
Peer-to-Peer Access Control Architecture
Using Trusted Computing Technology

Ravi Sandhu and Xinwen Zhang
George Mason University

{sandhu, xzhang6}@gmu.edu

ABSTRACT
It has been recognized for some time that software alone does not
provide an adequate foundation for building a high-assurance trusted
platform. The emergence of industry-standard trusted computing
technologies promises a revolution in this respect by providing roots
of trust upon which secure applications can be developed. These
technologies offer a particularly attractive platform for security in
peer-to-peer environments. In this paper we propose a trusted com-
puting architecture to enforce access control policies in such appli-
cations. Our architecture is based on an abstract layer of trusted
hardware which can be constructed with emerging trusted com-
puting technologies. A trusted reference monitor (TRM) is intro-
duced beyond the trusted hardware. By monitoring and verifying
the integrity and properties of running applications in a platform us-
ing the functions of trusted computing, the TRM can enforce var-
ious policies on behalf of object owners. We further extend this
platform-based architecture to support user-based control policies,
cooperating with existing services for user identity and attributes.
This architecture and its refinements can be extended in future work
to support general access control models such as lattice-based ac-
cess control, role-based access control, and usage control.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection—Unauthorized access

General Terms
Security

Keywords
access control, trusted computing, security architecture, policy en-
forcement

1. INTRODUCTION
The concept of “trust” is a complex one spanning technical, so-

cial, behavioral, legal and policy issues. Our focus is on a technical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’05,June 1–3, 2005, Stockholm, Sweden.
Copyright 2005 ACM 1-59593-045-0/05/0006 ...$5.00.

concept of trust. We adopt the definition from the Trusted Comput-
ing Group (TCG) [2]: that is, “Trust is the expectation that a device
will behave in a particular manner for a specific purpose.” A “de-
vice” can be a platform, or an application or service running on a
platform. A platform can be a personal computer, personal digi-
tal assistant (PDA), smart phone, etc. In this paper, we consider a
client to be a computing platform such that a user (object owner)
can distribute some objects directly or indirectly to it, and other
users (including the owner) can access the object on the platform.
Generally a client can initiate communication with other clients
to transfer or share data and resources such as digital documents,
voice mail, and electronic currency of various kinds.

In traditional client-server architecture, the server is the focus
of trust. A trusted server is typically protected by security mech-
anisms at multiple layers and across multiple aspects. Sensitive
data and resources are protected on the server side. Once these are
released to the client there is typically no further control. Even
in absence of malice on part of end users information resident on
the client becomes susceptible to software-based attacks from var-
ious forms of Trojan Horses and malware. Malicious software not
only can illegally read or modify sensitive data in persistent storage,
memory, and input and output buffers, but also change the request
for information and actions sent to other computers. It is hardly
necessary these days to talk about the prevalence of malicious soft-
ware. All of us are suffering this pain as we deal with the endless
cycle of security patches, new viruses and worms, and spyware.
Just as an example a recent study by Symantec [5] reports that an
average of seven new vulnerabilities a day were announced in 2003,
and that newly discovered vulnerabilities are increasingly severe.
The attack path has evolved from sniffing and hijacking of autho-
rized connections, to attacks on centralized servers with vulnerable
services, and now increasingly to attacks on client platforms [7].
The lack of strong security mechanisms on client platforms in gen-
eral, and the push for an open environment on computing devices,
such as PDAs, smart phones, notebooks, etcetera, leave the client
extremely vulnerable to software attacks.

It has been generally accepted for some time that software alone
cannot provide an adequate foundation for building a high-assurance
trusted platform. The quest for finding the “correct” set of hardware
primitives for trusted computing was shaped in the mainframe era
of the 1970s by the pioneering Multics system [23] followed by
a number of research and commercial capability-based computers
[17]. In the 1980s the US Department of Defense (DoD) pursued
a major initiative to develop trusted computers wherein all the trust
resided in a small security kernel which specifically controlled in-
formation flow based on military-style security labels [14]. The
goal of taking trust out of the applications and putting it entirely in
the kernel turned out to be fundamentally infeasible for a variety of

reasons. Later the DoD attempted to extend trust into applications
[15].

The most recent attempts to specify hardware trust primitives be-
gan in the late 1990s and continue to be pursued today under the
name of trusted computing (TC). We will review these in the next
section. There are several distinguishing characteristics of modern
TC primitives relative to the earlier efforts cited above. First of
all they are designed for a distributed and dynamic, open environ-
ment wherein “trusted” application software can be executed and
protected from interference from other software on the same plat-
form. Thus the trust mechanisms provide for greater security for
software execution within a single platform. Secondly there is di-
rect support for platform-to-platform propagation of trust. TC tech-
nologies seek to protect data in creation, processing, storage, and
transfer primarily by exposing the cryptographic secrets required
to access the data only to software which has a verifiable chain of
trust, be it on a single computer or across multiple computers. Re-
liance on appropriate application software to actually enforce the
security policy is an integral part of this approach. TC primitives
include cryptographic operations and trusted storage of root keys as
a foundation for security. This is a sharp departure from previous
approaches to trusted computing. Notably, modern TC technology
is a product of industry initiatives with little direct input from the
academic and research communities. As a consequence there is
hardly any exposure of this important technology in the research
literature. Likewise there is little guidance to industry regarding
the use of this technology in support of traditional and new access
control objectives.

The main contribution of this paper is to illustrate how TC tech-
nologies can support access control architectures and mechanisms
between platforms and users. Specifically, we propose an archi-
tecture to enforce an object owner’s policy in a client platform by
attesting the authenticity of the platform and the integrity and pos-
sible properties of the requesting application. We also show how
to integrate user attributes such as a user’s role into this architec-
ture, as well as how to support a user’s ability to roam between
platforms by migrating subject identities and attribute certificates.
This enables support of user-based security policies, which is not
directly supported by TC technologies.

The rest of the paper is organized as follows. Section 2 provides
background and review of trusted computing as well as the moti-
vation for new security requirements from emerging applications.
Section 3 describes our access-control architecture with client-side
trusted reference monitor and policy specifications. Applications
of our approach are discussed in Section 4. Some related problems
and work are discussed in Section 5 and 6, respectively. Section 7
gives our conclusions.

2. BACKGROUND AND MOTIVATION
In this section we first briefly introduce the emerging TC tech-

nologies, then present some applications that can benefit from these
technologies. TC focuses on the assurance that an entity does be-
have in the expected manner through mechanisms of integrity mea-
surement, storage, and reporting.

2.1 Trusted Computing Technologies

2.1.1 TCG and LT
The Trusted Computing Group (TCG) defines a set of specifi-

cations aiming to provide hardware-based root of trust and a set
of primitive functions to propagate trust to application software as
well as across platforms. The root of trust in TCG is a hardware
component on the motherboard of a platform called the Trusted

Platform Module (TPM). TPM provides protected data (crypto-
graphic secrets and arbitrary data) by never releasing a root key
outside the TPM. In addition, TPM provides some primitive cryp-
tographic functions, such as random number generation, RSA key
generation and RSA asymmetric key algorithms. Most important,
a TPM provides mechanism of integrity measurement, storage, and
reporting of a platform, from which strong protection capabilities
and attestations can be achieved. A brief introduction is given be-
low.

