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humidity (RH) sensors based on polymer films are sensitive to pressure and temperature, 

requiring correction procedures
4-6

. Several optical sensors capable of simultaneous measurement 

of ambient pressure and RH have been demonstrated, but with limited application for high 

humidity environments (RH>70%)
7,8

. The quartz crystal microbalance (QCM) is a commonly 

used sensor platform for vacuum deposition systems and gas sensing
9-12

 but its use is limited 

when pressure and analyte concentration are changing simultaneously, and most experiments 

report results at isobaric and iso-humid conditions to avoid complicated correction 

procedures
4,13,14

. 

 

Recent efforts in environmental sensing have shown that application of a feedforward 

backpropagation neural network (FBN), a machine-learning technique optimized for pattern 

recognition and classification problems
15,16

,
 

enables deconvolution of sensor response in 

challenging gas environments
17-20

. The benefit of FBNs is accentuated for systems in which a 

limited number of sensors can measure a broad range of environmental parameters. 

 

Here, we demonstrate a single multimodal pressure and RH sensor based on the polymer mixture 

poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) deposited on a QCM 

crystal. PEDOT:PSS has been widely-studied for environmental sensing applications because of 

its low-cost synthesis and processing
21,22 

and its efficient response to humidity
23,24

, pressure
25

, 

temperature
26

, and light
27

.  

 

Traditional PEDOT:PSS RH sensor response is based on electronic conductivity of the film. As 

depicted in Figure 1, the PEDOT:PSS film consists of PEDOT-rich domains embedded in a PSS 

matrix. Diffusion of H2O into PEDOT:PSS films causes film swelling due to protonation of 

SO3H
+
 groups at the PEDOT-PSS interface, resulting in the formation of H3O

+
 PSS(SO3)

-
. 

Swelling of the film increases the distance between adjacent PEDOT domains, leading to a 

decrease in charge carrier mobility
24,28,29

. Hydrogen bonding between adsorbed H2O and vapor-

phase H2O accelerates H2O sorption and leads to further film swelling. H2O sorption disrupts 

hydrogen bonding between PSS molecules, leading to changes in viscosity and shear modulus of 

the polymer matrix (see Supporting Information). The electrical resistivity of PEDOT:PSS 

increases linearly as RH increases (RH<60%)
28

. At higher values of RH (>60%), a water 

meniscus is formed on the PEDOT:PSS surface resulting in highly non-linear sensor response 

over a broad range of humidities
1,3,30

. Analysis of the nonlinear QCM sensor response is 

achieved here by application of an FBN, which does not rely on the electronic response of 

PEDOT:PSS. 
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equivalent circuit model to mechanical motion, leading to correspondence between inductance 

and mass, capacitance and compliance, and resistance and friction via the electromechanical 

coupling factor k
33

. 

 

The motional resistance (Rm) is related to energy damping of the resonator and contains 

contributions from internal frictions in the crystal, mechanical losses in the mounting system, 

and the viscosity of the film deposited on the crystal
34

.  For a two fluid model of a crystal 

oscillator in contact with a liquid, one can derive the contribution to Rm that occurs as a result of 

the film/liquid interaction (see the Supporting Information for the details).  Since internal friction 

in the crystal and mechanical losses in the mounting system are independent of RH, we can 

assume that all environment-induced changes in Rm occur as a result of H2O-induced changes in 

the viscoelastic properties of the film. Thus, by continuous monitoring of Rm along with Δf, it is 

possible to observe viscoelastic changes in the PEDOT:PSS film as a function of vapor pressure 

of H2O. By measuring both Rm and Δf changes in PEDOT:PSS on a QCM, we demonstrate that 

utilization of a pattern recognition tool such as the FBN allows for deconvolution of the pressure 

and RH response, enabling the single sensor to perform continuous measurements of both RH 

and pressure. 

