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Abstract

Deciphering human behaviors to predict their future

paths/trajectories and what they would do from videos is im-

portant in many applications. Motivated by this idea, this

paper studies predicting a pedestrian’s future path jointly

with future activities. We propose an end-to-end, multi-task

learning system utilizing rich visual features about human

behavioral information and interaction with their surround-

ings. To facilitate the training, the network is learned with

an auxiliary task of predicting future location in which the

activity will happen. Experimental results demonstrate our

state-of-the-art performance over two public benchmarks

on future trajectory prediction. Moreover, our method is

able to produce meaningful future activity prediction in ad-

dition to the path. The result provides the first empirical

evidence that joint modeling of paths and activities benefits

future path prediction. 1

1. Introduction

With the advancement in deep learning, systems now are

able to analyze an unprecedented amount of rich visual in-

formation from videos. An important analysis is forecast-

ing the future path of pedestrians, called future person tra-

jectory prediction. This problem has received increasing

attention in the computer vision community [13, 1, 7]. It

is regarded as an essential building block in video under-

standing because looking at the visual information from the

past to predict the future is useful in many applications like

self-driving cars, socially-aware robots [19], etc.

Humans navigate through public spaces often with spe-

cific purposes in mind, ranging from simple ones like en-

tering a room to more complicated ones like putting things

into a car. Such intention, however, is mostly neglected in

existing work. Consider the example in Fig. 1, the person

(at the top-right corner) might take different paths depend-

ing on their intention, e.g., they might take the green path

to transfer object or the yellow path to load object into the

∗Work partially done during a part-time research program at Google.
1Code and models are released at https://next.cs.cmu.edu
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Figure 1. Our goal is to jointly predict a person’s future path and

activity. The green and yellow line show two possible future tra-

jectories and two possible activities are shown in the green and

yellow boxes. Depending on the future activity, the person (top

right) may take different paths, e.g. the yellow path for “loading”

and the green path for “object transfer”.

car. Inspired by this, this paper is interested in modeling the

future path jointly with such intention in videos. We model

the intention in terms of a predefined set of 29 activities pro-

vided by the NIST such as “loading”, “object transfer”, etc.

See supplementary material for the full list.

The joint prediction model can have two benefits. First,

learning the activity together with the path may benefit the

future path prediction. Intuitively, humans are able to read

from others’ body language to anticipate whether they are

going to cross the street or continue walking along the side-

walk. In the example of Fig. 1, the person is carrying a

box, and the man at the bottom left corner is waving at the

person. Based on common sense, we may agree that the

person will take the green path instead of the yellow path.

Second, the joint model advances the capability of under-

standing not only the future path but also the future activity

by taking into account the rich semantic context in videos.

This increases the capabilities of automated video analytics

for social good, such as safety applications like anticipat-

ing pedestrian movement at traffic intersections or a road

robot helping humans transport goods to a car. Note that

our techniques focus on predicting a few seconds into the

future, and should not be useful for non-routine activities.

To this end, we propose a multi-task learning model

called Next which has prediction modules for learning fu-
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ture paths and future activities simultaneously. As predict-

ing future activity is challenging, we introduce two new

techniques to address the issue. First, unlike most of the

existing work [13, 1, 7, 26, 21, 31] which oversimplifies a

person as a point in space, we encode a person through rich

semantic features about visual appearance, body movement

and interaction with the surroundings, motivated by the fact

that humans derive such predictions by relying on similar

visual cues. Second, to facilitate the training, we introduce

an auxiliary task for future activity prediction, i.e. activity

location prediction. In the auxiliary task, we design a dis-

cretized grid which we call the Manhattan Grid as location

prediction target for the system.

To the best of our knowledge, our work is the first on

joint future path and activity prediction in streaming videos,

and more importantly the first to demonstrate such joint

modeling can considerably improve the future path predic-

tion. We empirically validate our model on two bench-

marks: ETH & UCY [23, 16], and ActEV/VIRAT [22, 3].

