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Abstract

Purpose: In spinal fusion surgery, imprecise placement of pedicle screws can result in poor

surgical outcome or may seriously harm a patient. Patient-specific instruments and optical

system have been proposed for improving precision through surgical navigation compared

to free-hand insertion. However, existing solutions are expensive and cannot provide in situ

visualizations. Recent technological advancement enabled the production of more powerful

and precise optical see-through head-mounted displays for the mass market. The purpose

of this laboratory study was to evaluate whether such a device is sufficiently precise for the

navigation of lumbar pedicle screw placement.

Methods: A novel navigation method, tailored to run on the Microsoft HoloLens, was devel-

oped. It comprises capturing of the intraoperatively reachable surface of vertebrae to achieve

registration and tool tracking with real-time visualizations without the need of intraoperative

imaging. For both, surface sampling and navigation, 3D printable parts, equipped with fidu-

cial markers, were employed. Accuracy was evaluated within a self-built setup based on two

phantoms of the lumbar spine. Computed Tomography (CT) scans of the phantoms were

acquired to carry out preoperative planning of screw trajectories in 3D. A surgeon placed
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the guiding wire for the pedicle screw bilaterally on ten vertebrae guided by the navigation

method. Postoperative CT scans were acquired to compare trajectory orientation (3D angle)

and screw insertion points (3D distance) with respect to the planning.

Results: The mean errors between planned and executed screw insertion were 3.38±1.73◦

for the screw trajectory orientation and 2.77±1.46 mm for the insertion points. The mean

time required for surface digitization was 125±27 s.

Conclusions: First promising results under laboratory conditions indicate that precise lum-

bar pedicle screw insertion can be achieved by combining HoloLens with our proposed

navigation method. As a next step, cadaver experiments need to be performed to confirm the

precision on real patient anatomy.

Keywords Surgical navigation · Augmented reality · Surface digitization · HoloLens ·
Spine · Pedicle screw

1 Introduction

Spine disorders are among the most frequent musculoskeletal pathologies in developed

countries [1]. They cause diminished quality-of-life to the patients and result in substan-

tial socio-economical costs [2]. Most patients can be treated successfully in a conservative

way by initial physical protection, pain medication and back training [3]. However, surgery

is indicated in patients with more severe conditions such as degenerative disc disease, frac-

ture treatment, and scoliosis. In such pathologies, spinal fusion has been established as the

benchmark surgical treatment [4–6].

In the state-of-the-art surgical treatment an open surgery is performed, in which the

vertebrae of the pathological segment are fused with an orthopaedic implant. Pedicle screws

are drilled into each vertebra and connected with the implant to achieve a rigid connection of

the bone-implant interface. Screw insertion relies on the preparation of guiding holes with

a surgical awl or by drilling K-wires. The surgeon aims for a central position of the guiding

hole within the pedicle by using bony landmarks as an orientation help. Deviation from the

optimal position can result in pedicle screw penetration which in turn can lead to serious

injury of the spinal cord, nerve roots, and major vessels.

Unfortunately, accuracy of placement of pedicle screws is low with 68% with use of the

standard method by aid of conventional fluoroscopy [7]. In more challenging scenarios, such

as instrumentation of neuromuscular scoliosis, the accuracy is even less, particularly in the

upper thoracic region [8]. 3D printing techniques have been proposed to increase accuracy

[9, 10]. However, manufacturing is time consuming and expensive. Furthermore, the lack

of intraoperative flexibility is considered to be disadvantageous. More popular navigation

approaches are based on imaging. 2D and 3D fluoroscopic navigation can increase accuracy

to 84% and 96%, respectively [7]. Wile 2D/3D fluoroscopy provide surgical navigation in

a passive way, intraoperative CT can be used in combination with high-end optical or even

robotic navigation systems [11] to enable real-time tool and screw localization. However, the

increased use of fluoroscopy or CT exposes the patient to a significant amount of radiation

[12–15].

Several methods have been proposed to avoid the use of intraoperative imaging. In in-

traoperative manual surface digitization approaches, part of the intraoperative bone anatomy

is acquired by optically-tracked pointing devices [16–18]. The so acquired bone surface can

be registered to the preoperative planning using surface registration algorithms [16]. Com-

bined with tool tracking, these methods can provide real-time surgical navigation displayed
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on wall- or rack-mounted 2D monitors [19]. Despite the interesting and easy to use registra-

tion approach, these systems are prone to occlusion problems because they cannot provide

in situ image acquisition and visualization [20]. In addition, they come along with high costs

for acquisition and maintenance.