A TPM contains a set of Platform Configuration Registers (PCRs).
A measurement of protected data or program code represents the
properties and characteristics of the measured object, such as in-
tegrity, running states of a program, and configurations. The spe-
cific PCR’s value is updated by applying SHA-1 operation on its
current value concatenated with a new measured value. Therefore
PCR values can record the integrity and state of a running platform
from booting to loading operating system to loading applications.

With the integrity measurement and storage, an integrity report
can be generated by a platform and provided to another platform
through a challenge-response protocol called “attestation”. Dur-
ing attestation, a platform (challenger) sends attestation challenge
message to another platform (attestor). One or more PCR values
are signed with an attestation identity key protected by the TPM of
the attestor and provided to the challenger. The challenger verifies
this attestation by comparing the signed values with expected val-
ues. Attestation provides the authenticity of a platform’s current
integrity, state, or configuration. Within a single platform, a run-
ning application can send attestation challenge message to another
running application to verify its integrity or running state.

A significant enhancement of security with TPM is protecting
sensitive data (i.e., secrets of an application or a user) with integrity
measurement values through “sealed storage”. In addition to apply-
ing a symmetric key to encrypt the data, one or more PCR values
are stored during the encryption along with the protected object.
A TPM releases a protected object only if the current PCR values
match those stored with the protected object. Therefore, a protected
object is available only when the platform is in a particular state.

A key is protected either by storing it in a TPM without releas-
ing it, or encrypting it with a key that is protected by the TPM.
This forms a key hierarchy where the leaves are protected secrets
and arbitrary data, and the intermediate nodes are storage keys and
identity keys. Each TPM has a storage root key (SRK) that is pro-
tected inside the hardware and is never released. A key can be a
symmetric key, or an asymmetric key pair where the private part
is the protected object. Each key has a flag with valuemigratable
or non-migratable. A non-migratable key is created by a TPM and
never leaves the platform, therefore it is guaranteed to be known
only by the TPM that creates it. Entities who trust the TPM can
thereby trust information protected by non-migratable keys. A mi-
gratable key can move from one platform to another. Trust in a
migratable key goes back to the entity that creates that key, such as
a certificate authority (CA).

In addition to a TCG compliant TPM, the LaGrande Technol-
ogy (LT) of Intel [4] includes an extended CPU enabling software
domain separation and protection, and extended chipset enabling
protected graphics and basic I/O devices (i.e., keyboard/mouse),
which enable trusted channels between application software and
these devices. Beyond the hardware layer there is a domain man-
ager supporting protected execution environments by domain sep-
aration, including separation of processes, memory pages, and de-
vice drivers. It is anticipated that these capabilities will be used in
Mircosoft’s next-generation operating system.

2.1.2 Trusted Mobile and Embedded Platforms
In addition to the PC platform-based approaches, there are emerg-

ing trusted computing technologies for mobile and embedded sys-
tems, such as the ARM TrustZone [10] and the Trusted Mobile
Platform (TMP) [9]. TrustZone provides trusted computing in em-
bedded systems by allowing trusted programs to run separately
from others in the operating system. TrustZone provides basic
trusted computing functions such as storing platform private key
or master key in on-chip non-volatile or one-time programmable
memory, platform identification, code integrity check, etc. Very
recently, IBM, Intel and NTT DoCoMo published the TMP speci-
fication to bind TC with mobile wireless platforms. TMP is based
on TPM, and the class 3 devices defined in TMP support the core
functions of TC such as trusted boot, integrity measurement and re-
porting, and hardware-based domain separation and protected stor-
age. With increasing transactions relying on mobile platforms such
as PDAs and functionality enhanced cellphones [12], the trust be-
tween platforms becomes fundamental and opens new arena for
security research.

2.2 Motivating Applications
The evolution of computing and business models in recent infor-

mation systems motivates new security requirements. We illustrate
this by considering some emerging applications.

2.2.1 Decentralized Dissemination Control
In decentralized dissemination control (DCON), an object is dis-

tributed to a client platform, where the object owner may want to
enforce some security policies to control the access, i.e., by trust-
ing the subject that receives and views the object, and the platform
and the state of applications. For example, health records of a pa-
tient may be transmitted from a primary physician to a consultant
who can access them for some limited period of time without being
able to retain the records indefinitely or transmit them to anyone
else. Similarly, in a company, a manager might distribute a product
specification to a team of consultants hired by his department, and
the document can only be viewed for two days in the computers
within the department. In a decentralized scheme policy enforce-
ment is performed on the receiving client. On one hand, the policy
and secret (to encrypt and decrypt the object during distribution)
have to be protected and only available to target platforms and ap-
plications. On the other hand, the platform and accessing appli-
cation have to be trusted not to release the object illegally, either
by incorrect configuration or compromised software. Both of these
goals can be supported by the emerging TC technologies. Trusted
subject authentication may also be needed to enforce that only a
valid user can access the object. We illustrate an example of this
application with our proposed architecture in Section 4.

2.2.2 P2P Voice-over-IP
In recent P2P VoIP applications such as Skype, audio streams

are routed and delivered in the global Internet through active peers,
which is similar to that in traditional P2P file sharing systems. Be-
side the security considerations in routing and network connec-
tions, the realtime protection of audio data in a platform is a new
issue. Realtime protection ensures that a conversation is not eaves-
dropped or illegally recorded in transit. Generally an audio stream
is encrypted so that intermediate nodes cannot access it. To ensure
that in an end platform an audio stream is not illegally accessed
by other applications or processes, the initiator of the conversation
needs to verify the integrity and state of the platform, including
the P2P client application and the audio output channel between
the sound card and the application. We discuss this application in

Section 4 with our proposed architecture.
Further, in voice mail applications, the owner of a voice ob-

ject needs to make sure not only the object is not eavesdropped
or recorded when playing, but also may need to control whether
the receiver can forward the object, and to what kind of receivers
(platforms and users) he/she can forward it.

2.2.3 M-commerce
There are a number of emerging m-commerce applications which

involve exchange or transfer of some form of electronic currency
between peer platforms. The currency could be usage minutes on a
VoIP phone card or some other service. This is an intriguing class
of applications for TC. It is beyond the scope of this paper to inves-
tigate these applications.

2.3 Motivations for New Security Model and
Architecture

We summarize the new requirements of the security model and
architecture beyond traditional approaches as followings.

• Change of trust relation. In traditional security architec-
ture, sensitive objects and policy enforcements are located
on server side, and a client generally trusts a server. Once
information is released to a client there is no further control.
In recent and emerging computing models, a server needs to
trust a client, with respect to both platform and user authen-
tication. Note that a “server” here is a general platform that
can distribute objects to other platforms. In P2P systems, a
platform can be both a server and a client, since it can dis-
tribute and receive objects.

• Location of policy enforcement. A significant requirement
of the security architecture for emerging applications is that
security policies are enforced on the client platform. Policy
enforcement is dependent on trust between platforms.

• Trust of platform and application. In traditional security sys-
tems such as mandatory access control (MAC), role-based
access control (RBAC), and usage control (UCON), security
policies mainly consider the properties of subjects and ob-
jects, while the integrity and state of the platform and run-
ning software are not considered. It is simply assumed that
the operating system and applications responsible for enforc-
ing these policies are unmodified and correctly loaded. This
may have been a reasonable approach in a time when the
operating system and applications were relatively static. In
modern open systems certainly the application and possibly
the operating system are likely to be much more dynamic
requiring mechanisms to guarantee their integrity.