Experimental results show that our method outperforms

state-of-the-art baselines, achieving the best-published re-

sult on two common benchmarks and producing additional

prediction about the future activity. To summarize, the

contributions of this paper are threefold: (i) We conduct

a pilot study on joint future path and activity prediction

in videos. We are the first to empirically demonstrate the

benefit of such joint learning. (ii) We propose a multi-task

learning framework with new techniques to tackle the chal-

lenge of joint future path and activity prediction. (iii) Our

model achieves the best-published performance on two pub-

lic benchmarks. Ablation studies are conducted to verify the

contribution of the proposed sub-modules.

2. Related Work

Person-person models for trajectory prediction. Person

trajectory prediction models try to predict the future path

of people, mostly pedestrians. A large body of work learns

to predict person path by considering human social inter-

actions and behaviors in crowded scene [32, 34]. Zou et

al. in [36] learned human behaviors in crowds by imitat-

ing a decision-making process. Social-LSTM [1] added

social pooling to model nearby pedestrian trajectory pat-

terns. Social-GAN [7] added adversarial training on Social-

LSTM to improve performance. Different from these previ-

ous work, we represent a person by rich visual features in-

stead of simply considering a person as points in the scene.

Meanwhile we use geometric relation to explicitly model

the person-person relations in the scene, which has not been

used in previous work.

Person-scene models for trajectory prediction. A num-

ber of works focused on learning the effects of the phys-

ical scene, e.g., people tend to walk on the sidewalk in-

stead of grass. Kitani et al. in [13] used Inverse Rein-

forcement Learning to forecast human trajectory. Xie et

al. in [31] considered pedestrian as “particles” whose mo-

tion dynamics are modeled within the framework of La-

grangian Mechanics. Scene-LSTM [21] divided the static

scene into Manhattan Grid and predict pedestrian’s location

using LSTM. CAR-Net [12] proposed an attention network

on top of scene semantic CNN to predict person trajectory.

SoPhie [26] combined deep neural network features from

scene semantic segmentation model and generative adver-

sarial network (GAN) using attention to model person tra-

jectory. A disparity to [26] is that we explicitly pool scene

semantic features around each person at each time instant

so that the model can directly learn from such interactions.

Person visual features for trajectory prediction. Some

recent works have attempted to predict person path by uti-

lizing individual’s visual features instead of considering

them as points in the scene. Kooij et al. in [14] looked

at pedestrian’s faces to model their awareness to predict

whether they will cross the road using a Dynamic Bayesian

Network in dash-cam videos. Yagi et al. in [33] used per-

son keypoint features with a convolutional neural network

to predict future path in first-person videos. Different from

these works, we consider rich visual semantics for future

prediction that includes both the person behavior and their

interactions with soundings .

Activity prediction/early recognition & Tracking. Many

works have been proposed to anticipate future human ac-

tions using Recurrent Neural Network (RNN). [20] and [2]

proposed different losses to encourage LSTM to recognize

actions early in internet videos. Srivastava et al. in [29] uti-

lized unsupervised learning with LSTM to reconstruct and

predict video representations. Another line of works is an-

ticipating human activities in robotic vision [15, 10]. There

are previous works that take into account multiple cues in

videos for tracking [11, 25] and group activity recogni-

tion [5, 28, 27]. Our work differs in that rich visual features

and focal attention are used for joint person path and activ-

ity prediction. Meanwhile, our work utilizes novel activity

location prediction (see Section 3.5) to bridge the two tasks.

3. Approach

Humans navigate through spaces often with specific pur-

poses in mind. Such purposes may considerably orient the

future trajectory/path. This motivates us to study the future

path prediction jointly with the intention. In this paper, we

model the intention in terms of a predefined set of future

activities such as “walk”, “open door”, “talk”, etc.

Problem Formulation: Following [1, 7, 26], we assume

each scene is first processed to obtain the spatial coordi-

nates of all people at different time instants. Based on the

coordinates, we can automatically extract their bounding

boxes. Our system observes the bounding box of all the

people from time 1 to Tobs, and objects if there are any, and
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Figure 2. Overview of our model. Given a sequence of frames containing the person for prediction, our model utilizes person behavior

module and person interaction module to encode rich visual semantics into a feature tensor.

predicts their positions (in terms of xy-coordinates) for time

Tobs+1 to Tpred, meanwhile estimating the possibilities of

future activity labels at time Tpred.

