the test set. Furthermore, we split
the training set and validation set using the 5-fold cross-
validation method. For example, if a patient has N seizures,
there are N corresponding preictal periods. We first divide
all interictal data into N equal parts randomly and combine
them with N preictal data to be N pairs. According to the
leave-one-out method, we take out one of the pairs as a
test set in each round. For the rest N-1 pairs, we divide the
training set and the validation set by using the five-fold cross-
validation method. In each fold, to avoid problems caused by
data imbalance, interictal data was randomly down-sampled
so that the ratio of preictal and interictal is set to 1: 1. Thus, the
model trained and tested 5× N times for this patient, and the
final results consist of the averages of achieved values with
standard deviations.

In the model training process, we choose the best model by
using early stopping to avoid overfitting. When the validation
set’s loss does not decrease for ten consecutive epochs, the
training stops, and the model with the minimum loss of the
validation set is returned. The model is performed in Python
3.7.3 environment and using Keras 2.1.6 with a Tensorflow
1.13.1 backend.

D. POSTPROCESS
To make the seizure prediction process closer to reality,
we used the following two approaches as the same as [15].
First, we apply a 60-second causal moving average filter to
the output of the classification network. Besides, to prevent
continuous alarms from occurring for a short time, we set the
refractory period to 30 mins. Since the ratio of preictal and
interictal samples is set to 1: 1 during training, we set 0.5 as
the seizure prediction alarm threshold for all patients in this
study.

E. COMPARATIVE METHODS
To further evaluate our model’s efficiency, we compare our
model with several state-of-the-art methods. All these meth-
ods listed below are evaluated on the same database.

Zero-Crossing Intervals Analysis[29] calculated the
intervals histogram through the positive zero-crossing inter-
vals analysis of EEG signals, took the bin of the histogram
as the feature of the window. Then, novel similarity
and dissimilarity indices were defined to measure the
distance of the current EEG dynamics to the reference
preictal and interictal states, respectively. Specifically, they
adopted the variational GMM of the discriminative his-
togram bins to compute these indices through a fully
Bayesian framework. Finally, the final alarm was generated
by comparing a new combined index and a patient-specific
threshold.

SVM with Phase Locking Value[31] applied phase-
locking value to epileptic seizure prediction and classified
features by SVM.

CNN with STFT Spectral Images[13] applied short-time
Fourier transform to EEG signal analysis, and the time-
frequency representation of the signal as a new representation
was considered as the input to the CNN.

CNN with Wavelet Transform Coefficient [32] per-
formed thewavelet transform on the EEG signals and used the
wavelet coefficient as the representation of the EEG signals.
Then, they used a CNN to classify them.

3D CNN with Manual Features[15] focused on the loca-
tion of the electrodes in epileptic seizure prediction, designed
a representation that took spatial information into account.
A 3D CNN was performed to classify them with an image-
based method.

CNN with Common Spatial Pattern Statistics [33] used
the common spatial pattern method to extract the most repre-
sentative features of EEG signals in both the time domain and
the frequency domain, and a CNN classifier was conducted
to get the results.

III. EXPERIMENTS AND RESULTS
In this part, extensive experiments are conducted on the
CHB-MIT scalp EEG database. We describe the details
of our experiments and the evaluation metrics. More-
over, the experimental results and comparisons are given
below. Finally, we present the process of hyperparameters
selection.
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TABLE 3. Seizure prediction performance achieved by the proposed method and comparative method for all 16 patients.

TABLE 4. Comparison to recent epileptic seizure prediction methods on CHB-MIT scalp EEG database.

A. EXPERIMENTS AND EVALUATION METRICS
For seizure prediction, the seizure prediction horizon (SPH)
and the seizure occurrence period (SOP) need to be defined
in advance [34]. SPH is the period between seizure alarm
and the onset of the seizure, and SOP is the period in which
seizures are predicted to occur. The prediction is correct only

when the seizure occurs during SOP. In our experiments,
the SPH is set to 1 minute, and the SOP is considered as
30 minutes.