 

2. Experiment 

 

For fabrication of the sensor, a PEDOT:PSS (ratio of 1:6) solution (Aldrich) was spin coated at 

2000 rpm for 90 seconds to achieve a 50 nm thick film on a gold-plated, AT-cut 5 MHz QCM 

crystal. Prior to testing, the sensor was placed inside a vacuum chamber at pressure 10
-6

 Torr 

vacuum for 4 hours. A LabVIEW program was used to control pressure and RH inside the 

vacuum chamber by adjusting the flow of argon and H2O vapor with two mass flow controllers. 

The RH was regulated by admitting vapor from a sealed H2O vessel into the testing chamber 

using the flow controller. The QCM frequency and motional resistance were measured using an 

SRS QCM 200 and recorded with a LabVIEW program. All measurements were performed at 

room temperature. Since RH depends only on H2O vapor pressure and temperature, changing 

argon pressure at constant temperature did not affect RH levels inside the testing chamber. 

 

For configuration of the FBN, a feed-forward network was trained using the Neural Net Fitting 

application in MATLAB. QCM frequency change and motional resistance were used as the two 

FBN inputs (Ii) fed into 1 hidden layer with 5 neurons, where RH and pressure are used as 

outputs, as shown in Figure 2a. The standard sigmoid logistic function T(Si) was used as a 

transfer function. To investigate the effect of training sets on the predictive ability of the 

PEDOT:PSS sensor we constructed two training sets: (1) Rm and frequency response to pulsed 

Ar and H2O pressures (Figure 2b top) and (2) Rm and frequency response to continuously varying 

Ar and H2O pressures (Figure 2b bottom). The predictive ability of the sensor was then tested in 

both continuously varying and pulsed pressure and RH conditions using both types of training 

sets. About 13,000 sets of training data and 1,000 iterations of the weights (Wi) were used for 

FBN training, which required about 3 minutes. 70% of the data was used for training, 15% for 

testing, and 15% for validation of the network. FBN performance changed by less than 0.5% 

when the network was re-trained using the same training configuration and data, so a bootstrap 

statistical approach was not used. To optimize the number of neurons in the hidden layer, 

identical experiments were repeated for networks with 2, 3, 4, 5, 6, 8, 10, 12, and 15 hidden 



neurons. Since the network with 5 hidden neurons achieved the lowest testing/training errors, we 

report only results from that network. 

 

The sensor response used for FBN training in continuously varying conditions is shown in Figure 

2c. The sensor Rm and frequency changes are measured at continuously changing pressures of 

both Ar gas and H2O vapor. While the QCM frequency (see inset in Figure 2c) is independent of 

Ar pressure which indicates that no Ar adsorption takes place on the film, it decreases 

exponentially with increasing H2O pressure. The exponential behavior of the frequency change is 

related to mass loading by the Sauerbrey equation and resembles the type III BET isotherm, 

which is characteristic of adsorption by a species which bonds more readily to other adsorbate 

molecules than to the adsorbent material
35

. This suggests that after the initial adsorption of H2O 

on the PEDOT:PSS surface, hydrogen bonding between adsorbed H2O and gas phase H2O 

dominates the adsorption process. This effect presents a significant problem for traditional 

PEDOT:PSS-based resistive sensors because it allows for heterogeneous adsorption in which 

multiple layers of H2O form puddles on the film surface even before complete monolayer 

formation has occurred. Our sensor avoids this problem because it does not rely on the electronic 

response of PEDOT:PSS. 

 

The FBN was trained using gas pulses with discrete pressure and RH values for construction of a 

matrix of over 100,000 data points. A sample representation of this training set is shown in 

Figure 2d. Rm exhibits a local maximum near 60% RH, which is consistent with the data shown 

in Figure 2c. It is important to note that the contour profiles of the two figures are qualitatively 

different, which indicates some orthogonality between the two sensor inputs. Since the sensor is 

limited to two inputs, this orthogonality is required for enabling the measurement of two distinct 

environmental conditions. 
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Figure 3a and 3b. In particular, we have modeled the responses by varying the film thickness (d) 

and viscosity of water (η) as a function of H2O vapor pressure (p). Dependence of the film 

thickness on the pressure is derived (Eq. S-9 in the Supporting Information) by assuming that 

water molecules adsorb on the film and the adsorption strength is characterized via the Hamaker 

constant (A). Empirical relation for pressure dependence of viscosity of water (η) was used so 

that η = η0 exp(η1p + η2), where the parameters η0 is the viscosity of water at ambient 

conditions, and η0 exp(η2) is the viscosity of water at zero pressure and η1 is the parameter 

which captures the pressure dependence of the viscosity. The colored segments in Figures 3a and 