3.1. Network Architecture

Fig. 2 shows the overall network architecture of our Next

model. Unlike most of the existing work [13, 1, 7, 26, 21,

31] which oversimplifies a person as a point in space, our

model employs two modules to encode rich visual informa-

tion about each person’s behavior and interaction with the

surroundings. Next has the following key components:

Person behavior module extracts visual information from

the behavioral sequence of the person.

Person interaction module looks at the interaction be-

tween a person and their surroundings.

Trajectory generator summarizes the encoded visual fea-

tures and predicts the future trajectory by the LSTM de-

coder with focal attention [17].

Activity prediction utilizes rich visual semantics to pre-

dict the future activity label for the person. In addition, we

divide the scene into a discretized grid of multiple scales,

which we call the Manhattan Grid, to compute classifica-

tion and regression for robust activity location prediction.

In the rest of this section, we will introduce the above

modules and the learning objective in details.

3.2. Person Behavior Module

This module encodes the visual information about every

individual in a scene. As opposed to oversimplifying a per-

son as a point in space, we model the person’s the appear-

ance and body movement. To model appearance changes

of a person, we utilize a pre-trained object detection model

with “RoIAlign” [8] to extract fixed size CNN features for

each person bounding box. See Fig. 3. We average the fea-

tures along the spatial dimensions for each person and feed

them into an LSTM encoder. Finally, we obtain a feature

representation of Tobs × d, where d is the hidden size of the

LSTM. To capture the body movement, we utilize a person

keypoint detection model trained on MSCOCO dataset [6]

to extract person keypoint information. We apply the lin-

ear transformation to embed the keypoint coordinates be-

fore feeding into the LSTM encoder. The shape of the en-

coded feature has the shape of Tobs × d. These appearance

Figure 3. Person behavior module given a sequence of person

frames. See Section 3.2.

and movement features are commonly used in a wide va-

riety of studies and thus do not introduce new concern on

machine learning fairness.

3.3. Person Interaction Module

This module looks at the interaction between a person

and their surroundings, i.e. person-scene and person-objects

interactions.

Person-scene. To encode the nearby scene of a person, we

first use a pre-trained scene segmentation model [4] to ex-

tract pixel-level scene semantic classes for each frame. We

use totally Ns = 10 common scene classes, such as roads,

sidewalks, etc. The scene semantic features are integers

(class indexes) of the size Tobs × h × w, where h,w are

the spatial resolution. We first transform the integer ten-

sor into Ns binary masks (one mask for each class), and

average along the temporal dimension. This results in Ns

real-valued masks, each of the size of h×w. We apply two

convolutional layers on the mask feature with a stride of 2

to get the scene CNN features in two scales.

Given a person’s xy-coordinate, we pool the scene fea-

tures at the person’s current location from the convolution

feature map. As the example shown at the bottom of Fig. 4,

the red part of the convolution feature is the discretized lo-

cation of the person at the current time instant. The recep-

tive field of the feature at each time instant, i.e. the size

of the spatial window around the person which the model

looks at, depends on which scale is being pooled from and

the convolution kernel size. In our experiments, we set the

scale to 1 and the kernel size to 3, which means our model

looks at the 3-by-3 surrounding area of the person at each

time instant. The person-scene representation for a person

is in R
Tobs×C , where C is the number of channels in the

convolution layer. We feed this into a LSTM encoder in

order to capture the temporal information and get the final
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Figure 4. The person interaction module includes person-scene

and person-objects modeling. See Section 3.3.

person-scene features in R
Tobs×d.

Person-objects. Unlike previous work [1, 7] which relies

on LSTM hidden states to model nearby people, our module

explicitly models the geometric relation and the object type

of all the objects/persons in the scene. At any time instant,

given the observed box of a person (xb, yb, wb, hb) and K

other objects/persons in the scene {(xk, yk, wk, hk)|k ∈
[1,K]}, we encode the geometric relation into G ∈ R

K×4,

the k-th row of which equals to:

Gk = [log(
|xb − xk|

wb

), log(
|yb − yk|

hb

), log(
wk

wb

), log(
hk

hb

)] (1)

This encoding computes the geometric relation in terms of

the geometric distance and the fraction box size. We use a

logarithmic function to reflect our observation that human

trajectories are more likely to be affected by close-by ob-

jects or people. This encoding has been proven effective in

object detection [9]. For the object type, we simply use one-

hot encoding to get the feature in R
K×No , where No is the

total number of object classes. We then embed the geomet-

ric features and the object type features at the current time

into de-dimensional vectors and feed the embedded features

into an LSTM encoder to obtain the final feature in R
Tobs×d.