A simpler and cheaper system to increase precision of pedicle screw placement would be

favorable. One solution could be the application of augmented reality (AR). AR technology

is capable of superimposing a preoperative planning with the intraoperative anatomy such

that surgical navigation can be provided directly in the line of sight of a surgeon. In the med-

ical context, AR aroused interest already several decades ago [21] but the implementation

into surgical practice remains very limited [22]. Recent technological advancement enabled

the production of more computational powerful and more precise optical see-through head-

mounted displays (OST-HMD) for the mass market. In [23], an OST-HMD based navigation

solution for pedicle screws has been proposed. However, as the registration relies on an ex-

ternal ultrasound device for anatomy acquisition, the setup can be considered to be complex.

Based on the Microsoft HoloLens (Microsoft Corporation, Redmond, WA, USA), an off-

the-shelf OST-HMD of latest technology, we propose a radiation-free surgical navigation

approach comprising intraoperative manual surface digitization and intuitive holographic

navigation. The goal of this study was to investigate whether our approach is sufficiently

precise for enabling AR-navigated insertion of lumbar pedicle screws. Precision was eval-

uated within a laboratory experiment in which the surgical procedure was performed on

phantoms.

2 Methods

The presented method consists of three main components: marker tracking and pose es-

timation, intraoperative surface digitization for registration and surgical navigation. Each

component as well as the experimental setup and design will be explained hereafter.

2.1 Marker tracking and pose estimation

The two main steps performed intraoperatively are registration and navigation. Both rely

on marker tracking. Marker tracking was implemented employing the two front-facing of

the four environment tracking cameras of the HoloLens that are accessible via Research

Mode [24]. We fielded commercially available, sterile fiducial markers (Clear Guide Medi-

cal, Baltimore MD, USA). Their patterns originate from the AprilTags library [25, 26]. Be-

fore describing the method in detail, we provide some required background on the different

coordinate systems of the HoloLens [27] which are illustrated in Figure 1.

App-specified Coordinate System (ASCS): a fixed reference coordinate system of the HoloLens

in the real world, defined on application startup.

HoloLens Coordinate System (HCS): the coordinate system which is fixed to the HoloLens.

All sensor spaces can be described relative to this coordinate system.

3D Camera View Space (CVS): the space with origin in the camera center, CVSL for the

left and CVSR for the right camera.

2D Camera Projection Space (CPS): the space of normalized image coordinates (-1 to 1

in both the X and Y axis) with respect to a camera. CPSL and CPSR denote the left and

right camera space, respectively.
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CPSL

CPSR

ASCS

HCS
CVSL

CVSR

Fig. 1: Exemplary illustration of the HoloLens’ coordinate systems used: App-specified Co-

ordinate System (ASCS), HoloLens Coordinate System (HCS), 3D Camera View Space

(CVS, left and right) and 2D Camera Projection Space (CPS, left and right). The HoloLens

3D model originates from “Free Hololens Model + Textures” by EdgeFlow Studio and the

anchor 3D model from “Medieval Anchor” by wolfgar74. Both are licensed under CC BY

4.0.

An exemplary transformation from CPS to CVS is denoted as TCV S
CPS . For each pair of

images (left and right) with a detectable marker, its pose was derived as follows. Initial

estimate values CL
1 , . . . ,C

L
4 and CR

1 , . . . ,C
R
4 of the four corners of the marker are detected in

both images using standard detection method [28–30]. Due to the poor resolution (480x640

pixels) of the environmental cameras, each Ci was passed to a dedicated Kalman filter [31,

32]. We integrated a constant velocity model in the filters, because movements of the surgeon

between consecutive frames can be considered as constant given the high rate of 30 frames

per second. A process noise covariance of 1×10−5 was assumed in the prediction step of the

filter. The measurement noise 1×10−4 of the update step was determined heuristically from

experimental data in which both estimated and ground truth marker corners were known.

The filtered corner estimates were transformed to CPS and extended by one dimension

(unit plane: z = 1) such that they can be expressed in CVS and further transformed to HCS.

