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We consider the dynamics of an elastic sheet lubricated by the flow of a thin layer of fluid
that separates it from a rigid wall. By considering long wavelength deformations of the sheet, we
derive an evolution equation for its motion, accounting for the effects of elastic bending, viscous
lubrication and body forces. We then analyze various steady and unsteady problems for the sheet
such as peeling, healing, levitating and bursting using a combination of numerical simulation and
dimensional analysis. On the macro-scale, we corroborate our theory with a simple experiment, and
on the micro-scale, we analyze an oscillatory valve that can transform a continuous stream of fluid
into a series of discrete pulses.

We have all had the experience of the runaway trans-
parency in the midst of a seminar; one that slides off the
projector by riding on a thin film of air before coming
to rest as far away from the speaker as possible [1]. The
basic mechanism responsible for this event is the lubri-
cating effect of a thin fluid film [2, 3]. This mundane
situation is hardly unique and is indeed paradigmatic of
many industrial processes such as the motion of mag-
netic tapes, paper in copying machines, and textile and
polymeric film manufacturing [4]. On a much smaller
scale, many biological and MEMS applications involving
airway reopening in the lung [5], speech and song pro-
duction in the vocal chambers [6], microfluidic pumps,
valves and switches also involve the motion of flexible
membranes close to walls [7, 8]. In all these situations,
the moving flexible membrane is lubricated by the thin
fluid film and responds by deforming; this deformation in
turn changes the dynamics of the fluid film and thus leads
to the competition between the elastic and fluid forces
that eventually lead to the surly behavior of the unruly
transparency. These problems are analogs of free-surface
flows in hydrodynamics that arise in many applications
(see [9] and references therein) but are qualitatively dif-
ferent owing to the presence of the elastic sheet. Never-
theless, the mathematical formulation of both classes of
problems bears some similarities as we shall see.

An experimental realization of this class of problems
is exemplified in Fig. 1. A flexible sheet of plastic is
clamped at the left slightly above a rigid floor; when
glycerine is pumped in from the lower left the plastic
sheet lifts off and balloons as a peeling front advances to
the right. Following a short transient, the front moves
at constant velocity and the sheet eventually lifts off,
completely supported by the fluid. In this letter, we will
focus on some of the simplest problems motivated by this
example, both on the macroscale and microscale using an
asymptotic description of the “elastohydrodynamics” of
fluid-lubricated elastic sheets.

We start by considering the two-dimensional dynam-
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FIG. 1: A schematic of the system and images of a simple
experiment showing a propagating peeling front in a plastic
shim on a layer of glycerine. Dark solid lines indicate ex-
perimental data, dashed lines are the result of solving (7-8)
numerically. These plots show two snapshots in time as the
plastic peels off the underlying substrate. Experimental pa-
rameters are: ρf = 1.2 gm/cm3, µ = 10 gm/cm-s, Q = 3.3
cm2/s, E ≈ 8.3 × 1010 dynes/cm2, b ≈ 0.1 mm, ∆ρ = 5
gm/cm3. This corresponds to Hg = 2.0 cm, Lg = 12.0 cm
and G = 283.2.

ics of a fluid-lubricated elastic sheet of thickness b and
length L (L � Hg � b where Hg is a typical gap thick-
ness), density ρs, Young’s modulus E, Poisson ratio ν,
and bending stiffness, B = Eb3/12(1−ν2) in a geometry
shown shown in Fig. 1. The intercalating incompressible
fluid of density ρf and viscosity µ satisfies the equations
of momentum and mass conservation:

ρf (ut + u · ∇u) = −∇p + µ∇2u + ρfg (1)
∇ · u = 0 (2)

where p is pressure, u = (u, v) is the fluid velocity, and
g = (0,−g) is gravity. Along the rigid floor y = 0, the
fluid does not slip or penetrate the solid so that u|y=0 = 0
while along the elastic sheet y = h(x, t), the no-slip con-
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dition reads u|y=h(x,t) = 0 and the kinematic boundary
condition reads ht + u|y=hhx = v|y=h. Here and else-
where subscripts denote derivatives. Finally, continuity
of traction normal to the center line of the elastic sheet
requires that

n · σf · n =
Eb (1− ν)

(1 + ν) (1− 2ν)
γhxx −Bhxxxx

− ρsbhtt + f(h). (3)

Here σf = −pI + µ(∇u + ∇uT ) is the fluid stress ten-
sor, t = (1 + h2

x)−1/2(1, hx),n = (1 + h2
x)−1/2(−hx, 1)

are the tangent and outward normal to mid-plane of
the elastic sheet, γ is the in-plane elastic strain and