3b correspond to different values of A, η1 and η2. Physically, the changes in A and η1 represent 

step-changes in the film thickness and viscosity of the water, respectively. These changes in film 

thickness (d-do, so that do is the initial film thickness) and viscosity (η) are shown in Figure 3c 

and 3d, respectively, with the same color scheme. From Figures 3c and 3d, we find that both the 

film thickness and the viscosity increase with an increase in the pressure, and estimates for the 

increase in their values based on the modeling of Δf and Rm data are in agreement with each 

other. The increase in the film thickness is expected due to the adsorption of water molecules on 

the film and it is also reasonable to assume that the adsorption energy characterized by A may 

vary due to viscoelastic changes in the film. Similarly, an increase in the viscosity of water with 

an increase in pressure is also expected due to slowing down of the dynamics of water 

molecules. However, the non-monotonic behavior of Rm hints at step decrease in film thickness 

and the viscosity as shown in Figure 3c and 3d, respectively. Origin of these nanoscopic changes 

is beyond the scope of this work and we speculate this may arise due to diffusion of water inside 

the film. Furthermore, the decrease in Rm with an increase in p highlights the breakdown of 

proportionality between Rm and Δf, strictly valid in the limit of very small Δf. 

 

The complex behavior of traditional resistive PEDOT:PSS-based RH sensors at relative humidity 

above 60% typically restricts RH sensor operation to either low, mid-range, or high RH 

regimes
24,28-30

. The unique feature of the RH sensor reported here is that it relies on two inputs. 

While the Rm response of the sensor exhibits complex behavior, the frequency response remains 

monotonic, which allows for greater predictability over a wide range of conditions. This permits 

the sensor to measure humidity from dry vacuum environments (RH ~0%, pressure ~10
-6

 Torr) 

to those with RH ~100%. Due to their nonlinearity, deconvolution of the pressure and RH 

response over the entire 0-100% RH range is not possible without the use of a powerful tool like 

the FBN. 
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training data set which either exceeds the optimal training size or includes data which is 

irrelevant to the desired output, such as noise or artifacts in the data. In this case, the FBN trained 

with pulsed data is over-trained to recognize only specific discrete values of RH and pressure. 

Similarly, networks trained under continuously varying conditions are unconditioned to provide 

accurate measurements during abrupt gas pulses. 

 

When the FBN is tested under conditions similar to those in which it was trained, the accuracy of 

the sensor increases by an order of magnitude or more, as shown in Figure 5 for RH sensing 

(left) and pressure sensing (right). Appropriate training enables the sensor to achieve an error of 

less than 4% RH from 0-100% RH and less than 5 Torr from 0-100 Torr. The error here is 

defined as the difference between the output of the FBN-assisted sensor and measurements made 

by a commercial pressure sensor. The errors for each of the 1,950 sensor testing experiments are 

depicted by solid gray circles for continuous training/testing and open black circles for pulsed 

training/testing. For both RH and pressure, the magnitude of the error follows a roughly 

exponential trend (shown in red). Above ~40% RH a relatively constant error of around 1% is 

maintained. At low RH and pressure, the sensor response to H2O and Ar is similar (as shown in 

Figure 2c), which makes it difficult to distinguish between RH and pressure at low pressure (<10 

Torr) conditions. This effect results in the higher errors at low RH and pressure. It should be 

noted that for industrial applications, accurate pressure measurement over a wide range of 

pressures often requires the use of multiple sensors which operate in different pressure regimes. 

While the sensor reported here is optimized for mid-range (20-100 Torr) pressures it is possible 

to utilize multiple training sets tailored toward different environmental regimes. For example, 

training the sensor with data from atmospheric conditions would enable RH and pressure sensing 

with a similar (4% ) resolution at atmospheric conditions. Since the focus of this study is to 

investigate the application of FBNs for deconvoluting nonlinear sensor response, we limit our 

discussion to the pressure regime in which a nonlinear sensor behavior exists (< 100 Torr). 