In order to perform triangulation, directional vectors dL
i and dR

i between each T HCS
CPSLCL

i and

T HCS
CPSRCR

i and their respective camera centers have to be formed. The triangulation can be

completed by finding the closest point min(dL
i ,d

R
i ) between each pair of directional vectors.
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Given the new 3D estimates min(dL
i ,d

R
i ), the 3D marker pose can be derived by incor-

porating prior knowledge about the marker geometry. As the true 3D position gti of each

corner point with respect to the marker center is known, the 3D pose estimation problem

can be reduced to the problem of finding a rigid transformation between the point pairs

min(dL
i ,d

R
i ) and gti in a least-square sense. The transformation is calculated by applying the

absolute orientation [33].

2.2 Registration

The key idea of our intraoperative surface digitization approach is the establishment of a

correspondence between pre- and intra-operative anatomy without needing intraoperative

imaging.

For each vertebra a sparse point cloud of relevant bone surface regions is collected by

the surgeon in the surgery. A custom-made pointing device (PD), as illustrated in Figure 2a,

is used for performing surface acquisition. The PD consists of a notch, a handle and tip. The

tip is tapered in a way such that points can be reached at different angles without introducing

an offset. The notch can be mounted with sterile fiducial markers such as the ones described

in Section 2.1. Due to the known geometry of the PD, it is straightforward to extrapolate

from the marker pose to the position of the tip.

(a) (b) (c) (d)

Fig. 2: a) The pointing device. b) A surgeon wearing the HoloLens uses the pointing device

in the experimental setup. c) The augmented view of the surgeon during surface sampling.

d) Overlay of vertebra L1 after registration (insertion points are denoted in blue).

After application startup, the surgeon is asked to sample accessible surface regions of

the vertebra (see Figure 2b) in a specific pattern which was trained previously. To do so,

the PD is moved along the anatomy while pressing down the button of the HoloLens clicker

[34] (events implemented in MixedRealityToolkit-Unity [35]). For each camera frame the

marker tracking method of Section 2.1 is applied and the 3D tip position is recorded, as

long as the button remains pressed. Sampled areas are visualized by a thin line connecting

consecutively collected points (see Figure 2c). Once the button is released, a voice command

(events implemented in MixedRealityToolkit-Unity [35]) can be used to indicate whether

a collected region should be saved (“save”) or discarded (“delete”). Only the saved points
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were used in the registration process. When sufficient points have been sampled, the surgeon

initiates registration by a double click.

Fig. 3: Template for the bone surface of spine segments L1 - L5 that is assumed to be

accessible intraoperatively (colored areas). The template was constructed by a surgeon.

The intraoperatively collected point cloud pcintra is registered to the point cloud pcpre

representing the points of the 3D model of the preoperative vertebra. pcpre has been obtained

from the 3D triangular surface model (herein after called 3D model) of the segmented pre-

operative CT scan (see Section 2.4). In a preprocessing step, pcpre is trimmed by removing

points which can definitely not be reached with the PD in a surgery. The points are identified

by using a template model which encodes intraoperatively accessible regions (see Figure 3).

The registration process works in a fully automated fashion and comprising three steps:

coarse registration, iterative closest point (ICP) based fine registration [36], and result se-

lection. Coarse registration is achieved by identifying three corresponding extremal points

in each of the point clouds. To this end, a principle component analysis (PCA) [37], imple-

mented in ALGLIB (ALGLIB Project, Nizhny Novgorod, Russia), is performed on pcintra,

yielding the respective principle axes paintra
1 , paintra

2 and paintra
3 ordered by decreasing mag-

nitude. The three extremal points eintra
1 , eintra

2 and eintra
3 are determined using the dot product

as follows:

eintra
1 = max(paintra

1 · pi, pi ∈ pcintra)

eintra
2 = min(paintra

1 · pi, pi ∈ pcintra)

eintra
3 = max(abs(paintra

2 · pi, pi ∈ pcintra))

Correspondingly, the extrema points e
pre
1 , e

pre
2 and e

pre
3 are calculated. Due to the sym-

metry of the vertebra along pa1, two possible coarse registration configurations must be

evaluated (see Figures 4a and 4b) and considered for the fine registration by applying abso-

lute orientation [33] to both point pair sets.