For evaluation metrics, in our study, we use sensitivity
(Sens, the proportion of the number of correctly predicted
seizures to the total number of seizures), false prediction rate

4900209 VOLUME 10, 2022



Y. Gao et al.: Pediatric Seizure Prediction in Scalp EEG Using Multi-Scale Neural Network With Dilated Convolutions

(FPR, the number of false alarms per hour), time-in-warning
(ρω, the ratio of time spent in warning to total time) and
p-value to evaluate our model.

Specifically, the exact formula of Sens is expressed as
follows:

Sens=
TP

FN+TP
× 100% (11)

where TP is the number of correctly predicted seizures, FN+
TP is the total number of seizures. The FPR is given in (12):

FPR=
FP

Time(Interictal)
(12)

where FP is the number of false alarms. Then, the ρω is given
in (13):

ρw =
Time(P1)

Time(Interictal)+Time(Preictal)
(13)

where Time(P1) is the total duration predicted to be preictal.
The p-values are computed according to [15].

B. RESULTS AND COMPARISON
Since most of our experiments follow the work in [15],
we directly use their results reported in the literature (preictal
length = 30 minutes, interictal distance = 60 minutes)
to make a fair comparison with our proposed method.
We present the performance of all patients in Table 3.

Our model can achieve an average sensitivity of 93.3%,
an average false prediction rate of 0.007 per hour, and an aver-
age proportion of time-in-warning of 6.3%. To further mea-
sure our proposed model’s validity, we compare our results
with chance predictor and calculate the p-value for each
patient that the significance level p is set to 0.05, and 13 out
of 16 patients have p-values less than 0.001. Among the 16
patients, ten patients have a seizure prediction sensitivity of
100%, and 9 of them without false prediction. Comparing
with [15], the performance of our method has been improved
significantly. Specifically, our method improves sensitivity
by 14.1% and reduces the false prediction rate by 0.195/h.
Table 4 lists the results of other recent published seizure
prediction methods using the CHB-MIT scalp EEG database.
The performance obtained by our method is optimal both in
Sens and FPR. It is shown that our method is superior to all
other state-of-the-art methods.

C. HYPERPARAMETERS SELECTION
During the experiments, the hyperparameters need to be
determined. In order to select the optimal convolution kernel
size, we carry out experiments on all patients with different
combinations of convolution kernel seize, and the average
area under the curve (AUC) is used as the criteria. The results
showed that most patients obtained the optimal AUC under
the same combination of convolution kernel sizes. Table 5
shows the representative experimental results on patient-2
and patient-7. According to this, we set the size of kernels to
32 × 1, 64 × 1, 128 × 1 for the different scales respectively
in the temporal multi-scale stage and set the size of kernels

TABLE 5. Representative results on convolution kernel size selection.

TABLE 6. Experimental results on dilation rate selection.

TABLE 7. Experimental results on scale number selection.

to 1 × 2, 1 × 3, 1 × 5 respectively in the spatial multi-scale
stage.

Besides, we try different combinations of dilation rates
based on the above optimal convolution kernel size, and the
results are shown in TABLE 6. Accordingly, we determine
the dilated convolution rate to 1, 2, 5 for the three scales.

Furthermore, we also conduct experiments with different
numbers of scales (i.e., the number of branches in the model).
Specifically, we set the size of kernels to 32× 1, 128× 1 for
the different scales respectively in the temporal multi-scale
stage and set the size of kernels to 1 × 2, 1 × 5 respectively
in the spatial multi-scale stage when the number of scales is
two. When the number of scales is four, we set the size of
kernels to 16 × 1, 32 × 1, 64 × 1, 128 × 1 for the different
scales respectively in the temporal multi-scale stage and set
the size of kernels to 1 × 2, 1 × 3, 1 × 4, 1 × 5 respectively
in the spatial multi-scale stage. The experimental results in
TABLE 7 show that the model is better when the number of
scales is three.