Eb(1−ν)
(1+ν)(1−2ν)γhxx is the contribution of the in-plane ten-
sion to out-of-plane forces, Bhxxxx is the contribution
due to out-of-plane bending, ρsbhtt is the inertia of the
sheet, and f(h) is a body force (per unit area) act-
ing on the sheet. For the example shown in Fig. 1,
f(h) = −∆ρgb = −(ρs−ρf )gb is the buoyancy-corrected
weight of the sheet, while for the microscopic situation
that we will treat later, f(h) = Π(h) is the disjoining
pressure due to van der Waals forces, although we note
that gravity and van der Waals body forces will never
appear together in physical situations. We have also as-
sumed the sheet to be weakly tilted from the horizontal
so that typical gap thicknesses are much smaller than
characteristic bending length scales and hx � 1. We
quantify this by first noting that the horizontal length
scale Lg ≡ (Eb3/|f(h0)|)1/3 is set by the competition be-
tween bending and the external body force, and the ver-
tical length scale Hg = (µQLg/|f(h0)|)1/3 is set by the
competition between the external body force and viscous
lift, where Q is the average flux in the gap. Furthermore
the horizontal velocity scale is U = Q/Hg while the ver-
tical velocity scale is V = εU , where ε = Hg/Lg � 1.
Using these scales, we define the dimensionless variables
x̂ = x/Lg, ŷ = y/Hg = y/εLg, û = u/U, v̂ = v/εU, t̂ =
Ut/Lg = LgHgt/Q, p̂ = p/P = p/f . Substituting the
scaled variables into (1-3), with f = ∆ρgb, we get (on
dropping the hats)

ε2Re(ut + uux + vuy) = −px + ε2uxx + uyy

ε4Re(vt + uvx + vvy) = −py + ε4vxx + ε2vyy − εG,

ux + vy = 0 (4)

subject to the boundary conditions u|y=0 = u|y=h =
v|y=0 = 0, v|y=h = ht, and

−p|y=h +
[

2ε2

1 + ε2h2
x

(vy − hx(uy + ε2vx) + ε2h2
xux)

]
y=h

=
(1− ν) LgHg

(1 + ν) (1− 2ν) b2
γhxx −

εhxxxx

12 (1− ν2)

−ε3
ρsRe

∆ρG
htt +

H3
g

µQLg
f(h). (5)

Here Re = QLgρf

µHg
is the Reynolds number and G ≡

ρf gH3
g

µQ is the ratio of fluid hydrostatic pressure to viscous
stresses. For an acetate sheet skimming over a table on
a lubricating layer of air, the body force f = −∆ρgb,
b ∼ 10−2 cm, E ∼ 1010 dynes/cm2, ρs ∼ 1 g/cm3,
µ ∼ 10−4 g/cm-s, ρf ∼ 10−3 g/cm3, U ∼ 10 cm/s so that
Lg ∼ 10 cm, Hg ∼ 0.3 mm, G ∼ 1, ε ∼ 10−3, Re ∼ 103

(note that the scaled Reynolds number ε2Re ∼ 10−3),
thus both fluid and solid inertia are unimportant to lead-
ing order. In addition, provided the sheet has a free end
and is sufficiently short [? ], we can drop the γhxx term
in the normal stress boundary condition, further simpli-
fying the analysis.

Using the fact that ε � 1, we look for a solution to
(4-5) of the form u = u0(x, y) + εu1(x, y); v = v0(x, y) +
εv1(x, y); p = po(x, y) + εp1(x, y) etc. and find that, to
order O(ε2),

u ≈ 1
2
pxy (y − h) ,

p ≈
H3

g

µQLg
f(h) + εG (h− y) +

εhxxxx

12(1− ν2)
. (6)

Substituting these results into the depth-integrated con-
tinuity equation ht + (

∫ h

0
udy)x = 0 yields a single non-

linear evolution equation for the transverse motion of the
elastic sheet

ht −
ε

12

(
h3hxxxxx

12(1− ν2)
+ Gh3hx +

H3
g

µQLg
fx

)
x

= 0 (7)

This equation, valid in the limit of a thin fluid-filled gap,
is similar to those seen in the context of free-surface flows
[9] except for the term arising from elasticity, and rep-
resents a tremendous simplification from the PDEs that
describe the coupled motion of the sheet and fluid. To
complete the formulation of the problem, we need an ini-
tial profile and six boundary conditions. Motivated by
the experiment shown in Fig. 1, for a clamped-free sheet,
the appropriate boundary conditions are

h = h0

hx = θ0

q(h, hx...) = 1

 at x = 0
hxx = 0
hxxx = 0
p = εG

2 h

 at x = L/Lg.