{(eintra
1 ,e

pre
1 )},{(eintra

2 ,e
pre
2 )},{(eintra

3 ,e
pre
3 )}

{(eintra
1 ,e

pre
2 )},{(eintra

2 ,e
pre
1 )},{(eintra

3 ,e
pre
3 )}

Afterwards, fine registration is performed using ICP on both configurations. Thereby, the

algorithm is terminated when either the number of iterations exceeds 50 or the difference in
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root mean squared error (RMSE) between two steps remains below 10−7. Lastly, the RMSE

is evaluated for each registered configuration and the one with the smallest RMSE is selected

(Figure 4c). The final result is shown to the surgeon by superimposing the preoperative 3D

model with the intraoperative anatomy (see Figure 2d). This gives the surgeon the possibility

to verify the registration by visual inspection. If the result is satisfactory, surgical navigation

can be started by another double click.

(a) (b) (c)

Fig. 4: pcpre denotes the points of the 3D model. pcintra is shown in orange. The red, green

and blue crosses in a) and b) represent the respective extremal points used for coarse align-

ment. a) Incorrect coarse alignment. b) Correct coarse alignment. c) The fine alignment

resulting from b).

2.3 Surgical navigation

The surgical navigation approach relies on a trackable custom-made navigation device (ND),

illustrated in Figure 5a. Handle and sleeve are designed in such a way that they allow holding

the ND with one hand, while inserting a K-wire with the other (Figure 5b). Simultaneously,

by detecting the integrated marker, the current tip position and trajectory orientation are

measured and evaluated with the marker tracking component of Section 2.1.

When navigation starts, the 3D model of the vertebra is hidden and only the screws’

entry points are shown (blue in Figure 5c). The surgeon mounts the K-wire into the drill and

threads it through the sleeve of the ND. The pointed tip of the K-wire can then be used to

pierce a small hole into the bone at the position of the targeted entry point, purely relying on

the holographic visualization. After doing so, the K-wire tip cannot slide away anymore and

the surgeon can start to navigate towards the desired trajectory. Thereby, holographic feed-

back comprises two parts of information. First, the 3D angle between current and targeted

trajectory is displayed (see Figure 5d). Second, a triangle is rendered between three virtual

points: the screw entry point (A in Figure 5d), a point lying on the current trajectory of the

ND (B in Figure 5d) and one lying on the targeted screw trajectory (C in Figure 5d). The

intention of the triangle was to give the surgeon an intuitive feedback about the trajectory

deviation in 3D space. A red triangle means the current trajectory passes an area that must

be avoided. Yellow means not perfect, but still acceptable, and green means the angle is less

than 5◦. Once the surgeon has aligned the current trajectory with the one of the preoperative

plan, the K-wire can be drilled into the pedicle.
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(a) (b) (c)

A

B

C

(d)

Fig. 5: a) The custom-made navigation device. b) The surgeon uses the navigation device

in the experimental setup. c) Entry point overlay in the beginning of the navigation (entry

points are shown in blue). d) Augmented view of the surgeon during navigation. The number

represents the 3D angle between current and targeted screw trajectory. A, B and C (not

visible in the augmented view) denote entry point, a point lying on the current trajectory and

one lying on the targeted screw trajectory. They form a colored triangle (red) and serve as

intuitive feedback about the trajectory deviation in 3D space.

2.4 Evaluation and experimental setup

Our method was evaluated on two phantoms of the lower lumbar spine (Synbone AG, Ziz-

ers, Switzerland) consisting of L1 – L5. The phantoms feature also facet joints and discs

such that a more realistic inter-vertebral movement can be achieved. The phantoms were CT

scanned according to a clinical protocol (120 kV; 1 mm slice thickness; 0.5 mm slice in-

crement; Brilliance 40 CT, Philips Healthcare, Best, The Netherlands) and 3D models were

generated by applying global thresholding and region growing with the Mimics software

(version 19.0, Materialise NV, Leuven, Belgium). Preoperative planning and surgical exe-

cution was performed by a senior resident surgeon with experience in surgical navigation.

Preoperative planning was carried using the preoperative planning software CASPA

(version 5.26, Balgrist CARD AG, Zurich, Switzerland). For each vertebra, two screw tra-

jectories were placed in the centers of the pedicles, maximizing the margins to the bone

cortex. The orientations of the trajectories were defined based on landmarks on the posterior

arc (see Figure 6a).

The phantoms were molded into a plastic tub using plaster to ensure that only those parts

of the vertebral bodies, which can be also accessed through the surgery, will be visible in

the experiment.

