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Abstract. In this paper a new approach to the problem of impulsive noise re-

moval in color images is presented. The proposed method is based on the evalua-

tion of the statistical properties of a sorted sequence of the accumulated distances

used for the calculation of the vector median of samples belonging to the filtering

window. The statistical analysis is performed using the Fisher’s linear discrim-

inant, which enables the detection of outliers introduced by the noise process.

The described filter output switches between the vector median and the original

central pixel. In order to increase the filter’s performance, two thresholds are in-

troduced, which enhance the detail preserving abilities of the proposed filtering

scheme. The described filtering technique is robust, fast and therefore it can be

used in real time denoising applications.
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1 Introduction

The most popular family of nonlinear filters for impulsive noise removal in color images

is based on the order statistics [1]. These filters perform the ordering of a set of vectors

from the filtering window in order to determine the output sample.

Let the color image x be defined as a mapping Z2 → Z3 and let W = {xk ∈
Z2; k = 1, 2, . . . , n} represents a square filtering window consisting of n color

pixels centered at pixel x1. In the case of color image filtering, the most popular de-

noising approaches are based on a vector ordering scheme defined through the order-

ing of aggregated distances. The aggregated distance rk assigned to a sample xk , for

k = 1, 2, . . . , n is defined as

rk =
n

∑

j=1

‖xk − xj‖l =
n

∑

j=1

(

3
∑

q=1

|xkq − xjq |
l

)1/l

, k = 1, 2, . . . , n , (1)

where ‖xk − xj‖l quantifies the distance among two 3-channel samples using the

Minkowski metric, where xkq is the q-th element of xk and l characterizes the used

norm.

The scalar quantities r1, r2, . . . , rn can then be sorted in the order of their values and

the associated vectors can be correspondingly ordered [2, 1]

r(1) ≤ r(2) ≤ . . . ≤ r(n) ⇒ x(1) ≤ x(2) ≤ . . . ≤ xn , (2)
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where r(1) and r(n) is the smallest and the largest accumulated distance. The vector

x(1) associated with r(1) is called the vector median, as this vector minimizes the sum

of distances to all other pixels contained in W [3].

Nonlinear, ranked type multichannel filters generally define the vector x(1) as the

output of the filtering operation. This selection is due to the fact that vectors that di-

verge greatly from the data population usually appear in higher indexed locations in the

ordered sequence (2).

(a) (b) (c)

Fig. 1. Plots of the ordered sequence of the aggregated distances rk assigned to pixels from a

3 × 3 filtering window in the original and noisy image. In cases (a) and (b) the filtering window

of the noisy image contains one corrupted pixel, whereas plot (c) depicts the situation in which

two pixels were contaminated.

Figure 1 depicts the plot showing the sorted sequence of the accumulated distances

for pixels in a filtering window of the original and noisy test image. Figures 1a) and b)

show the distribution of a set of pixels affected by one impulse and Fig. 1c) depicts the

situation, in which two pixels in the filtering window were disturbed by the impulsive

noise process. Analyzing the sorted sequence of the rk values, it is relatively easy to

discriminate between the pixels of the original, undisturbed image and the impulses

injected into the image by the noise. This observation leads to the conclusion that the

distribution of the sorted aggregated distances can be used for the detection of pixels

corrupted by the noise process.

For the discrimination between the uncorrupted and noisy pixels, the aggregated

distances can be divided in two sets. One set of the r values will be associated with the

”clean” pixels and the second set will consist of the impulses injected into the image by

the noise process. It is possible to apply some adaptive thresholding technique to detect

the impulses when considering the rk values, however much more efficient is the use of

a simple technique, which enables robust and reliable detection of outliers.

For the task of grouping the pixels into two sets of the undisturbed and noisy pixels,

the Fisher’s linear discriminant can be used. Fisher’s linear discriminant is a classifi-

cation method that generally projects high-dimensional data onto a line and performs

classification in this one-dimensional space. In our case, the dimensionality reduction

of the color vectors, is performed by the calculation of the aggregated distances.

The goal of the discriminant is to maximize the distance between the means of

two classes, while minimizing the variance within each class. This defines the Fisher
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(a) (b) (c)

Fig. 2. Illustration of the thresholding techniques applied to the values of Fishers’s discriminant

working on the aggregated distances r assigned to pixels from a filtering window. Blue dots

represent the pixels declared to be noise-free, green dot denotes the aggregated distance of the

central pixel x1 and the remaining pixels are marked red.

criterion function F (k), where k denotes the rank of the sorted sequence of the sorted

r(k) values

F (k) =
[m1(k) − m2(k)]

2

v1(k) + v2(k)
, k = 1, . . . , n − 1 , (3)

where

m1(k) =
1

k

k
∑

i=1

r(i) , m2(k) =
1

n − k

n
∑

i=k+1

r(i) , (4)

v1(k) =

k
∑

i=1

(r(i) − m1)
2 , v2(k) =

n
∑

i=k+1

(r(i) − m2)
2 , k = 1, . . . , n − 1 . (5)

The values m1 and m2 denote the mean values of the two classes of pixels and v1 and

v2 stand for the variances of the aggregated distances.