As shown in the example from Fig. 4, the person-objects

feature can capture how far away the person is to the other

person and the cars. The person-scene feature can capture

whether the person is near the sidewalk or grass. We de-

sign this information to the model with the hope of learning

things like a person walks more often on the sidewalk than

the grass and tends to avoid bumping into cars.

3.4. Trajectory Generation with Focal Attention

As discussed, the above four types of visual features,

i.e. appearance, body movement, person-scene, and person-

objects, are encoded by separate LSTM encoders into the

same dimension. Besides, given a person’s trajectory output

from the last time instant, we extract the trajectory embed-

ding by

et−1 = tanh{We[xt−1, yt−1]}+ be ∈ R
d, (2)

where [xt−1, yt−1] is the trajectory prediction of time t− 1
and We, be are learnable parameters. We then feed the em-

bedding et−1 into another LSTM encoder for the trajectory.

The hidden states of all encoders are packed into a tensor

named Q ∈ R
M×Tobs×d, where M = 5 denotes the total

number of features and d is the hidden size of the LSTM.

Following [7], we use an LSTM decoder to directly pre-

dict the future trajectory in the xy-coordinate. The hid-

den state of this decoder is initialized using the last state

of the person’s trajectory LSTM encoder. At each time in-

stant, the xy-coordinate will be computed from the decoder

state ht = LSTM(ht−1, [et−1, q̃t]) and by a fully connected

layer. q̃t is an important attended feature vector which sum-

marizes salient cues in the input features Q. We employ an

effective focal attention [17] to this end. It was originally

proposed to carry out multimodal inference over a sequence

of images for visual question answering. The key idea is to

project multiple features into a space of correlation, where

discriminative features can be easier to capture by the atten-

tion mechanism. To do so, we compute a correlation matrix

St ∈ R
M×Tobs at every time instant t, where each entry

St
ij = h⊤

t−1 ·Qij: is measured using the dot product similar-

ity and : is a slicing operator that extracts all elements from

that dimension. Then we compute two attention matrices:

At = softmax(
M

max
i=1

St
i:) ∈ R

M (3)

Bt = [softmax(St
1:), · · · , softmax(St

M :)] ∈ R
M×Tobs (4)

Then the attended feature vector is given by:

q̃t =
M∑

j=1

At
j

Tobs∑

k=1

Bt
jkQjk: ∈ R

d (5)

As shown, the focal attention models the correlation

among different features and summarizes them into a low-

dimensional attended vector. Section 4 shows its benefit.

3.5. Activity Prediction

Since the trajectory generation module outputs one lo-

cation at a time, errors may accumulate across time and the

final destination would deviate from the actual location. Us-

ing the wrong location for activity prediction may lead to

bad accuracy. To counter this disadvantage, we introduce

an auxiliary task, i.e. activity location prediction, in addi-

tion to predicting the future activity label of the person. We

describe the two prediction modules in the following.

Activity location prediction with the Manhattan Grid.

To bridge the gap between trajectory generation and activity

label prediction, we propose an activity location prediction

module to predict the final location of where the person will

engage in the future activity. The activity location predic-

tion includes two tasks, location classification and location

regression. As illustrated in Fig. 5, we first divide a video

frame into a discretized h×w grid, namely Manhattan Grid,

and learn to classify the correct grid block and at the same

time to regress from the center of that grid block to the ac-

tual location. Specifically, the aim for the classification task

is to predict the correct grid block in which the final location
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Figure 5. Activity location prediction with classification and re-

gression on the multi-scale Manhattan Grid. See Section 3.5.

coordinates reside. After classifying the grid block, the aim

for the regression task is to predict the deviation of the grid

block center (green dots in the figure) to the final location

coordinate (the end of green arrows). The reason for adding

the regression task are: (i) it will provide more precise loca-

tions than just a grid block area; (ii) it is complementary to

the trajectory prediction which requires xy-coordinates lo-

calization. We repeat this process on the Manhattan Grid of

different scales and use separate prediction heads to model

them. These prediction heads are trained end-to-end with

the rest of the model. Our idea is partially inspired by the re-

gion proposal network [24] and our intuition is that similar

to object detection problem, we need accurate localization

using multi-scale features in a cost-efficient way.