 

It is important to discuss the behavior of the continuous testing errors in the right side of Figure 

5. The errors at pressures <20 Torr exhibit oscillatory behavior around 0 as the FBN predictions 

approach convergence near 30 Torr. At this pressure, a new trend appears near 1% error. This set 

of points can be explained by the configuration of the continuously varying training conditions 

shown in the bottom of Figure 2b. Since the Ar pressure ramp increases up to ~100 Torr and then 

falls back toward 0 Torr, the sensor is trained and tested twice at each pressure: once while the 

pressure is gradually increasing, and once while it abruptly decreases. This causes the 

appearance of two distinct error sets in the right side of Figure 5 after 30 Torr. The set of higher 

errors corresponds to evacuation of the chamber and the abrupt drop in pressure, while the lower 

error values correspond to the continuously increasing Ar pressure. The continuously varying 

data used to train the sensor diverges at H2O pressures > 23 Torr (as shown in Figure 2c), which 

adds nonlinearity to the training data, resulting in lower accuracy for predictions of high 

pressures. Since this effect is a consequence of over-training at high RH, it would not be present 

for a single sensor which was trained solely for the purpose of predicting pressure. This suggests 

that the sensor accuracy is necessarily limited by its multi-modal capability, indicating that a 

balance between functionality and accuracy must be chosen for the specific application in which 

the sensor is deployed. 

 



The significant result reported in Figure 5 is that the RH sensor trained by the appropriate data 

exhibits a resolution of less than 4% from 0-100% RH. For comparison, Sreenivasan et al. report 

10% error from a wide-range optical RH sensor which is operational in 20%-70% RH 

conditions
38

. Furthermore, Kuş and Okur report that at RH>80%, PEDOT:PSS ceases to function 

as a RH sensor because of the formation of a H2O meniscus on the film surface
30

. Our sensor is 

not limited to RH<85% because the frequency response remains monotonic even as RH 

approaches 100%. One of the most significant advantages of the FBN is its ability to extract 

information from the sensor response even in post-saturation/nonlinear regimes which typically 

excluded. Since our sensor relies on both Δf and Rm, the FBN can interpret data even after one of 

the inputs diverges due to high RH conditions, which enables measurement of RH in the entire 

range from 0-100% RH. 

 

Training with data sets which are similar in nature (i.e., ramped instead of pulsed) to the actual 

conditions in which the sensor is deployed allow for significant improvements in FBN accuracy. 

By training the FBN to recognize different pressure/RH regimes, the sensor can be effectively 

tuned to operate accurately under a specific set of conditions. This provides a flexible platform 

for multimodal sensors that can be trained for operation under arbitrary humidity conditions. 

Future optimization of the FBN will include testing its predictive ability when gases of mixed 

composition are exposed to the sensor. Although the present experiment was performed at room 

temperature, it is important to evaluate the sensor performance under conditions with 

temperature variability as well. Subsequent investigations will study the importance of 

temperature on the response and predictive ability of the sensor. It is expected that if temperature 

is incorporated into the training set of the FBN as a third input, it will be possible for sensor 

measurements to accommodate thermal drift issues. 

 

4. Conclusion 

 

We have demonstrated the possibility of using an FBN-assisted PEDOT:PSS/QCM-based sensor 

to make simultaneous measurements of both ambient pressure and RH. The multi-input 

configuration of the sensor allows for accurate (< 4% error) RH sensing over a wide range of RH 

conditions (0-100%), even after H2O meniscus formation occurs on the film surface. We have 

shown that the predictive ability of the sensor is highly influenced by the quality of the training 

data set. It is expected that with further optimization of the FBN training set, the addition of 

temperature dependence studies, and utilization of a more powerful computational tool such as 

the feedforward deep network or generalized regression network, future investigations can 

achieve higher prediction accuracies under a wider range of environmental conditions. 
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