IV. DISCUSSION
The experimental results illustrate that our model obtains
excellent performance. Nevertheless, the reasons for high per-
formance are worth discussing. Our proposed model’s better
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TABLE 8. Results of ablation experiments and comparison with baseline.

performance may be attributed to the fact that our approach
considers the multi-scale characteristics of EEG signals. Fur-
thermore, dilated convolution can expand our model’s recep-
tive field, which may help us effectively aggregate global and
local information. To further validate these viewpoints and
explore the effectiveness of our model, we design ablation
experiments to consider the contribution of each part of the
model. Specifically, we design five models:

(a) A single-scale network without dilated convolutions.
(b) A single-scale network with dilated convolution.
(c) A two-scale network without dilated convolutions.
(d) A two-scale network with dilated convolution.
(e) A three-scale network without dilated convolution.
Accordingly, (c) and (e) are to confirm the efficiency of

multi-scale learning module, (b) and (d) are to confirm the
efficiency of dilated convolutions module, and (a) is the base-
line of our ablation experiments. Figure 3 presents the struc-
ture of these five models. The training and testing process is
the same as the main experiment, and the comparison results
are shown in Table 8.

According to Table 8, we can infer that these two models
can both give a promotion to the performance compared to
the baseline for seizure prediction. Hence, the multi-scale
module and dilated convolution module are both valuable
for feature extraction, each of which can achieve better per-
formance for seizure prediction. Our model combines these
two modules and simultaneously extracts both aspects of
EEG signal characteristics. Therefore, we obtain the best
performance than these models.

In recent years, there is a trend for seizure prediction
by EEG signals: before deep learning became popular,
researchers were mainly searching for the most representa-
tive features of EEG signals in epileptic patients; In recent
years, as computing power has improved, researchers have
focused on finding the optimal representations that contain
more information about EEG signals as input to the neural
network. However, so far, no study has shown that there is
a better representation than the original EEG signal, which
has inspired us to develop methods for end-to-end seizure
prediction.

Since EEG signals carry information in multiple temporal
and spatial scales, it is not easy to choose a particular scale for
EEG signal analysis. Hence, the introduction of a multi-scale
method is essential for epileptic seizure prediction. Com-
bined with our experimental results, the multi-scale methods
can capture more valuable knowledge than the single-scale
method.

FIGURE 3. Structure of three models of our ablation experiments: (a) the
single-scale neural network without dilated convolutions. (b) the
single-scale neural network with dilated convolutions. (c) the two-scale
neural network without dilated convolutions. (d) the two-scale neural
network with dilated convolutions. (e) the three-scale neural network
without dilated convolutions.

Furthermore, the dilated convolution is a very effective
tool for EEG signal analysis. Under the same number of
parameters, the dilated convolution can significantly expand
the receptive field. Also, combined with an efficient fea-
ture fusion method, the dilated convolution can systemati-
cally aggregate global and local features. With limited model
parameters and considering a large receptive field, dilated
convolution is feasible and effective.
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V. CONCLUSION
In this study, we develop an end-to-end framework by using a
multi-scale convolutional neural network with dilated convo-
lutions for patient-specific seizure prediction. The proposed
framework is motivated by the properties of EEG signals
and neurological findings. Our model is performed on 16
epilepsy patients from the CHB-MIT scalp EEG database.
After the leave-one-out validation measurement, we achieve
an average sensitivity of 93.3%, an average false prediction
rate of 0.007 per hour, and an average proportion of time-
in-warning of 6.3%. Among the 16 patients, the sensitivity
of 10 patients to seizure prediction was 100%, and 9 of
them without false alarm. In contrast to the state-of-the-art
methods using the same CHB-MIT scalp EEG database, our
proposedmethod achieves the highest Sens, lowest FPR. This
study provided a promising solution for EEG-based seizure
prediction.

REFERENCES
[1] WorldHealthOrganization,Epilepsy: A Public Health Imperative. Geneva,

Switzerland: WHO, 2019.
[2] M. Rashed-Al-Mahfuz, M. A. Moni, S. Uddin, S. A. Alyami,

M. A. Summers, and V. Eapen, ‘‘A deep convolutional neural network
method to detect seizures and characteristic frequencies using epileptic
electroencephalogram (EEG) data,’’ IEEE J. Transl. Eng. Health Med.,
vol. 9, pp. 1–12, 2021.