• Trusted user authentication and authorization in client plat-
form. Subject authentication is a prerequisite to successfully
enforce a security policy. In traditional security systems, au-
thentication mechanisms are provided by a centralized server
or service in general. In distributed and decentralized sys-
tems, an object or policy owner needs to trust that the valid
user is authenticated and authorized in a client platform be-
fore being allowed to access a protected object.

• Trusted path from user to applications and vice versa. Spoof-
ing and “man-in-the-middle” eavesdropping or modification
attacks are amongst the most insidious software attacks. Trusted
path technology enables guaranteed input from the user to
application software and, vice versa, guaranteed output from
an application to the monitor.

In this paper we claim that the platform integrity and authentica-
tion aspects of, TC, as well as the provided high-level TC functions
such as integrity attestation, separation of execution, sealed storage,
trusted channels and paths, etc., can enable a general architecture
to support these new security requirements. Specifically we show
how to apply TC technologies to enforce access control policies on
client-side platforms.

3. TC-BASED ACCESS CONTROL
ARCHITECTURE AND POLICY

In this section we first develop the main architecture of our ap-
proach based on some basic assumptions. Then we discuss the pol-
icy specifications within this architecture. Finally we show how to
combine user attributes with the proposed architecture.

3.1 Basic Assumptions
The following are assumed in this paper.

• We do not include the access control policies of hardware
administration, such as the permissions for a TPM owner or
a general user [3].

• We assume that the hardware layer of TC is tamper resistent
or that hardware attack is not a threat.

• We assume a homogeneous environment in this paper. By
“homogeneous” we mean that each platform is equipped uni-
formly with necessary TC hardware.

• For simplicity we do not explicitly consider the privacy prob-
lem in our approach, except that existing considerations in
TC technologies are adopted, i.e., a platform identity attes-
tation can be achieved from a trusted privacy CA [11] or
through direct anonymous attestation [13] between platforms.

3.2 A Platform with Trusted Reference
Monitor

An abstract platform is shown in Figure 1. The trusted compo-
nents include trusted hardware with a TPM, a secure kernel, and
a trusted reference monitor (TRM) in user space of the operating
system. The hardware, cooperating with the kernel, provides nec-
essary functions to the TRM, from basic cryptographic functions to
platform and program attestation, sealed storage for sensitive data,
and protected running environment. The sensitive data of TRM
includes the secrets and policies. A secret can be an encryption
key for an object, which is originally from the object owner and
distributed to the platform. A policy is also generated by an object
owner and controls the access to this object in this platform. A typi-
cal policy specifies the integrity state of an application on a genuine
platform where the object can be accessed. Security attributes of a
subject may also be specified in a policy, such as security clearance
or role name. Secrets and policies are sealed by a TRM such that
they are only available to the TRM in a valid integrity state. This
guarantees that the policies are correctly enforced by the TRM, and
the secrets are not released outside of the TRM. The policy enforce-
ment is performed by attestations explained later in this section.

An important security requirement is the integrity and confiden-
tiality of the protected runtime environment for each application
(including the TRM). This has two aspects. First, the memory
space of an application is private, which is not accessible to other
applications even for devices with direct memory access (DMA)
capability. This implies that an application which can access an ob-
ject cannot release it to other applications without explicit opening
a secure channel. Secondly, communications between applications

through secure channels are protected and only available to the cor-
responding applications. Existing TC technologies such as LT and
TrustZone support curtained memory space and process isolation
and secure channels between processes. Also, separation of appli-
cation domains has been specified for trusted mobile platforms [9].

Another security requirement of a trusted platform is a trusted
path between an application and graphics and I/O channels. For
example, an application is authorized by the TRM to display a doc-
ument to a user. The channel from the application to the graphic
adaptor and driver must be protected such that no other process can
intercept and sniff, or illegally modify the content. Also, inputs
from keyboard and mouse must be protected. Again, the existing
TC technologies support these functions.

The secure kernel provides separation of execution between up-
per layer applications, and related services such as TCG Core Ser-
vices (TCS) and TCG Service Providers (TSP). The secure kernel
can be separated from the main kernel of the OS, such as the Nexus
in Microsoft’s Next-Generation Secure Computing Base (NGSCB)
[1], or a special component of the main OS, such as the Trusted
Zone access driver. A micro kernel architecture is proposed in [20].

Hardware

OS Kernel Space

OS User Space

Application2

Secure

Channel

Application1

Trusted

Reference

Monitor

Secure Kernel

Trusted

Hardware

protected runtime

environment

Sealed

Storage

TPM

Figure 1: A platform architecture

In this paper we abstract the underlying hardware and kernel
structure by simply assuming that these requirements and neces-
sary TC functions can be achieved by using existing technologies
in a platform. As an example, a LT-based platform is shown in
Figure 2. In LT, a TPM v1.2 is applied in the hardware layer with
extended CPU and chipset. A domain manager layer between the
kernel and hardware supports separation of application domains.
The state (integrity measurement) of the platform, including secure
kernel and running applications is stored in specific PCRs in the
TPM.

Hardware

OS Kernel Space

OS User Space

Application

Trusted

Reference

Monitor

Secure Kernel

Domain Manager

LaGrande

Technology
 PCR

TPM

PCR
 PCR
 PCR

Figure 2: A LT-based platform

3.2.1 Credentials
We presume the following set of credentials and the correspond-

ing certificate authorities, if necessary, are available.

• TPM attestation identity key (AIK) pair(PKTPM.AIK ,
SKTPM.AIK). An AIK is created by a TPM and used to
sign PCR values and present to a challenger in an attestation
protocol, or to sign a public key of an application running in
the platform for authenticity. Generally the private part of an
AIK is protected by a TPM with the storage root key (SRK),
and the public key certificate is issued by a trusted third party
such as a privacy CA. A TRM can have a number of AIKs
with certificates from different CAs.

• TRM asymmetric key pair(PKTRM , SKTRM). Each TRM
has this key pair for signature and encryption. The private
key is protected by the TPM in the platform such that only
the TRM on this platform can use it (by checking the in-
tegrity value). The public key is in a certificate format signed
by an AIK of the TPM.

• Application asymmetric key pair(PKAPP , SKAPP). Sim-
ilar to TRM, each application has an asymmetric key pair.
The private key is protected by the TPM, and the public key
is in form of certificate signed by an AIK of the platform.

• TPM storage key(s) to protect TRM’s credential and other
sensitive data with sealed storage, such as secrets and poli-
cies. This key must be either the SRK of a TPM, or a key
protected by the SRK.

3.2.2 Primitive Functions of a TRM
With the capabilities of TPM, a TRM has the following primitive

functions.

• TRM.Seal(H(TRM), x). This function seals datax by a
TRM which has integrity measurement ofH(TRM). Thex
can only be unsealed under this TRM when the correspond-
ing PCR value isH(TRM). The actual key used in the
sealed storage is a TPM storage key.

• TRM.UnSeal(H(TRM), x). This function unsealsx pro-
videdH(TRM) is the value that was used to sealx.

• TRM.GenerateKey(k). This function generates a secret
keyk.

• TRM.Attest(H(TRM), PKTRM) = {H(TRM)
|PKTRM}SKT P M.AIK . This function generates an attesta-
tion response by returning a certificate of the TRM’s public
key concatenated with its integrity value, signed with an AIK
private key of the TPM.