As shown in Fig. 5, we first concatenate the scene CNN

features (see Section 3.3) with the last hidden state of the

encoders (see Section 3.4). For compatibility, we tile the

hidden state Q:Tobs: along the height and width dimension

resulting in a tensor of the size M × d×w · h, where w · h
is the total number of the grid blocks. The hidden state con-

tains rich information from all encoders and allow gradients

flow smoothly through from prediction to feature encoders.

The concatenated features are fed into two separate con-

volution layers for classification and regression. The con-

volution output for grid classification clsgrid ∈ R
w·h×1 in-

dicates the probability of each grid block being the correct

destination. In comparison, the convolution output for grid

regression rggrid ∈ R
w·h×2 denotes the deviation, in the

xy-coordinates, between the final destination and every grid

block center. A row of rggrid represents the difference to a

grid block, calculated from [xt−xci, yt−yci] where (xt, yt)
denotes the predicted location and (xci, yci) is the center of

the i-th grid block. The ground truth for the grid regression

can be computed in a similar way. During training, only the

correct grid block receives gradients for regression. Recent

work [21] also incorporates the grid for location prediction.

Our model differs in that we link grid locations to scene se-

mantics, and use a classification layer and a regression layer

together to make more robust predictions.

Activity label prediction. Given the encoded visual obser-

vation sequence, the activity label prediction module pre-

dicts the future activity at time instant Tpred. We compute

the future Na activity probabilities using the concatenated

last hidden states of the encoders:

clsact = softmax(Wa · [Q1Tobs:, · · · , QMTobs:]) (6)

where Wa is a learnable weight. The future activity of a per-

son could be multi-class, e.g. a person could be “walking”

and “carrying” at the same time.

3.6. Training

The entire network is trained end-to-end by minimizing

a multi-task objective. The primary loss is the common

L2 loss between the predicted future trajectories and the

ground-truth trajectories [21, 7, 26]. The loss is summed

into Lxy over all persons from Tobs+1 to Tpred.

The second category of loss is the activity loca-

tion classification and regression loss discussed in Sec-

tion 3.5. We have Lgrid cls =
∑N

i=1
ce(clsigrid, cls

∗i
grid),

where cls∗igrid is the ground-truth final location grid block

ID for the ith training trajectory. Likewise Lgrid reg =∑N

i=1
smoothL1

(rgigrid, rg
∗i
grid) and rg∗igrid is the ground-

truth difference to the correct grid block center. This loss

is designed to bridge the gap between the trajectory gener-

ation task and activity label prediction task.

The third loss is for activity label prediction. We employ

the cross-entropy loss: Lact =
∑N

i=1
ce(clsiact, cls

∗i
act). The

final loss is then calculated from:

L = Lxy + λ(Lgrid cls + Lgrid reg) + Lact (7)

We use a balance controller λ = 0.1 for location destination

prediction to offset their higher loss values during training.

4. Experiments
We evaluate the proposed Next model on two com-

mon benchmarks for future path prediction: ETH [23] and

UCY [16], and ActEV/VIRAT [3, 22].

4.1. ActEV/VIRAT

Dataset & Setups. ActEV/VIRAT [3] is a public dataset

released by NIST in 2018 for activity detection research in

streaming video (https://actev.nist.gov/). This dataset

is an improved version of VIRAT [22], with more videos

and annotations. It includes 455 videos at 30 fps from 12

scenes, more than 12 hours of recordings. Most of the

videos have a high resolution of 1920x1080. We use the

official training set for training and the official validation

set for testing. Following [1, 7, 26], the models observe 3.2

seconds (8 frames) of every person and predict the future

4.8 seconds (12 frames) of person trajectory. We downsam-

ple the videos to 2.5 fps and extract person trajectories using

the code released in [7]. Since we do not have the homo-

graphic matrix, we use the pixel values for the trajectory

coordinates as it is done in [33].