[3] D. Jacobs, Y. H. Liu, T. Hilton, M. D. Campo, P. L. Carlen, and
B. L. Bardakjian, ‘‘Classification of scalp EEG states prior to clinical
seizure onset,’’ IEEE J. Transl. Eng. Health Med., vol. 7, pp. 1–3, 2019.

[4] L. Xiao et al., ‘‘Automatic localization of seizure onset zone from high-
frequency SEEG signals: A preliminary study,’’ IEEE J. Transl. Eng.
Health Med., vol. 9, pp. 1–10, 2021.

[5] A. Temko, A. K. Sarkar, G. B. Boylan, S. Mathieson, W. P. Marnane,
and G. Lightbody, ‘‘Toward a personalized real-time diagnosis in neonatal
seizure detection,’’ IEEE J. Transl. Eng. Health Med., vol. 5, pp. 1–14,
2017.

[6] A. E. Teijeiro,M. Shokrekhodaei, and H. Nazeran, ‘‘The conceptual design
of a novel workstation for seizure prediction using machine learning with
potential eHealth applications,’’ IEEE J. Transl. Eng. Health Med., vol. 7,
pp. 1–10, 2019.

[7] S. M. Kueh and T. J. Kazmierski, ‘‘Low-power and low-cost dedicated bit-
serial hardware neural network for epileptic seizure prediction system,’’
IEEE J. Transl. Eng. Health Med., vol. 6, pp. 1–9, 2018.

[8] B. Direito, C. A. Teixeira, F. Sales, M. Castelo-Branco, and A. Dourado,
‘‘A realistic seizure prediction study based on multiclass SVM,’’ Int.
J. Neural Syst., vol. 27, no. 3, May 2017, Art. no. 1750006.

[9] L. Kuhlmann, K. Lehnertz, M. P. Richardson, B. Schelter, and H. P. Zaveri,
‘‘Seizure prediction—Ready for a new era,’’ Nature Rev. Neurol., vol. 14,
no. 10, pp. 618–630, Oct. 2018.

[10] L. Chisci et al., ‘‘Real-time epileptic seizure prediction using AR models
and support vector machines,’’ IEEE Trans. Biomed. Eng., vol. 57, no. 5,
pp. 1124–1132, May 2010.

[11] M. Z. Parvez and M. Paul, ‘‘Epileptic seizure prediction by exploiting
spatiotemporal relationship of EEG signals using phase correlation,’’ IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 1, pp. 158–168, Jan. 2016.

[12] S. Yuan, W. Zhou, and L. Chen, ‘‘Epileptic seizure prediction using dif-
fusion distance and Bayesian linear discriminate analysis on intracranial
EEG,’’ Int. J. Neural Syst., vol. 28, no. 1, Feb. 2018, Art. no. 1750043.

[13] N. D. Truong et al., ‘‘Convolutional neural networks for seizure predic-
tion using intracranial and scalp electroencephalogram,’’ Neural Netw.,
vol. 105, pp. 104–111, Sep. 2018.

[14] H. Daoud andM.A. Bayoumi, ‘‘Efficient epileptic seizure prediction based
on deep learning,’’ IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 5,
pp. 804–813, Oct. 2019.

[15] A. R. Ozcan and S. Erturk, ‘‘Seizure prediction in scalp EEG using 3D con-
volutional neural networks with an image-based approach,’’ IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 27, no. 11, pp. 2284–2293, Nov. 2019.

[16] G. Wang et al., ‘‘Seizure prediction using directed transfer function and
convolution neural network on intracranial EEG,’’ IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 28, no. 12, pp. 2711–2720, Dec. 2020.

[17] X. Yang, J. Zhao, Q. Sun, J. Lu, and X. Ma, ‘‘An effective dual self-
attention residual network for seizure prediction,’’ IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 29, pp. 1604–1613, 2021.

[18] D. S. Bassett and F. Siebenhühner, ‘‘Multiscale network organization in the
human brain,’’Multiscale Anal. Nonlinear Dyn., pp. 179–204, Aug. 2013.

[19] R. F. Betzel and D. S. Bassett, ‘‘Multi-scale brain networks,’’ NeuroImage,
vol. 160, pp. 73–83, Oct. 2017.