The classification of the pixels belonging to a filtering window is illustrated in Fig. 2.

The test sequence of aggregated distances is composed of the values originating from

the clean and noisy pixels in W . Each of the plots shown in Fig. 2 shows a different

distribution of the pixels in the filtering window.

In each case the, function of the Fisher discriminant (3) attains its maximum at k = 5,

and the first five pixels are classified as clean and the remaining are declared to be noisy.

The efficiency of such an approach is quite high in the presence of impulse noise in the

filtering window. However, the classification of the pixels into two groups is performed

in every filtering window and in a situation in which all the pixels are not affected by

noise, the division of the pixels into two groups can lead to erroneous classification

of the original, undisturbed pixels. Such a case is depicted in Fig. 2a), which shows a

situation in which the Fisher’s discriminant declared five pixels to belong to the class of

original samples and the remaining four were classified as outliers. If the central pixel

in this example has a rank higher than five, then this pixel will be unnecessary replaced

by the vector median.

To alleviate this problem two thresholds were introduced. The first threshold ∆ is

applied to the difference between the r1, which denotes the value of the aggregated

distance assigned to the central pixel x1 and the r(k∗), (k∗ = arg maxF (k)), which
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Fig. 3. Illustration of the efficiency of the Fisher’s criterion combined with the thresholding tech-

nique: (left) part of the noisy test image LENA, (middle) pixels which were detected as impulses

using the Fisher’s criterion are marked black, (right) after the application of the threshold ∆ the

amount of wrongly replaced pixels significantly decreased, (∆ = 15). Below, the zoomed parts

of the images are shown.

denotes the aggregated distance maximizing the Fisher’s function. In the example pro-

vided by Fig. 2, k∗ is equal to 5.

In this way the central pixel x1 is defined as an outlier if: D = r1 − rk∗ > ∆. In

the example from Fig. 2 in the first case (a), only the pixel with highest rank is declared

as an outlier and the pixel x1 belongs to the uncorrupted samples. In (b) two pixels

are classified as impulses, while the central pixel satisfies the condition D < ∆ and

again is classified as not contaminated. In the third plot (c) four pixels are declared to

be corrupted, among them the central pixel, as in this case D > ∆.

It can be observed that after the application of the threshold ∆ the amount of pixels

detected as corrupted and replaced by the vector median is drastically decreasing as

shown in Fig. 3. After the introduction of the ∆ threshold, the pixels with low values of

r are being classified as not corrupted and are preserved by the extended algorithm.

However using the ∆ threshold, there are cases like in Fig. 2a) and b), where the

pixels declared as outliers can in fact belong to the set of uncorrupted pixels. To further

diminish the classification error a second threshold denoted as δ is introduced.

The difference between r(k∗+1) and r(k∗) can be used as a measure of the homo-

geneity of the distribution of the rk values. If the value: d = r(k∗+1) − r(k∗) is small,

then it means that most probably the set of samples does not contain any outliers.

In the examples provided by Fig. 2a) the value of d is smaller than the threshold δ

and therefore all the pixels are treated as uncorrupted by noise. In Fig. 2b) d is larger

than the threshold δ and therefore the final classification is performed with regard to

the threshold ∆. In the last example (Fig. 2c) the four pixels with the highest ranks are

classified as impulses, as d > δ and D > ∆.
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(a) (b) (c)

Fig. 4. Illustration of the efficiency of the proposed filtering technique: (a) test image LENA,

(b) image contaminated by impulse noise (p = 0.1), (c) output of the proposed filter with two

optimal thresholds ∆ and δ

The rule for the replacement of the corrupted central pixel x1 by the vector median

is then

y1 =

{

x(1), if d > δ and D > ∆,

x1, otherwise ,
(6)

where y1 is the filter output and x(1) is the vector median of the samples in W . In this

way the central pixel is classified as noisy if both thresholds are exceeded.

2 Filtering Performance

In this work the noisy image pixels are modeled as xi = {xi1, xi2, xi3}, where xiq =
ρiq with probability π and oiq with probability 1 − π, where oiq denotes the q-th com-

ponent of the original pixel at a position i and and the contamination component ρiq is

a random variable in which the variable ρ takes any discrete value in the range [0, 255].
The contamination of the color image components is uncorrelated, and the overall dis-

torsion rate is p = 1 − (1 − π)3.