3.3 Architecture

3.3.1 Policy and Secret Distribution
The first step to control access to an object in a client platform is

the generation and distribution of the policy and the object encryp-
tion secret. Figure 3 shows a basic use case for our architecture
wherein a server1 (Alice’s platform) attests a client (Bob’s plat-

1Note that for comparison we use the term “server” here to denote
the source platform of objects and policies. A specific platform can
be a server platform or client platform at any time depending on the
role it is playing in a given P2P interaction.

form) and distributes policies and secrets to the client. The general
process is explained as follows.2

1. The TRM of Bob’s platform sends an access request message
to the TRM of Alice’s platform if it has not requested this ob-
ject before. Originally this request may be from an applica-
tion (APPB) in Bob’s platform, i.e., Bob invokesAPPB to
accessOBJ . The integrity measurementH(APPB) signed
by one AIK of the TPM in Bob’s platform may be included
in this message, which can be available to the TRM by an
attestation challenge in the same platform. Also, an object
identity (OBJ ID) may be included in this message.

2. The TRM of Alice’s platform verifies the integrity of the re-
questing application. If Alice trustsAPPB to enforce some
basic policies (e.g.,APPB will not save an object in plain-
text to any persistent storage) as well as additional object-
specific policies that Alice may specify (see next message),
Alice’s TRM sends attestation challenge message to Bob’s
TRM.

3. Bob’s TRM callsTRM.Attest(H(TRM), PKTRM) func-
tion, which returns a certificate of Bob’s TRM running hash
and its public key, signed by the private key of his platform’s
AIK, and sends back to Alice.

4. Alice verifies the attestation. If Alice trusts the platform (that
the platform has a genuine TPM and trusted booting) and the
running hash of TRM, Alice’s TRM generates a secret key
kOBJ , then encrypts this key along with the policy informa-
tion using the public key of Bob’s TRM, and sends to Bob’s
TRM.

Through the attestation challenge, Alice trusts that the TRM in
Bob’s platform can enforce the policy that Alice sent, which spec-
ifies the conditions that the object can be accessed in Bob’s plat-
form. For confidentiality of the policy and secret, the TRM in
Bob’s platform seals these items with its own integrity measure-
ment value. Secrets and policy information never leave the TRM’s
application domain, which is isolated from other application do-
mains and communications between them are protected as we show
shortly. Therefore, the protection capability of a client’s TRM can
be considered as an extended function of the server’s platform.

An assumption behind this architecture is that by verifying an
application’s integrity measurement, an entity knows particular ex-
pected properties are preserved by using this application. In an
organization or company environment, this is applicable when all
platforms and applications are administrated by the IT department.
For global and open environment, this may rely on some trusted
third party. For example, an independent CA certifies that software
with particular integrity value and patch version satisfies a partic-
ular property, and this CA is trusted by an attestation challenger
(e.g., Alice’s platform).

Secrets generated by a server platform and sent to a client plat-
form are used to encrypt protected objects during distribution. For
example, Alice encrypts the targetOBJ with kOBJ and distributes
it to Bob’s platform. An object can be distributed together with
a policy, or separately. Since it is encrypted and the key is only

2This description is not intended to be a detailed cryptographic pro-
tocol, but rather the high-level architecture of what such a protocol
needs to convey. A detailed protocol would require careful security
consideration with respect to well-known attacks such as replay
etc., and could be engineered around the high-level architecture us-
ing established cryptographic design principles.

Hardware

OS Kernel Space

OS User Space

Trusted

Reference

Monitor

Secure Kernel

Hardware

OS Kernel Space

OS User Space

Trusted

Reference

Monitor

Secure Kernel

Attest Challenge

APP

Alice's Platform

Attest Response

Policy & Secrets

Sealed

Storage

Trusted

Hardware

TPM

Trusted

Hardware

TPM

Access Request

Bob's Platform

Request:
{
OBJ_ID | H(APP

B

)
}

SK_{TPM_B.AIK}

Attest challenge

Attest response:
{H(B.TRM)
| PK_
B.TRM

}

}

SK_{
TPM_B.AIK}

 Verify attestation

 Generate object encryption key
k_
OBJ

 Seal k_OBJ

{k_
OBJ |
policy
}

PK_
B.TRM

1

2

3

4

Verify
H(APP

B

)

Seal
k_OBJ

and policy

Figure 3: Basic architecture for client-side policy enforcement

available to a TRM, the security of the object is preserved during
distribution.

An important property of secrets and policy is migratability. A
migratableobject can be re-distributed from a platform to another
platform, e.g., Bob can migrate the key and policy from his office
PC to home PC to view the object at home; while a non-migratable
object cannot be re-distributed. Another option is whether after
a re-distribution the key is retained on the original platform or
deleted. If the key is deleted after migration, the object can only be
accessible in single platform at any time. Both options should be
determined by applications and specified in policies. For example,
in a DCON application, a policy could specify that Bob can only
read a product development document on his office desktop, while
another policy could require that Bob can view a product manual
both on his office PC and home PC. Fine-grained policies can be
defined to specify more complex situations, such as Bob can re-
distribute an object to Charlie, who cannot re-distribute it to others;
or Bob can read an object on a fixed set of platforms.

3.3.2 Policy Enforcement
After secret and policy distribution, a subject on the client plat-

form can generate an access request by invoking an application or
process. The TRM in the platform checks the application’s integrity
state based on the policy information and makes an authorization
decision. Figure 4 shows the enforcement of a policy when an ac-
cess toOBJ is generated from applicationAPPB in Bob’s plat-
form. A high-level description is given below.

1. APPB sends “viewOBJ” request to the TRM, with the ob-
ject encrypted by the secretkOBJ distributed from the object
owner.

2. The TRM sends attestation challenge message toAPPB .

3. APPB responds with its running integrity measurement (one
or more PCR values) and its public key signed by the TPM’s
AIK.

4. The TRM compares the integrity measurement with a list of
expected values according to the policy. IfAPPB is trusted,

the TRM generates a session keyks and encrypts it with the
public key ofAPPB , then sends toAPPB . At the same
time, the TRM unseals thekOBJ , decryptsOBJ with kOBJ ,
encryptsOBJ with ks, and sends this back toAPPB . The
TRM updates the policy if necessary, e.g., to update a usage
count.

View request: {
OBJ
}

k_OBJ

Attest challenge

Attest response:
{H(APP

B

)
| PK_
APP

B

}

SK_{TPM
.AIK}

 Verify attestation

 Generate session key
k_s

APP

B
 TRM

1

2

3

4

{k_s
 }

PK_
APPB

, {OBJ}

k_s

 Update object attribute:

viewTimes=viewTimes-1

Bob's Platform

APP

B

Hardware

OS Kernel Space

OS User Space

Trusted

Reference

Monitor

Secure Kernel

Trusted Hardware

APP

B

Sealed

Storage

Figure 4: Policy enforcement within a platform

As we have mentioned, the applications (including TRM) in a
trusted platform are running in isolated domains and memory spaces.
There are many mechanisms to implement communication between
two application, such as inter-process communication (IPC). At the
same time, a general-purpose TRM manages resources (secrets and
policies) and supports multiple applications in a platform, and also
accepts requests from other platforms. A TRM is responsible for

<?xml version="1.0" encoding="UTF-8"?> <policyns
xmlns="http://www.example.com/tc-policy"

owner="example.com" filename="mypolicy">
<policy migratable="false">

<object_id type="object_type">object_ID</object_id>
<subject type="cert"> Bob </subject>

<subject type="role"> employee </subject>
<right name="view">

<param name="viewTimes" value=10/>
</right>
<condition type="TP">

<platform_id> Bob_office </platform_id>
<environment>

<title> APP_B</title>
<version> 1.0</version>
<integrity alg="sha1"> 0x487A3D... </integrity>
<certificate> 0xA48ED...<certificate>

</environment>
</condition>

</policy>

Figure 5: A policy example

ensuring that the resources that it protects do not leak into other
applications. Also, a TRM can be dedicated to a particular applica-
tion.