Evaluation Metrics. Following prior work [1, 7, 26], we

use two error metrics for person trajectory prediction:
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Method ADE FDE move ADE move FDE

S
in

g
le

M
o

d
el

Linear 32.19 60.92 42.82 80.18

LSTM 23.98 44.97 30.55 56.25

Social LSTM 23.10 44.27 28.59 53.75

SGAN-PV 30.51 60.90 37.65 73.01

SGAN-V 30.48 62.17 35.41 68.77

Ours 17.99 37.24 20.34 42.54

Ours-Noisy 34.32 57.04 40.33 66.73

2
0

O
u
tp

u
ts SGAN-PV-20 23.11 41.81 29.80 53.04

SGAN-V-20 21.16 38.05 26.97 47.57

Ours-20 16.00 32.99 17.97 37.28

Table 1. Comparison to baseline methods on the ActEV/VIRAT

validation set. Top uses the single model output. Bottom uses 20

outputs. Numbers denote errors thus lower are better.

i) Average Displacement Error (ADE): The average Eu-

clidean distance between the ground truth coordinates and

the prediction coordinates over all time instants,

ADE =

∑N

i=1

∑Tpred

t=1 ‖Ỹ i
t − Y i

t ‖2
N ∗ Tpred

(8)

ii) Final Displacement Error (FDE): The euclidean distance

between the predicted points and the ground truth point at

the final prediction time instant Tpred,

FDE =

∑N

i=1
‖Ỹ i

Tpred
− Y i

Tpred
‖2

N
(9)

The errors are measured in the pixel space on

ActEV/VIRAT whereas in meters on ETH and UCY.

For future activity prediction, we use mean average

precision (mAP).

Baseline methods. We compare our method with the two

simple baselines and two recent methods: Linear is a single

layer model that predicts the next coordinates using a linear

regressor based on the previous input point. LSTM is a sim-

ple LSTM encoder-decoder model with coordinates input

only. Social LSTM [1]: We train the social LSTM model to

directly predict trajectory coordinates instead of Gaussian

parameters. SGAN [7]: We train two model variants (PV &

V) detailed in the paper using the released code from Social-

GAN [7] (https://github.com/agrimgupta92/sgan/).

Aside from using a single model at test time, Gupta et

al. [7] also used 20 model outputs per frame and selected the

best prediction to count towards the final performance. Fol-

lowing the practice, we train 20 identical models using ran-

dom initializations and report the same evaluation results,

which are marked “20 outputs” in Table 1.

Implementation Details. We use LSTM cell for both the

encoder and decoder. The embedding size de is set to 128,

and the hidden sizes d of encoder and decoder are both 256.

Ground truth bounding boxes of persons and objects are

used during the observation period (from time 1 to Tobs).

For person keypoint features, we utilize the pre-trained pose

estimator from [6] to extract 17 joints for each ground truth

person box. For person appearance feature, we utilize the

pre-trained object detection model FPN [18] to extract ap-

pearance features from person bounding boxes. The scene

semantic segmentation features are resized to (64, 36) and

the scene convolution layers are set to have a kernel size of

3, a stride of 2 and the channel dimension is 64. We resize

all videos to 1920x1080 and utilize two grid scales, 32x18

and 16x9. The activation function is tanh if not stated oth-

erwise and we do not use any normalization. For training,

we use Adadelta optimizer [35] with an initial learning rate

of 0.1 and the dropout value is 0.3. We use gradient clip-

ping of 10 and weight decay of 0.0001. For Social LSTM,

the neighbor is set to 256 pixels as in [33]. All baselines

use the same embedding size and hidden size as our model,

therefore all encoder-decoder models have about the same

numbers of parameters. Other hyper-parameters we use for

the baselines follow the ones in [7].

Main Results. Table 1 lists the testing error, where the top

part is the error of a single model output and the bottom

shows the best result of 20 model outputs. The “ADE” and

“FDE” columns summarize the error over all trajectories,

and the last two columns further detail the subset trajecto-

ries of moving activities (“walk”, “run”, and “ride bike”).