For the measurement of the restoration quality, the commonly used Root Mean

Squared Error (RMSE) expressed through the Peak Signal to Noise Ratio (PSNR) was

used, as the RMSE is a good measure of the efficiency of impulsive noise suppres-

sion. For the evaluation of the detail preservation capabilities the Mean Absolute Er-

ror (MAE) has been applied. Additionally, since RGB is not a perceptually uniform

space, the restoration errors were also analyzed using the Normalized Color Difference

(NCD) [1]

The subjective evaluation of the proposed filter’s performance is provided by Fig. 4.

As can be seen the filter preserves very well the image details and effectively replaces

the impulse noise. Figure 5 shows the dependence of the PSNR on the two thresholds

∆ and δ using the LENA color test image contaminated by impulsive noise. As can

be observed, for contamination rates ranging from 5% to 20% the peak value of PSNR

is obtained for ∆ ≈ 15 and δ ≈ 10. The same values of the thresholds yield optimal

results in terms of PSNR for other color images as depicted in Figs. 6 and 7, which
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Table 1. Comparison of the new filter with the state of the art denoising techniques using the

GOLDHILL test image contaminated with impulse noise, p = 10%

FILTER MAE PSNR NCD

NONE 4.40 19.94 99.15

PROPOSED 0.79 35.83 7.96

Peer Group Filter, [4] 1.01 31.14 22.51

Fast Peer Group Filter, [5] 0.81 35.18 8.91

Peer Region Determination Filter, [6] 0.86 34.80 8.27

Iterative Peer Group Switching Vector Filter, [7] 1.02 31.52 21.16

Vector Median Filter, [3] 4.84 30.11 43.23

Basic Vector Directional Filter, [1] 6.68 27.27 47.67

Directional Distance Filter, [1] 5.00 29.81 42.62

Vector Directional Order-Statistics Filter, [8] 0.91 34.62 7.63

Hybrid Directional Filter, [1] 4.94 30.27 43.46

Local Information Measure Filter, [9] 3.41 31.29 30.83

Vector LUM Smoother, [10] 0.79 35.78 8.18

Adaptive Vector LUM Smoother, [11] 1.39 34.58 10.94

Modified ICM Method, [12] 0.73 35.96 8.23

Sigma Filter, [13] 2.94 31.74 25.94

Adaptive Video Filtering Framework, [14] 0.66 36.90 6.27

Adaptive Vector Median Filter, [15] 0.95 34.10 12.17

Adaptive Color Image Filter, [16] 0.92 35.07 7.29

Central Weighted Vector Median Filter, [17] 1.69 33.97 14.55

Modified Central Weighted Vector Median Filter, [17] 1.05 34.58 10.11

Fast Adaptive Noise Reduction Filter, [18] 0.81 35.54 8.59

Self-Adaptive Noise Reduction Filter, [19] 0.79 35.71 8.46

Generalized Adaptive Vector Sigma Filters, [20] 1.31 34.29 12.20

Students t-Test Vector Median Filter , [21] 1.21 35.72 15.38

Fast Impulsive Vector Filter, [22] 1.03 34.18 8.48

(a) p = 0.05 (b) p = 0.1 (c) p = 0.2

Fig. 5. Dependence of the PSNR quality measure on the values of the ∆ and δ thresholds for the

LENA image contaminated by the impulse noise
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(a) LENA, p = 0.1 (b) PEPPERS, p = 0.1 (c) PARROTS, p = 0.1

Fig. 6. Dependence of the PSNR on the values of thresholds ∆ and δ for test images LENA,

PEPPERS and PARROTS contaminated with impulse noise of p = 0.1

(a) LENA (b) PEPPERS (c) PARROTS

Fig. 7. Surface plots of the dependence of the PSNR on the value of ∆ and δ for the noisy test

images: LENA, PEPPERS and PARROTS, (p = 0.1)

present the comparison of the dependence of PSNR on the two thresholds for the LENA,

PEPPERS and PARROTS color test images polluted by 10% impulse noise. The lack

of dependence of the optimal settings of the two thresholds is extremely beneficial as

various images contaminated with unknown amount of impulse noise can be restored

using the default thresholds setting.

Table 1 summarizes the restoration quality values obtained when filtering the color

test image GOLDHILL contaminated with 10% impulse noise using the thresholds val-

ues equal to: ∆ = 15 and δ = 10. The comparison shows that the proposed technique,

despite its simplicity excels over many much more sophisticated filtering designs and is

comparable with the best filters known from the literature.

3 Conclusions

In the paper a new filtering approach intended for the removal of impulsive noise in

color images has been presented. The structure of the new filter is based on the anal-

ysis of the Fisher’s linear discriminant, which can efficiently discriminate between the

original image pixels and impulses introduced into the image by impulsive noise pro-

cess. The results show that the performance of the proposed filter is very high and is
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comparable with the best known restoration methods. The proposed filter is comparable

in speed with the standard VMF, is easy to implement and can be used in applications

in which the prefiltering of impulse noise is required.