3.4 Policy
A policy is created by an object owner (i.e., Alice in Figure 3),

distributed to a client platform, and enforced by the TRM in that
platform. Generally a policy is sealed by a TRM. Logically we can
assume that for each object there is a policy bundled with it.

3.4.1 Policy Specification
Formally, a policy states that an object can be accessed by a sub-

ject under what kind of conditions. A condition is one or more
sets of platform configurations. A platform configuration consists
of a trusted platform attestation identity name (represented by an
AIK certificate) and an application’s integrity measurement with
expected properties. A policy may explicitly specify that a spe-
cific property of the accessing application must be satisfied. For
example, for confidentiality an application cannot save an object
in plaintext to any persistent storage, or cannot open any network
socket. As we have mentioned, this can be certified by a trusted
third party.

Figure 5 shows an XML specification of a policy. The “mi-
gratable” attribute with boolean value of the<policy> entry states
whether or not this policy can be migrated to another platform. A
<subject> entry specifies attributes required for the accessing sub-
ject, such as identity certificate and role name. Multiple<subject>
entries may appear in a policy, all of which have to be satisfied in an
access. A<right> entry can have some parameters, such as, an ob-
ject can be viewed 10 times (viewT imes attribute with value 10).
A <condition> with type “TP” specifies a platform environment,
including a running application’s state, such as version, integrity
hash, conformance certificate, etc. A conformance certificate is is-
sued by the vendor of the application software and certifies a set of
properties of the software.

More complex policies can be specified according to an object
owner’s requirements. For example, if a policy is migratable, then
the possible platforms that a policy may be migrated to can be spec-
ified in the policy.

3.4.2 Policy Revocation
A policy revocation can happen because of any of the following

reasons.

• Trust revocation of a requesting applications, i.e., the in-
tegrity measurement of the application is not trusted by an
object owner any more.

• Trust revocation of a TRM, i.e., a TRM software is updated
or new patch is available, and the integrity value of the old
version may be revoked.

• Trust revocation of a platform, i.e., a platform attestation
identity is not trusted by an object owner any more, either
because of the trust revocation of the platform itself, or be-
cause of the trust revocation of a privacy CA.

There are two approaches for policy revocation in our architec-
ture:pushandpull, based on the mechanism of policy update. With
“push” approach, when any revocation happens, an object owner
(Alice) pushes an updated policy message to the TRM of a client
platform (Bob) that the object is located. A log of object distribu-
tion may be needed in a platform to record the location of an object.
For “pull” approach, a TRM checks the source platform of the ac-
cessing object for policy updates, which can be performed periodi-
cally. Since there is no guarantee that both platforms are available
at the same time after secret and policy distribution, both mecha-
nisms may have some delay in updating policy. An instant policy
revocation may require either both platforms are online, or there
is an online policy service component such that each time a TRM
tries to authorize an access, it checks the policy in the online com-
ponent. Note that trust revocation is a different concept from the
change of an integrity value, i.e., an application is illegally mod-
ified by a virus or malicious software such that its measurement
value does not match that in a policy, and its access is denied.

3.5 Support for Policies with User Attributes
In the architecture described in 3.3, access control is based on

the properties of platforms and applications only, which are directly
supported by trusted computing technologies. In practice an object
owner may want to control not only under the platform and applica-
tion, but also by which user an object can be accessed. In general a
user is associated with one or more security attributes, such as a role
name or a clearance level. As specified in Figure 5, a subject type
is an attribute name, such as “role”, and the value is a role name. In
this section we extend the basic architecture to support user-based
access control policies, as a complement to platform-based poli-
cies. Specifically, we implement role-based access control [25] in
our architecture with the mechanism of credential migration pro-
vided by TPM.

3.5.1 Identity Credential of a User
To import user identity into a platform, we assume that in each

platform there is a User Agent (UA). A UA can be an independent
service, or a component of a service that manages user authentica-
tions and identities. Generally a UA is controlled and owned by a
platform administrator. A platform administrator may or may not
be a TPM owner. Also, a platform user may or may not be a TPM
user3 [6].

Like a TRM, a UA in a platform has a credential(PKUA, SKUA).
We assume that each user has at least one identity key pair(PKu,
SKu), which is a migratable object protected by a TPM, and wrapped
with the UA’s credential in the protected object hierarchy of the
TPM. A migratable key can be created by the local TPM (or some

3A TPM user is an entity that can load or use TPM objects such
as keys, which is not necessarily a human, but also could be an
application or service. A TPM user can be created either by the
TPM owner or by other TPM users.

other platforms) and can be securely migrated from one platform
to another platform with the authorization of the key owner. For
identity key, the key owner is the user.

Various authentication mechanisms may be provided by a plat-
form, such as password, smart card, or biometric technology. Other
online authentication mechanisms can also be used. Only a cor-
rectly authenticated user can be trusted to access his/her credentials
and related services on a platform. For example, recently proposed
TMP specification [9] requires authentication between a user and
a trusted mobile device. Authentication mechanisms can be inte-
grated into the UA in a platform, or the UA can obtain authentica-
tion information from other components through secure protocols.

3.5.2 Identity and Role Certificates
Just like the privacy CA for certificate of a platform attestation

identity key, a user can be certified by a trusted third party (an iden-
tity CA). At the same time, a user is assigned a role, which is also in
form of a certificate by a role server. A role certificate is based on a
user’s identity and contains the user’s role name. There are several
mechanisms to obtain identity and role certificates for a user. Fig-
ure 6 shows an approach by using the UA in a platform, utilizing
TC functions. The general process is described as follows.

1. The UA sends the public key of a user (PKu), its own pub-
lic key (PKUA) signed with an AIK of the TPM, and its
integrity measurement (H(UA)) to the identity CA, signed
with its private key. Note that the public key of AIK is sup-
posed to be certified by a privacy CA.

2. The identity CA verifies the public key certificates of UA and
AIK, and some other related information of the user.4 If all
information is valid, identity CA issues a certificate for the
identity public key of the user.

3. The UA sends the identity certificate, signed by the UA’s pri-
vate key, along with the integrity value and public key of UA,
to the role server.

4. The role server verifies the certificate and other necessary in-
formation about the user, and issues a role certificate by bind-
ing some information in the identity certificate, and sends
back to the UA.

A implicit requirement behind this approach is that the identity
CA trusts the privacy CA that certifies the AIK of the TPM. Further-
more, if a authentication service is applied in the platform, identity
CA trusts this service and UA by attesting.

We apply the approach of Park and Sandhu [19] for the bind-
ing of a role certificate and an identity certificate, which requires
trust between the identity CA and the role server. As shown in
Figure 7, a role certificate includes information about a user’s role
and some other information such as certificate serial number, cer-
tificate issuer name, etc. In addition, a binder block is included
which selectively includes some information from the identity cer-
tificate, such as the subject name, public key information, identity
certificate serial number, or the identity CA’s signature in the cer-
tificate. The signature-based binding is tightly-coupled since each
change of the identity certificate may require a re-issuing of the role
certificate, while other bindings are loosely-coupled since a role
certificate only includes some selected components of the identity
certificate. If these components are not changed, the role certificate
4A registration authority may be available to accept an certificate
application, which requires some other information of a user (e.g.,
student ID, or social security number). For simplicity we ignore
this component here.