(8)
where q(h, hx...) =

∫ h

0
udy is the fluid flux. The first

three boundary conditions correspond to a prescribed
height, slope and fluid flux at the clamped end x = 0,
while the last three correspond to the condition of zero
force, zero torque and a matched pressure at the free end.

For the peeling motion of a heavy macroscopic elastic
sheet driven by a thin layer of viscous fluid shown in Fig.
1, f = −∆ρgb. Solving the system (7-8) numerically us-
ing a finite difference method, we find that the numerical
solution matches the experimentally observed transient
peeling profiles (Fig. 1) with no adjustable parameters.
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FIG. 2: (a) The evolution of a peeling front obtained by solv-
ing (7,8). Successive profiles are shifted vertically (thus time
increases from bottom to top in the plot). (b) The entry
length Lentry as a function of the dimensionless hydrostatic
pressure G; the line is the scaling law (9). (c) The levitation
height hlev as a function of εG; the line is the scaling law (10).
(d) The velocity of the peeling front vf as a function of G/ε;
the line is the scaling law (11). In each case, the points corre-
spond to the results of numerical simulations of (7,8). In (d)
Points deviate from the predicted scaling at small G where the
assumption that hydrostatic effects dominate breaks down.

In Fig. 2(a) we show the evolution of the peeling traveling
wave. Although these peeling waves are known to exist
in the membrane-tension dominated regime [5], here they
are dominated by bending and are thus qualitatively dif-
ferent. In the inlet region (roughly x = 0 to x = 4 in Fig.
2a) bending and hydrostatic forces balance each other
so that Eb3∆H

L4
entry

∼ ρg∆H which yields a scaling law for
entrance length,

Lentry ∼ Lg(G)−1/4. (9)

In the central region (roughly x = 4 to x = 35 in Fig.
2a), the membrane is relatively flat, and bending does
not play a prominent role. The dominant balance is be-
tween viscous stresses and hydrostatic pressure so that
ρf ghlev

Lg
∼ µQ

h3
lev

leading to a scaling law for the levitation
height

hlev ∼ Hg(εG)−1/4. (10)

The scaling laws (9, 10) are confirmed over a range of
parameter values as shown in Fig. 2(b-c). Finally, in
the outlet region, there is a small tail where the sheet is
slightly curved to accommodate the free-end condition;
the horizontal and vertical extent of this zone scale with
Lg and Hg respectively, although there is a weak depen-
dence on other parameters as well.

While these length scales characterize the steady lev-
itating sheet, the transient behavior leading up to this

involves a peeling front moving at a velocity, vf , which
is constant as long as the front is sufficiently far from
the inlet and the exit. At the front, the viscous
power dissipated (per unit width) must be balanced
by the work done against the hydrostatic load so that

µ
(

vf

hlev

)2

hlevLg ∼ ρfgLg

(
Lp

hlev
Lg

)
vf . In dimensionless

terms, this yields

vf

U
∼
(
G
ε

)1/2

. (11)

This scaling law is confirmed numerically as shown in Fig.
2(d). As expected, the scaling breaks down for small G
when hydrostatic forces no longer play a dominant role
in the dynamics.

Having used this simple macroscopic setting as a test-
bed for our theory, experiment and numerical simula-
tions, we now turn to a micro-scale phenomenon moti-
vated by fluid-actuated switches and valves in MEMS
and microfluidics [7, 8], where van der Waals forces can
potentially play a role. We consider the geometry shown
in Fig. 1, but now set the body force to be the disjoining
pressure between the elastic sheet and the rigid surface
with f = Π(h) = 1

6π

(
Ar

hm − Aa

hn

)
in (3), where Aa and

Ar are the attractive and repulsive Hamaker constants
respectively; here n = 3 and m = 9 corresponding to the
standard (6, 12) Lennard-Jones potential. Following the
asymptotic reduction procedure that led to (7) for the
macroscopic problem now yields

ht −
ε

12

(
h3hxxxxx

12(1− ν2)
+Ahx

h
−Rhx

h7

)
x

= 0 (12)

where A = 3
6π

Aa

µQLg
and R = 9

6π
Ar

µQLgH6
g

are rescaled
Hamaker constants, with the length scales Hg, Lg de-
fined using f = Π(h0) instead of f = ∆ρgb. Solv-
ing (12) subject to the boundary conditions (8), with