The preoperative plan was then executed following the workflow of our method. Each

vertebra was registered individually and two K-wires (left, right) were inserted, solely re-

lying on AR navigation. This process was performed for each of the two phantoms. After

execution, postoperative CT scans were acquired from which 3D models of the vertebrae

were generated using the segmentation functionality of Mimics. In contrast to the preoper-

ative data, manual segmentation of the K-wires and metal artifact removal had to be per-

formed (see Figure 6b). The postoperative 3D models were aligned to the preoperative plan

following a clinically established method used for pre-post evaluations [38, 39]. For each

postoperative K-wire, trajectory and entry point were quantified. The trajectory was defined
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(a) (b) (c) (d)

Fig. 6: a) Preoperatively planned trajectories on spine segment L3. b) Postoperatively seg-

mented 3D models of spine segment 3 and inserted K-wires. c) Preoperative plan with trajec-

tories (green) aligned to postoperative 3D models with generic cylindrical objects aligned to

the postoperatively segmented trajectories (red). d) Planned and actual entry point visualized

on the preoperative 3D models.

by aligning a generic cylindrical object to the segmented wire (see Figure 6c). The entry

point was defined as the first point along the trajectory intersecting with the preoperative 3D

model (see Figure 6d).

Primary outcome measures were the 3D angle between planned and executed trajecto-

ries as well as the 3D distance between planned and executed entry points. Secondary out-

come measures for each vertebra included registration error and surface digitization time,

the number of sampled points used for registration and the times for inserting each K-wire.

2.5 Implementation

The method was implemented as a holographic Universal Windows Platform (UWP) ap-

plication using Unity (version 2017.4.9f1 Personal (64bit), Unity Technologies, San Fran-

cisco, CA, USA) and Microsoft Visual Studio (version Community 2017, Microsoft Corpo-

ration, Redmond, WA, USA). The code will be made available online: card.balgrist.ch/

holosurfacedigitization. It was deployed to a Microsoft HoloLens on which the Win-

dows 10 April 2018 Update (10.0.17134.80) operating system was running. The prototypes

of the 3D printed parts were manufactured using a Formiga P100 3D printer (EOS GmbH

Electro Optical Systems, Krailling, Germany) and made of biocompatible polyamide 2200.

3 Results

The evaluation of the primary outcome resulted in a mean error of 3.38±1.73◦ for the trajec-

tory orientation and 2.77±1.46 mm for the entry point localization. Error distributions are

visualized in Figure 7. The minimum and maximum trajectory errors were 1.16◦ and 6.33◦,

respectively. No outliers were observed with respect to the trajectory error. Extreme values

of entry point errors were 0.71 mm and 7.20 mm, the latter being the only outlier.
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Fig. 7: Error distributions for trajectories (left) and entry points (right). Bold line: median,

box: 25th-75th quantile, whiskers: ±2.7σ (99.3%), crosses: outliers.

On average, the registration RMSE was 1.62±0.26 mm and it took the surgeon on av-

erage 125±27 s to digitize the bone surface, i.e. collect the points. Thereby, a mean of

1’983±404 points were collected per vertebra. Pearson product-moment correlation re-

vealed that there was no relationship between the number of collected points and the regis-

tration RMSE (r = -0.06). The mean time needed for navigated insertion of one K-wire was

147±55 s. Thus, the duration of the entire workflow for one vertebra was 419 s on average.

In five cases, the registration had to be repeated due to unspecified HoloLens OS failure. In

one case, the surgeon decided that the registration was not good enough and restarted the

application (L3, phantom 1).

4 Discussion

Various navigation approaches have been proposed for spinal surgery due to the high de-

mands placed on precision and safety. However, none of the existing concepts has been

established as a widely accepted clinical gold standard. An ideal navigation solution should

be highly accurate, avoid radiation exposure, be cost- and time-effective, and simple in use

and maintenance. In this study, we presented a radiation-free navigation approach for spinal

fusion surgery comprising surface-based registration and intuitive holographic navigation.

Our method has low requirements to computation and hardware. It can be implemented in

an off-the-shelf OST-HMD, in our case the Microsoft HoloLens.
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Several intraoperative surface digitization approaches that eliminate the need of intraop-

erative imaging have been evaluated in clinical settings [16–18]. They can be considered as

very precise, if relying on expensive optical tracking devices. Nottmeier et al. [16] reported

a mean registration error of 0.9 mm which is comparable to our RMSE of 1.62 mm on av-

erage. In terms of screw insertion accuracy, the results of Ma et al. [23] were similar (3.35

mm, 2.74◦) to ours (2.77 mm, 3.38◦) although a comprehensive high-end system was used.