User

Agent

Hardware

OS Kernel Space

OS User Space

Trusted

Reference

Monitor

Secure Kernel

Trusted

Hardware

TPM

{PK_u, H(UA),

{PK_UA}

SK_TPM.AIK

 } }

SK.UA

{PK_u}

SK.CA

{PK_u}

SK.CA

, H(UA),

{PK_UA}

SK_TPM.AIK

 } }

SK.UA

{{PK_u}

SK.ICA

, Role}

SK.RS

Identity CA
 Role Server

Figure 6: Obtain role certificate

does not have to be re-issued. Which method is used depends on
applications. For example, if an identity certificate is frequently re-
newed, and each time the user name is the same, then binding with
the user name is a better choice. Additional details on certificate
binding can be found in [19].

Identify Info

name, email, SSN

Public Key Info

key, algorithm, length

Other Info

serial no, issuer,

valid period,
����ICA's Signature

Identity

Certificate

Binder Info

Identity

Public Key

Other Info

Attribute Info

Role name,

Group, Title

Other Info

serial no, issuer,

valid period,
����Role Server's Signature

Role

Certificate

Figure 7: Binding a role certificate with an identity certificate

3.5.3 Role-based Policy Enforcement in TRM
To enforce role-based policy in a platform, a TRM first sends

attestation challenge message to the UA in the local platform, and
UA responds with attestation information. If the TRM trusts the
running UA, it sends requesting message for role information of the
user that invokes an application to access an object (the user con-
text is provided to the TRM by the requesting application), which
is either issued by a role server or migrated from another platform
(discussed shortly). The UA sends back the role certificate of the
user. Before this, the UA may also challenge the TRM to verify
the TRM’s integrity. On behalf of a user, the UA may submit the
proof-of-possession for the corresponding private key of the iden-
tity public key, through an appropriate protocol. This process is
similar to that described in Section 3.3.2, except that a role certifi-
cate can be sent to TRM directly, since it is not security sensitive.

3.5.4 Migration of User Credentials
The concept of an identity of a user is similar to the attestation

identity of a TPM. An attestation identity key is flagged as non-
migratable when created, since it must be tightly bound to a sin-

User

Agent

Hardware

OS Kernel Space

OS User Space

Trusted

Reference

Monitor

Secure Kernel

Trusted

Hardware

TPM

User

Agent

Hardware

OS Kernel Space

OS User Space

Trusted

Reference

Monitor

Secure Kernel

Trusted

Hardware

TPM

Platform 1
 Platform 2

User Credential

Migration

Attest challenge

Attest response:
{H(UA2),
PK_
UA2
}

SK_
TPM2.AIK

 Verify attestation

 Unwrap SK_u

{SK_u}

PK_UA2

1

2

3

Wrap SK_u

Figure 8: Migration of user identity between platforms

gle platform. In contrast a user can generally access a number of
platforms, such as a desktop and a laptop in his company, and a
home PC. Therefore a user identity key is a migratable object, and
can be copied from one platform to another under the authoriza-
tion of the user. In general the restriction on the set of the des-
tination platforms that an identity key can be migrated to is de-
termined by the identity owner (user). Some restrictions may be
required by applications or global system policies. For example, a
development engineer’s identity credential can only be located in
platforms within the department. Some critical applications may
require that an identity credential is non-migratable, i.e., a payroll
officer’s identity key cannot leave a particular platform.

There are several approaches to migrate credentials between plat-
forms. The proposed TPM specification provides a mechanism to
copy a migratable key object protected by a TPM to another TPM.
We apply this in our architecture. A simple example is shown in
Figure 8. It is “simple” because the identity key is copied from the
source platform to the destination platform directly, which requires
both platforms to be simultaneously available. For general case,
intermediary entities may be needed, which is also supported by
TPM specifications [8].5

The migration process is described as follows.

1. The UA of platform 1 (source) sends attestation challenge to
the UA of platform 2 (destination).

2. The UA of platform 2 responds to the attestation challenge
with the corresponding PCR value and its public key, signed
with the AIK of the TPM in platform 2.

3. The UA of platform 1 verifies the attestation. If platform
2 and its UA are trusted, the UA of platform 1 unseals the
identity key and encrypts it with the public key of the UA in
platform 2, and sends back to platform 2.

4. The UA in platform 2 decrypts the received identity key and
seals it with a storage key of the local TPM.

5Note that we focus on the migration of the private part of an iden-
tity key, since the public part is not security sensitive. But a public
key and role certificate may be privacy sensitive, which needs pro-
tection. For simplicity we ignore this aspect in this paper.

4. APPLICATIONS
In this section we show how to apply the architecture introduced

in Section 3 in various applications. First we show a document dis-
semination control application between platforms and users; then
we illustrate how to protect end-to-end communication in a P2P
VoIP application.

4.1 DCON
Dissemination control is a fundamental problem in access con-

trol. Our trusted access control architecture can be used to enforce
some DCON policies such as “Alice givesOBJ to Bob’s office
desktop, where it can be viewed 10 times” (P1). Further we can
extend it to include user role attribute in the policy, such as “Al-
ice givesOBJ to Bob’s office desktop, where it can be viewed
10 times only by employees of the company” (P2). Finally we
consider the platform roaming, such as “Alice givesOBJ to Bob,
whereby it can be totally viewed 10 times on office desktop and
laptop” (P3).

4.1.1 A Simple DCON Policy
Policy P1 is platform-based only and can be enforced with the

basic architecture of Figure 3 with policy specified in Figure 5 ex-
cept that there is no<subject> entry. A parameterviewT imes is
defined for<right> to record the available times that the object can
be viewed on that particular platform,. The value of this parameter
is updated by the TRM in Bob’s platform whenever an authorized
access takes place. The policy is non-migratable since Bob cannot
distribute it to other platforms.

4.1.2 Including Role in Policy
Policy P2 includes a role attribute of a user such that every “em-

ployee” in the company can view the document on Bob’s platform.
The policy is similar to that shown in Figure 5 except there is a
single <subject> entry with type “role” and value “employee”.
The architecture proposed in 3.5 can be used to enforce this pol-
icy. Also, the policy is non-migratable.

4.1.3 Platform Roaming
A user can access an object from different platforms, which is

called platform roaming. In the very simple case, both platforms
are available at the same time, and the roaming can be done with

direct migration of the key and policy from one platform to the
other provided both of them are “migratable”. The mechanism is
similar to identity migration in Section 3.5. For more general cases,
if two platforms are not available at the same time, one or more in-
termediaries may be involved, such as a centralized online service.
In both cases, since Alice is supposed to be the object’s owner, the
TRM in Bob’s office PC needs to get authorization of Alice be-
fore migration. For example, Alice can specify a set of platforms
(i.e., expected integrity values of TRM signed by the AIK of plat-
forms) that can receive the object specified in the policy, and the
source TRM is trusted to enforce this policy by checking the desti-
nation platform. Also, an online policy service component can be
introduced in the architecture to support platform roaming. This
component should be trusted by object owner to store and update
policies.