p|x=L/Lg
= H3

g

µQLg
Π(h), numerically we find two types of

behavior. When repulsive effects dominate, the profile
evolves to a steady state with gap thickness increasing
monotonically in x. However, when repulsive and at-
tractive effects are of the same order of magnitude, we
observe time periodic bursting events as illustrated in
Fig. 3(a). In this popping regime, the peeling and heal-
ing events are very asymmetric; peeling is relatively slow,
while healing is extemely rapid. The peeling occurs with
a roughly constant velocity when the front is sufficiently
far away from the inlet/exit. When the front reaches the
exit, the sheet bursts open releasing a small amount of
fluid (Fig. 4a). The high pressure underneath the mem-
brane is vented (Fig. 4b) and subsequently van der Waals
forces cause the sheet to rapidly zip shut (Fig. 4c). This
temporal asymmetry can be easily understood in terms
of the characteristic gap thickness in the neighborhood of
the propagating front. In the peeling case, fluid must be
squeezed into a thin gap, slowing the front; in the healing
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FIG. 3: (a) Bursting events driven by attractive van der Waals
forces. As in Fig. 2(a), successive profiles are shifted verti-
cally. G = 0, ε = 0.02, R = 0.1, A = 103, and Hg = 0.1. (b)
Scaling law for the time between bursting events tburst when
attractive van der Waals forces dominate. Points represent
data from numerical simulations of (7,8); the line corresponds
to the scaling law (13).

case, fluid may flow essentially unobstructed into the far
reservoir.

Thus the amount of fluid released during each bursting
event is dictated by the speed of the peeling front, vp. To
determine this, we note that the thickness of the smallest
possible gap determined by the balance between attrac-
tive and repulsive van der Waals forces is given by Hp ∼
(R/A)1/6, while a characteristic width of the peeling
front Lp is set by balancing viscous and bending stresses,
so that µQ

H3
p
∼ Eb3Hp

L5
p

which yields (Lp/Lg)5 ∼ ε(Hp/Hg)4.
Finally, at the front itself the power dissipated (per unit
width) due to viscous effects must be balanced by the
work done by the attractive van der Waals potential, so

that µ
(

vp

Hp

)2

HpLp ∼ A
H3

p

(
Lp

Hp

Lp

)
vp. Combining this

with the condition that the time between bursting events
tburst is essentially a filling time, i.e. tburstvp = L we find
that vp/U ∼ A(H9

g/εH9
p )1/5 hence

tburst ∼

(
L5n5R3/2

A5+3/2H8
gL6

g

)1/5

. (13)

This scaling law is confirmed in Fig. 3(b) over a cer-
tain range of parameter values. However, the scaling
law breaks down as A becomes small and the attractive
forces become relatively weak. Choosing a typical value
for the attractive Hamaker constant of Aa ∼ 10−13dyne-
cm, a flow rate of U ∼ 1 cm/sec, Hp ∼ 100 nm and
Hg ∼ 100 µm, gives a bursting time scale of tburst ∼ 0.1
sec suggesting that such a design might be experimen-
tally feasible.

We conclude with a brief discussion of various gener-
alizations of our ideas. Our main results are the evolu-
tion equations (7,12) that describes the motion of a wall-
bounded elastic sheet or membrane in macroscopic and
microscopic situations. Using these we study two sim-
ple phenomena, experimentally validate our theory and
suggest how one might design an interesting microfluidic
valve which acts like an inverter. A variety of other ques-
tions also lend themselves as natural candidates. These
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FIG. 4: (a) Top panel shows an alternative representation of
the data in figure 3(a). Grey scale indicates gap thickness and
time increases along the vertical axis. The sharp horizontal
lines illustrate the rapid time scales associated with gap clo-
sure. The bottom panel shows the vertical position of the end
of the membrane as a function of time. (b) Expanded view of
the white box in (a) and associated time series for the verti-
cal position of the end of the membrane illustrating venting.
Time has been shifted by tshift = 2500 to coincide with the
first spike in (a). (c) Expanded view of the white box in (b)
showing healing. Time has again been shifted by tshift = 2500.
The membrane zips shut from left to right expelling fluid.

include the free motion of a falling sheet of paper, which
requires an additional equation for the horizontal veloc-
ity of the center of mass of the sheet, the touch-down
of a sheet of paper (which admits a similarity solution),
as well as generalizations to account for solid inertia to
understand the flutter of the sheet in the context of voice
and song production, all of which are subjects of current
study.
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[] The viscous shear stresses lead to a force of order
µUL/Hg and a stretching strain of order µUL/HgEb.
Comparing this with a typical bending strain bH/L2

leads to a maximal length of the sheet L ∼ Eb2H2/µU
above which stretching effects cannot be ignored.