[20] N. Kane et al., ‘‘A revised glossary of terms most commonly used by clin-
ical electroencephalographers and updated proposal for the report format
of the EEG findings. Revision 2017,’’ Clin. Neurophysiol. Pract., vol. 2,
pp. 170–185, Aug. 2017.

[21] P. van Mierlo et al., ‘‘Functional brain connectivity from EEG in epilepsy:
Seizure prediction and epileptogenic focus localization,’’ Prog. Neurobiol.,
vol. 121, pp. 19–35, Oct. 2014.

[22] A. T. Berg et al., ‘‘Revised terminology and concepts for organization of
seizures and epilepsies: Report of the ILAE commission on classification
and terminology, 2005–2009,’’ Epilepsia, vol. 51, pp. 676–685, Apr. 2010.

[23] R. Hussein and R. Ward, ‘‘Epileptic seizure prediction: A multi-scale
convolutional neural network approach,’’ in Proc. IEEE Global Conf.
Signal Inf. Process. (GlobalSIP), Nov. 2019, pp. 1–5.

[24] Z. Wang, J. Yang, and M. Sawan, ‘‘A novel multi-scale dilated 3D CNN
for epileptic seizure prediction,’’ in Proc. IEEE 3rd Int. Conf. Artif. Intell.
Circuits Syst. (AICAS), Jun. 2021, pp. 1–4.

[25] Y. Qi, L. Ding, Y. Wang, and G. Pan, ‘‘Learning robust features from
nonstationary brain signals by multi-scale domain adaptation networks
for seizure prediction,’’ IEEE Trans. Cogn. Devel. Syst., early access,
Jul. 26, 2021, doi: 10.1109/TCDS.2021.3100270.

[26] A. H. Shoeb, ‘‘Application of machine learning to epileptic seizure onset
detection and treatment,’’ Ph.D. dissertation, Massachusetts Institute of
Technology, Cambridge, MA, USA, 2009.

[27] A. L. Goldberger et al., ‘‘PhysioBank, PhysioToolkit, and PhysioNet:
Components of a new research resource for complex physiologic signals,’’
Circulation, vol. 101, no. 23, pp. e215–e220, Jun. 2000.

[28] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, ‘‘Focal loss for dense
object detection,’’ inProc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 2980–2988.

[29] P. Refaeilzadeh, L. Tang, and H. Liu, ‘‘Cross-validation,’’ Encyclopedia
database Syst., vol. 5, pp. 532–538, Jan. 2009.

[30] A. S. Zandi, R. Tafreshi, M. Javidan, and G. A. Dumont, ‘‘Predicting
epileptic seizures in scalp EEG based on a variational Bayesian Gaussian
mixture model of zero-crossing intervals,’’ IEEE Trans. Biomed. Eng.,
vol. 60, no. 5, pp. 1401–1413, May 2013.

[31] D. Cho, B. Min, J. Kim, and B. Lee, ‘‘EEG-based prediction of epileptic
seizures using phase synchronization elicited from noise-assisted multi-
variate empirical mode decomposition,’’ IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 25, no. 8, pp. 1309–1318, Aug. 2017.

[32] H. Khan, L. Marcuse, M. Fields, K. Swann, and B. Yener, ‘‘Focal onset
seizure prediction using convolutional networks,’’ IEEE Trans. Biomed.
Eng., vol. 65, no. 9, pp. 2109–2118, Sep. 2017.

[33] Y. Zhang, Y. Guo, P. Yang, W. Chen, and B. Lo, ‘‘Epilepsy seizure
prediction on EEG using common spatial pattern and convolutional neural
network,’’ IEEE J. Biomed. Health Inform., vol. 24, no. 2, pp. 465–474,
Feb. 2020.

[34] T. Maiwald, M. Winterhalder, R. Aschenbrenner-Scheibe, H. U. Voss,
A. Schulze-Bonhage, and J. Timmer, ‘‘Comparison of three nonlinear
seizure prediction methods by means of the seizure prediction character-
istic,’’ Phys. D, Nonlinear Phenomena, vol. 194, nos. 3–4, pp. 357–368,
2004.

VOLUME 10, 2022 4900209

http://dx.doi.org/10.1109/TCDS.2021.3100270