A problem of platform roaming is to maintain the consistency of
possible policy updates in different platforms for a single object.
For example, in policy P3, the policy specifies Bob can view the
object in two platforms with a total usage of 10 times. If Bob reads
once in his laptop by migrating the policy and secret from his desk-
top, the policy is updated (viewT imes decreases by one). Then
when Bob returns to viewOBJ in the desktop, the policy should
be synchronized to count the access in his laptop. A simple solution
is that each time when a platform roaming happens, a policy migra-
tion is required. This is inconvenient for a user. Another solution
is an online trusted policy service component, and each update is
performed on this component.

4.1.4 Secure redistribution
All the above DCON policies are for one-step user-to-user dis-

semination. Our architecture can support multi-step dissemination
control by specifying each step’s information in the policy. For ex-
ample, Alice distributesOBJ to Bob and allows Bob to distribute
OBJ to Charlie. Alice puts both Bob’s and Charlie’s information
(platform, running environment, and user attributes) in the policy
and distributes to Bob. The TRM in Bob’s platform can enforce
the policy by checking Charlie’s platform and user attributes upon
requests. Again, a trusted online policy component can be another
option to enforce multi-step dissemination control.

4.2 P2P Voice-over-IP Applications
While considerable work has been done in secure routing and

network connections in P2P, we focus on the trusted end-to-end
communication between platforms. Since each voice stream is en-
crypted by the initial platform, we ignore the security problem in
intermediate nodes. Hence, the main security concern lies on the
end platforms. A general requirement is the realtime protection for
a VoIP conversation in a platform. Further, secure storage and for-
warding of a voice object is becoming important with applications
such as voice mail.

4.2.1 Realtime Protection of Conversation
Realtime protection requires that voice streams in a platform are

not eavesdropped or illegally recorded by other processes during a
conversation. Figure 9 shows an architecture for an end-to-end con-
versation. In addition to domain and process isolation in runtime
space, another requirement for VoIP is the secure channel between
the client application and sound card driver. Specifically, the TRM
has to make sure that the communication between the client appli-
cation and sound card is not compromised. TC technologies such
as LT support a trusted channel between an application and input
or output devices [4].

For VoIP applications, the distribution of voice stream encryp-

tion key and policy between TRMs is similar to that in Section
3.3. In addition to the client application, the integrity of the loaded
sound card driver is also attested and verified by the TRM in the
sender’s6 (Alice) platform. Mutual attestations may be needed if
the receiver (Bob) wants to trust the sender’s platform and appli-
cation, since the audio conversation is bidirectional. For simplicity
we only explain one-way object flow. In the sender platform, the
VoIP client application accepts audio streams from the sound card
through a secure channel with the device driver. An audio stream is
encrypted by the TRM with the object encryption key (kOBJ), and
sent to the client application on the receiver side. The client appli-
cation on the receiver side receives the encrypted audio object and
sends to TRM for decryption, then sends to the sound card through
the secure channel. The details of the policy enforcement in the
receiver side is shown in Figure 10 and described as follows.

1. The TRM challenges and gets the attestation response from
the client application.

2. If the integrity verification is valid according to correspond-
ing policy, the TRM generates a secret keyks and sends it to
the client application.

3. The TRM challenges and gets the attestation response from
the sound card device service (driver).

4. If the integrity verification is valid according to correspond-
ing policy, the TRM sends secretks to the sound card ser-
vice. After this, the client application and sound card service
share the secret keyks, which is used for secure stream flow
between them.

5. If subject information is specified in the policy, the TRM
sends attestation challenge message to the UA, along with
the expected information of the user that invokes the VoIP
client application.

6. The UA returns an attestation response message and related
authentication information (attributes) of the user. If the TRM
trusts the UA, and the user attributes satisfy the correspond-
ing policy, the conversation is authorized, and the client ap-
plication can receive and send voice streams now.

7. Upon receiving an encrypted voice stream, the client appli-
cation sends it to the TRM, the TRM decrypts it with the
secret key distributed from the sender’s TRM, encrypts with
ks, and sends back to the client application. The client ap-
plication re-orders (due to different delays of streams from
the network) the receiving streams and sends to the sound
card service, which sends to the hardware for playing. (This
step is shown by the dotted lines in Figure 10.) The process
of sending streams to the other platform is similar. Specifi-
cally, the client applications generates the streams, encrypts
with the session keyks, and sends to the TRM. The TRM de-
crypts it, re-encrypts with the object secrets shared with the
TRM of the other platform (kOBJ), and sends back to the
client application, which deliveries to the network in turn.

Different approaches can be implemented for user-based authen-
tication and authorization. For example, in instant message appli-
cations like Skype and MSN Messenger, the UA is integrated with
the client application, through which a user can login with id and

6We user “sender” to refer the side that initializes a conversation,
and “receiver” the other side. Actually during a conversation both
sides send and receive voice streams.

Trusted

Reference

Monitor

Secure Kernel

VoIP client

application

Alice

Sound

Card

Driver

Secure

Channel

Trusted

Hardware

TPM

User

Agent

Trusted

Reference

Monitor

Secure Kernel

VoIP client

application

Sound

Card

Driver

Secure

Channel

Trusted

Hardware

TPM

User

Agent

Bob

Figure 9: Secure VoIP architecture

password by communicating with centralized login server for au-
thentication. For a cellphone platform, SIM card may be applied
for user authentication.

Note that the shared secretks among the TRM, client applica-
tion, and device driver is an one-time key; that is, it is negotiated
for each conversation. The object secret (kOBJ) negotiated be-
tween two TRMs can be one-time if there is no storage and re-play
of the audio data after a conversation, otherwise it should be sealed
by the TRM along with the policy for re-play. If it is one-time,
kOBJ can be sent to the client application by the TRM for better
performance, so the client application does not need to send re-
ceived streams to the TRM for decryption and encryption. But the
attestation challenge of a client application by a TRM is necessary
before allowing a conversation.

Trusted

Reference

Monitor

VoIP client

application

Sound

Card

Driver

1

2

3

4

7

User

Agent

5
 6

7

Figure 10: VoIP policy enforcement in a platform

4.2.2 Secure Storage and Forward of Voice Mail
An encrypted voice mail object can be saved and only available

to an authenticated entity controlled by a TRM according to cor-
responding policy. The secret and policy are generated and dis-
tributed from original platform to a client platform, which is sim-
ilar to the DCON architecture we have illustrated. As mentioned
above, the additional requirement of a TRM to authorize playing
a voice object is that the integrity of sound card driver has to be
attested, and secure channel is constructed from sound card to the
application, such as client mail process.

Secure forward of voice mail is similar to multi-step DCON. Not
only a platform and TRM are attested before a secret and policy are
distributed, the policy should include the expected integrity mea-
surement value or properties that a client application and sound
card driver. Fine-grained control policy for secure forward can be
defined by an object owner.

5. DISCUSSION
The policy update in a TRM is the result of an access action,

e.g., the available number of times that an object can be viewed
in a platform is decreased by one after each authorized use. Up-
date rules should be specified by a policy or object owner, which is
referred as the attribute updates in UCON policies [27]. For sim-
plicity we ignore this aspect in this paper. Another type of policy
update concerns the change of authorization requirement, which is
similar to the policy revocation and requires the availability of the
policy owner. All these are related to a policy administration model
and architecture, which is out of the scope of this paper.