We report the mean performance of 20 runs of our single

model at Row 7. The standard deviation on “ADE” metric is

0.043. Full numbers can be found in supplemental material.

As we see, our method performs favorably against other

methods, especially in predicting the trajectories of mov-

ing activities. For example, our model outperforms Social-

LSTM and Social-GAN by a large margin of 10 points in

terms of the “move FDE” metric. The results demonstrate

the efficacy of the proposed model and its state-of-the-art

performance on future trajectory prediction. Additionally,

as a step towards real-world application, we train our model

with noisy outputs from object detection and tracking dur-

ing the observation period. For evaluation, following com-

mon practise in tracking [30], for each trajectory, we as-

sume the person bounding box location at time 1 is close to

the ground truth location, and we evaluate the model pre-

diction using tracking inputs and other visual features from

time 1 to Tobs as shown in Table 1 “Ours-Noisy”.

Qualitative analysis. We visualize and compare our model

outputs and the baselines in Fig. 6. As we see, our method

outputs more accurate trajectories for each person, espe-

cially for the two persons on the right that were about to

accelerate their movement. Our method is also able to pre-

dict most of the activities correct except one (walk versus

run). Our model successfully predicts the activity “carry”

and the static trajectory of the person near the car, while in

Fig 6(c), SGAN predicts several moving trajectories in dif-

ferent directions. We further provide a qualitative analysis

of our model predictions. (i) Successful cases: In Fig 6(e)

and 6(f), both the trajectory prediction and future activity

prediction are correct. (ii) Imperfect case: In Fig 6(g), al-

though the trajectory prediction is mostly correct, our model
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Figure 6. (Better viewed in color.) Qualitative comparison between our method and the baselines. Yellow path is the observable trajectory

and green path is the ground truth trajectory during the prediction period. Predictions are shown as blue heatmaps. Our model also predicts

the future activity, which is shown in the text and with the person pose template.

Method ADE ↓ FDE ↓ Act mAP ↑

Our full model 17.91 37.11 0.192

No p-behavior 18.99 39.82 0.139

No p-interaction 18.83 39.35 0.163

No focal attention 19.93 42.08 0.144

No act label loss 19.48 41.45 -

No act location loss 19.07 39.91 0.152

No multi-task 20.37 42.79 -

Table 2. Multi-task performance & ablation experiments.

predicts that the person is going to open the door of the car,

given the observation that he is walking towards the side

of the car. (iii) Failed case: In Fig 6(h), our model fails to

capture the subtle interactions between the two persons and

predicts that they will go separate ways, while in fact they

are going to stop and talk to each other.

4.2. Ablation Model

In Table 2, we systematically evaluate our method

through a series of ablation experiments, where “ADE” and

“FDE” denotes the errors thus lower are better. “Act” is the

mean Average Precision (mAP) of the activity label predic-

tion over 29 activities and higher are better.

Efficacy of rich visual features. We investigate the feature

contribution of person behavior and person interactions. As

shown in the first three rows in Table 2, both features are im-

portant to trajectory prediction while person behavior fea-

tures are more essential for activity prediction. Individual

feature ablations are in the supplementary material.

Effect of focal attention. In the fourth row of Table 2, we

replace focal attention in Eq. (5) with a simple average of

the last hidden states from all encoders. Both trajectory and

activity prediction hurt as a result.

Impact of multi-task learning. In the last three rows of

Table 2, we remove the additional tasks of predicting the

activity label or the activity location or both to see the im-

pact of multi-task learning. Results show the benefit of our

multi-task learning method.

4.3. ETH & UCY

Dataset. ETH [23] and UCY [16] are common datasets

for person trajectory prediction benchmark [1, 7, 21, 26].

Same as previous work [1, 7, 21, 26], we report perfor-

mance by averaging over both datasets. We use the same

data processing method and settings detailed in [7]. This

benchmark includes videos from five scenes: ETH, HO-

TEL, UNIV, ZARA1 and ZARA2. Leave-one-scene-out
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Method ETH HOTEL UNIV * ZARA1 ZARA2 AVG

S
in

g
le

M
o

d
el Linear 1.33 / 2.94 0.39 / 0.72 0.82 / 1.59 0.62 / 1.21 0.77 / 1.48 0.79 / 1.59

LSTM 1.09 / 2.41 0.86 / 1.91 0.61 / 1.31 0.41 / 0.88 0.52 / 1.11 0.70 / 1.52

Alahi et al. [1] 1.09 / 2.35 0.79 / 1.76 0.67 / 1.40 0.47 / 1.00 0.56 / 1.17 0.72 / 1.54