Due to these promising results with respect to accuracy, our low-cost navigation solution

may have the potential for clinical use.

A different, yet very popular navigation method is 3D printing of patient-specific instru-

ments (PSI) [9]. However, the main drawback of PSI systems are high production costs per

case and long production time. Merc et al. [10] employed PSI in a randomized clinical trial

to evaluate navigated pedicle screw placement accuracy in comparison to a control group

where the fluoroscopy-controlled free-hand technique was used. For the lumbar segment,

they reported a deviation of the entry point by 0.3 mm (interventional group) vs. 1.5 mm

(control group) in the sagittal and 0.7 mm vs. 0.2 mm in the transversal plane. The sagittal

and transversal deviations with respect to trajectory orientation were 1◦ vs. 6◦ and 1◦ vs 0◦,

respectively. Although differences were statistically significant for the sagittal comparisons,

PSI navigation still showed a high standard deviation of the error.

Navigation methods are often criticized because their application can result in an in-

crease of the surgery time. At least, the evaluation of the mean registration time in our study

(125 s) was similar to state-of-the-art optical navigation system (117 s) [16]. PSI-navigated

pedicle screw placement is faster than intraoperative surface digitization as the registration

can be performed by placing the PSI on the bone surface. Farshad et al. reported an average

time of 74 s for pedicle screw placement [9]. However, their study did not consider the time

required to debride the bone from periosteum which is a necessary preparation step before

PSI placement [38, 39].

Similar to our study, attempts have been made to develop simpler and more cost-effective

techniques for navigation of pedicle screw insertion. Walti et al. [40] developed a small,

custom-built device that relies on an inertial measurement unit. They conducted a pre-

clinical cadaver study achieving an accuracy of 2.7◦ and 3.5◦ in the sagittal and axial plane,

respectively. However, the approach lacked guidance of the screws’ entry points and it pro-

vided registration only based on specific bony landmark points. Relying on the identification

of specific bony landmarks is known to be error-prone. The study of Gibby et al. [41] evalu-

ated the feasibility of the HoloLens for navigating a needle percutaneously to mimic pedicle

screw placement. The target for needle placement was a lumbar spine phantom, wrapped in

an opaque silicon block. Intraoperative registration was carried out using commercial soft-

ware which then was refined manually by the user. The registration process was the main

limitation of the study: It is based on intraoperative CT and the object to be registered needs

to be simple and large, such as the silicon block.

This study has several limitations. The evaluation was performed on bone phantoms

which did not include surrounding soft tissue structures. In a real surgery, such soft tis-

sue structures could have a negative influence on the sampling process. However, we used

specific bone regions for sampling that are known to be accessible in open surgery (see

Figure 3). Other studies have also demonstrated that a similar registration accuracy can be

achieved regardless whether phantoms or cadavers were used [23]. Furthermore, unlike in

real surgery, the anatomy was rigidly attached to the table and thus could not move. For

this reason, no motion compensation strategy was necessary, but it is known that Holograms

are prone to drift once they have been placed [42]. Even though the surgeon tried to mini-

mize head movement, drift may have negatively influenced our results. Finally, the proposed
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method is partly constrained by current technical limitations of the HoloLens. It can be as-

sumed that increased sensor quality in future releases will improve the accuracy of built-in

tracking methods.

For future work, we plan to carry out a comprehensive cadaver evaluation on human

specimen to evaluate clinical feasibility and surgical outcomes compared to the free-hand

technique. The study shall include evaluation of subjective feedback on acceptance and us-

ability by the performing surgeons. Furthermore, the intraoperative manual surface digiti-

zation quality on real anatomy needs to be assessed. Post-experimental analysis has also

revealed that the sampling surfaces contained outliers not belonging to the actual bone sur-

face. The precision of the registration may be further increased by developing an outlier

removal strategy. Concluding, our preliminary evaluation indicates a precision which may

be sufficient for clinical application.
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tomatic generation and detection of highly reliable fiducial markers under occlusion.

Pattern Recognition 47(6):2280–2292

29. Garrido-Jurado S, Munoz-Salinas R, Madrid-Cuevas FJ, Medina-Carnicer R (2016)

Generation of fiducial marker dictionaries using mixed integer linear programming. Pat-

tern Recognition 51:481–491
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