We do not include a centralized control component in our ar-
chitecture. As we have mentioned, for some functions, minimum
online component such as policy service may be needed. These
include instant policy revocation, object access log, synchronized
policy update in different platforms, and centralized user identity
storage. Our architecture just provides a core part for client-side
access control.

In the context of OM-AM framework for security engineering
[24], we focus on the architecture layer in this paper. Some support-
ing components and mechanisms, such as policy administration and
the user-role assignments for role-based access control policies, are
out of the scope of this paper.

6. RELATED WORK
In this paper we use an abstract platform beyond the underly-

ing mechanisms of TC, including the hardware and kernel archi-
tecture, and the attestation mechanism. Our architecture focus on
the application layer. Previous work has been presented to improve
the primitive functions of TC. A trusted platform architecture is
proposed in [20], in which PERSEUS kernel is applied on top of
trusted hardware such as TPM. Access control mechanisms are ap-
plied in a resource management layer beyond the kernel for system-
wide policies. In [21], a property-based attestation mechanism is
proposed, which extends the architecture of TCG trusted comput-
ing model and includes the property values of the remote side in an
attestation. Similarly, in [16] a virtual machine based attestation is
presented to capture the behaviors of remote entity. All of these can
be applied as concrete underlying TC mechanisms in our approach.

Our approach is different from trusted operating systems, such as
the SELinux [18], the Trusted Solaris, and the TrustedBSD projects.
These projects enhance the security consideration in operating sys-
tem layer by inserting authorization framework into the kernel to
support access control modules, such as mandatory access control,
multi-level security, etc. In this paper we enforce access control
policies in application layer by leveraging underlying trusted com-
puting functions.

An attestation-based architecture is presented in [22] to control
access to cooperation server from remote clients. A policy agent
is located in a client platform and verifies connection from client
to server. The client system is attested with integrity measurement
mechanism in Linux platform with TPM so trust is provided to the
server that policies can be enforced correctly by the policy agent in
the client side. The main difference between this and our work is
that, in our approach, a policy is aiming to protect an object that is
distributed to client platforms, and is enforced by a general-purpose
trusted reference monitor. That is, our architecture is more flexible
for highly distributed computing systems such as decentralized dis-
semination control and VoIP applications.

An application of TC to protect pirates of entertainment prod-
ucts in P2P content distribution network is presented in [26]. The
main idea is to use remote attestation to control a peer’s joining
the network and publishing contents. Only certified platforms and
application that are trusted by the peers in the network can use the
resource of a P2P system. This work and ours complement each
other, since we focus on the enforcement of security policies in the
platform of a peer, while their work aims to control a peer’s join-
ing or using resources in the system. Particularly, when a genuine
peer joins the network and use the resources, the usage of an object
in that platform may need further protection, such as realtime pro-
tection during playing media data, and re-distribution control for
sensitive documents.

7. CONCLUSION
We present an architecture with trusted computing technology to

support peer-to-peer based access control. Different from most tra-
ditional access control models and systems that focus on user prop-
erty based policies, our approach considers the integrity and trust of
platforms and applications that are used by a user to access an ob-
ject, which is vulnerable from increasing software-based attacks in
client platforms. By using proposed trusted computing technolo-
gies, a reference monitor in a platform can act as an agent of an
object owner to enforce access control policies, which states that
an object can only be accessed in a genuine platform with applica-
tions in valid states, such as integrity and configuration. General
policies with user security attributes such as role-based access con-
trol can also be supported in our architecture by binding identity
and attribute in a certificate and being protected by trusted hard-
ware. Applications of the architecture in various domains show
flexibility of deployment and enhancement of overall security in
client platforms.

Acknowledgement
The authors thank Kumar Ranganathan and Carlos Rozas of Intel
Corporation for valuable discussion and input which have consid-
erably improved the quality and technical accuracy of this paper.

8. REFERENCES
[1] Next-generation secure computing base.

http://www.microsoft.com/resources/ngscb.
[2] TCG Specification Architecture Overview.

https://www.trustedcomputinggroup.org.
[3] Trusted platform module (TPM) security policy.

http://www.trustedcomputinggroup.org.
[4] LaGrande technology architecture. Intel Developer Forum,

2003.
[5] Symantec internet security threat report, Trends for July 1,

2003-December 31, 2003.

[6] TCG Software Stack (TSS) Specification Version 1.10.
https://www.trustedcomputinggroup.org, 2003.

[7] TCPA resources, IBM Watson Research.
http://www.research.ibm.com/gsal/tcpa, 2003.

[8] TPM Main Part 1 Design Principles Specification Version
1.2. https://www.trustedcomputinggroup.org, 2003.

[9] Trusted Mobile Platform, Software Architecture Description.
http://www.trusted-mobile.org/, 2004.

[10] TrustZone: Integrated hardware and software security:
Enabling trusted computing in embedded systesm.
http://www.arm.com/products/CPUs/arch-trustzone.html,
2004.

[11] B. Balacheff, L. Chen, S. Pearson, D. Plaquin, and
G. Proudler.Trusted Computing Platforms: TCPA
Technology in Context. Prentice Hall PTR, 2003.

[12] M. Baron. Bulverde and Marathon turn cellphones into PCs.
Microprocessor Report, July 2004.

[13] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous
attestation. InProc. of ACM CCS, 2004.

[14] Department of Defense National Computer Security Center.
Department of Defense Trusted Computer Systems
Evaluation Criteria, December 1985. DoD 5200.28-STD.

[15] Department of Defense National Computer Security Center.
Trusted Database Interpretation of the Trusted Computer
Systems Eval uation Criteria, April 1991. NCSC-TG-021.

[16] V. Haldar, D. Chandra, and M. Franz. Semantic remote
attestation - a virtual machine directed approach to trusted
computing. InProc. of the Third virtual Machine Research
and Technology Symposium. USENIX, 2004.

[17] Henry Levy. Capability-based computer systems. Digital
Press, 1984. Available at
http://www.cs.washington.edu/homes/levy/capabook/index.html.

[18] P. Loscocco and S. Smalley. Integrating flexible support for
security policies into the linux operating system. InProc. of
USENIX Annual Technical Conference, June 25-30.

[19] J. S. Park and R. Sandhu. Binding identities and attributes
using digitally signed certificates. InProc. ACSAC, 2000.

[20] A. Sadeghi and C. Stuble. Taming trusted platforms by
operating system design. InInformation Security
Applications, 4th International Workshop, LNCS 2908, 2003.

[21] A. Sadeghi and C. Stuble. Property-based attestation for
computing platforms: Caring about properties, not
mechanisms. InProc. of NSPW, 2004.

[22] R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn.
Attestation-based policy enforcement for remote access. In
Proc. 11th ACM CCS, 2004.

[23] J.H. Saltzer. Information protection and the control of
sharing in the Multics system.Communications of the ACM,
17(7), 1974.

[24] R. Sandhu. Engineering authority and trust in cyberspace:
The OM-AM and RBAC way. InProc. of Fifth ACM
Workshop on Role-based Access Control, 2000.

[25] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role
based access control models.IEEE Computer, 29(2), 1996.

[26] S. Schechter, R. Greenstadt, and M. Smith. Trusted
computing, peer-topeer distribution, and the economics of
pirated entertainment. Inthe Second International Workshop
on Economics and Information Security, 2003.

[27] X. Zhang, J. Park, F. Parisi-Presicce, and R. Sandhu. A
logical specification for usage control. InProc. of 9th ACM
Symp. on Access Control Models and Tech., 2004.