Ours-single-model 0.88 / 1.98 0.36 / 0.74 0.62 / 1.32 0.42 / 0.90 0.34 / 0.75 0.52 / 1.14

2
0

O
u

tp
u

ts Gupta et al. [7](V) 0.81 / 1.52 0.72 / 1.61 0.60 / 1.26 0.34 / 0.69 0.42 / 0.84 0.58 / 1.18

Gupta et al. [7](PV) 0.87 / 1.62 0.67 / 1.37 0.76 / 1.52 0.35 / 0.68 0.42 / 0.84 0.61 / 1.21

Sadeghian et al. [26] 0.70 / 1.43 0.76 / 1.67 0.54 / 1.24 0.30 / 0.63 0.38 / 0.78 0.54 / 1.15

Ours-20 0.73 / 1.65 0.30 / 0.59 0.60 / 1.27 0.38 / 0.81 0.31 / 0.68 0.46 / 1.00

Table 3. Comparison of different methods on ETH (Column 3 and 4) and UCY datasets (Column 5-7). * We use a smaller test set on UNIV

since 1 video is unable to download.

data split is used and we evaluate our model on 5 sets of

data. We follow the same testing scenario and baselines as

in the previous section. We have also cited the latest state-

of-the-art results from [26]. Due to 1 video cannot be down-

loaded, we use a smaller test set for UNIV and a smaller

training set across all splits. The other 4 test sub-datasets

are the same as in [7] so the numbers are comparable.

Since there is no activity annotation, we do not use activ-

ity label prediction module in our model. Since the annota-

tion is only a point for each person and the human scale in

each video doesn’t change much, we apply a fixed size ex-

pansion from points for each video to get the person bound-

ing box annotation for feature pooling. We do not use any

other bounding box. We don’t use any additional annotation

compared to baselines to ensure a fair comparison.

Implementation Details. We do not use person keypoint

feature. Final location loss and trajectory L2 loss are used.

Unlike [26], we don’t utilize any data augmentation. We

train our model for 40 epochs with the adadelta optimizer.

Other hyper-parameters are the same as in Section 4.1.

Results & Analysis. Experiments are shown in Table 3.

Our model outperforms other methods in both evaluations,

where we obtain the best-published single model on ETH

and best average performance on the ETH & UCY bench-

mark. As shown in the table, our model performs much

better on HOTEL and ZARA2. The average movement at

each time-instant in these two scenes are 0.18 and 0.22, re-

spectively, much lower than others: 0.389 (ZARA1), 0.460

(ETH), 0.258 (UNIV). Recall that the leave-one-scene-out

data split is used in training. The results suggest other

methods are more likely to overfit to the trajectories of

large movements, e.g. Social-GAN [7] often ”over-shoot”

when predicting the future trajectories. In comparison, our

method uses attention to find the ”right” visual signal and

show better performance for trajectories of small move-

ments on HOTEL and ZARA2 while still being competitive

for trajectories of large movements.

5. Conclusion

In this paper, we have presented a new neural network

model for predicting human trajectory and future activity

simultaneously. We first encode a person through rich vi-

sual features capturing human behaviors and interactions

with their surroundings. Then we add an auxiliary task of

predicting the activity locations to facilitate the joint train-

ing process. We refer to the resulting model as Next. We

showed the efficacy of our model on both popular and recent

large-scale video benchmarks on person trajectory predic-

tion. In addition, we quantitatively and qualitatively demon-

strated that our Next model successfully predicts meaning-

ful future activities.

Our research goal is to promote human safety in appli-

cations such as robotics or autonomous driving. We experi-

ment on the public benchmark ActEV, the primary driver of

which is to support public safety and traffic monitoring and

management by automatic activity detection in streaming

video2. Our approach works on a predefined set of 29 activ-

ities provided by NIST, such as “loading”, “object transfer”.

See supplementary material for the full list. Our system

may not work beyond these predefined activities.

Future research into activity and path prediction may im-

plicate ethical issues around privacy, safety and fairness and

ought to be considered carefully before being used in real-

world applications. Our method for predicting trajectory

and activity has not been tested for different populations of

people. As such, it is important to further evaluate these

issues before employing the model in situations that may

differentially impact people.
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