References

1. Plataniotis, K.N., Venetsanopoulos, A.N.: Color Image Processing and Applications.

Springer, Heidelberg (2000)

2. Pitas, I., Tsakalides, P.: Multivariate Ordering in Color Image Processing. IEEE Trans. on

Circuits and Systems for Video Technology 1(3), 247–256 (1991)

3. Astola, J., Haavisto, P., Neuvo, Y.: Vector Median Filters. Proc. of the IEEE 78(4), 678–689

(1990)

4. Kenney, C., Deng, Y., Manjunath, B.S., Hewer, G.: Peer Group Image Enhancement. IEEE

Trans. on Image Processing 10(2), 326–334 (2001)

5. Smolka, B., Chydzinski, A.: Fast Detection and Impulsive Noise Removal in Color Images.

Real-Time Imaging 11(5-6), 389–402 (2005)

6. Ho, J.Y.F.: Peer Region Determination Based Impulsive Noise Detection. In: Proceedings of

ICASSP, Hong Kong, vol. 3, pp. 713–716 (2003)

7. Morillas, S., Gregori, V., Peris-Fajarnés, G.: Isolating Impulsive Noise Pixels in Color Images

by Peer Group Techniques. Computer Vision and Image Understanding 110(1), 102–116

(2007)

8. Lukac, R.: Color Image Filtering by Vector Directional Order-Statistics. Pattern Recognition

and Image Analysis 12(3), 279–285 (2002)

9. Beghdadi, A., Khellaf, K.: A Noise-Filtering Method Using a Local Information Measure.

IEEE Trans. on Image Processing 6(6), 879–882 (1997)

10. Lukac, R.: Vector LUM Smoothers as Impulse Detector for Color Images. In: Proceedings of

European Conference on Circuit Theory and Design (ECCTD), Espoo, Finland, vol. 3, pp.

137–140 (2001)

11. Lukac, R., Marchevsky, S.: Adaptive Vector LUM Smoother. In: Proceedings of ICIP, vol. 1,

pp. 878–881. Thessaloniki, Greece (2001)

12. Park, J., Kurz, L.: Image Enhancement Using the Modified ICM Method. IEEE Trans. on

Image Processing 5(5), 765–771 (1996)

13. Lee, J.S.: Digital Image Smoothing and the Sigma Filter. Computer Vision, Graphics, and

Image Processing 24(2), 255–269 (1983)

14. Lukac, R., Fischer, V., Motyl, G., Drutarovsky, M.: Adaptive Video Filtering Framework.

International Journal of Imaging Systems and Technology 14(6), 223–237 (2004)

15. Lukac, R.: Adaptive Vector Median Filtering. Pattern Recognition Letters 24(12), 1889–1899

(2003)

16. Lukac, R.: Adaptive Color Image Filtering Based on Center-Weighted Vector Directional

Filters. Multidimensional Systems and Signal Processing 15(2), 169–196 (2004)

17. Smolka, B.: Efficient Modification of the Central Weighted Vector Median Filter. In: Van

Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 166–173. Springer, Heidelberg (2002)

18. Smolka, B., Lukac, R., Chydzinski, A., Plataniotis, K.N., Wojciechowski, K.: Fast Adaptive

Similarity Based Impulsive Noise Reduction Filter. Real-Time Imaging 9(4), 261–276 (2003)

19. Smolka, B., Plataniotis, K.N., Chydzinski, A., Szczepanski, M., Venetsanopulos, A.N., Wo-

jciechowski, K.: Self-adaptive Algorithm of Impulsive Noise Reduction in Color Images.

Pattern Recognition 35(8), 1771–1784 (2002)



Peer Group Filter for Impulsive Noise Removal in Color Images 707

20. Lukac, R., Smolka, B., Plataniotis, K.N., Venetsanopoulos, A.N.: Generalized Adaptive Vec-

tor Sigma Filters. In: Proceedings of IEEE International Conference on Multimedia and Expo

(ICME), pp. 537–540. Baltimore, USA (2003)

21. Camacho, J., Morillas, S., Latorre, P.: Efficient Impulsive Noise Suppression Based on Sta-

tistical Confidence Limits. J. of Imaging Science and Technology 50(5), 427–436 (2006)

22. Morillas, S., Gregori, V., Peris-Fajarne’s, G., Latorre, P.: A Fast Impulsive Noise Color Image

Filter Using Fuzzy Metrics. Real-Time Imaging 11(5-6), 417–428 (2005)


	Peer Group Filter for Impulsive Noise Removal in Color Images
	Introduction
	Filtering Performance
	Conclusions
	References


