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ABSTRACT In a smart grid, each residential unit with renewable energy sources can trade energy with

others for profit. Buyers with insufficient energy meet their demand by buying the required energy from

other houses with surplus energy. However, they will not be willing to engage in the trade if it is not

beneficial. With the aim of improving participants’ profits and reducing the impacts on the grid, we study

a peer-to-peer (P2P) energy trading system among prosumers using a double auction-based game theoretic

approach, where the buyer adjusts the amount of energy to buy according to varying electricity price in order

to maximize benefit, the auctioneer controls the game, and the seller does not participate in the game but

finally achieves the maximum social welfare. The proposedmethod not only benefits the participants but also

hides their information, such as their bids and asks, for privacy. We further study individual rationality and

incentive compatibility properties in the proposedmethod’s auction process at the game’s unique Stackelberg

equilibrium. For practical applicability, we implement our proposed energy trading system using blockchain

technology to show the feasibility of real-time P2P trading. Finally, simulation results under different

scenarios demonstrate the effectiveness of the proposed method.

INDEX TERMS Energy trading, peer-to-peer, demand response (DR), real-time market, Stackelberg game,

blockchain.

I. INTRODUCTION

Electricity trading has changed in recent years with the advent

of smart grid technologies for the following reasons. First, the

increasing availability of distributed generators with intelli-

gent infrastructure enables the residential consumer to har-

ness energy and inject it into the distribution system. This

advancement introduces new grid participants and provides

more decentralization to the smart grid. Second, the larger

number of participants and wide distribution area have led

to more efficient management of energy trading systems,

which have generally become interested in the roles of a

central entity, i.e., auctioneer [1]. The auctioneer is generally

responsible for energy trading systems, where their role is
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to manage all participants and support optimized electricity

purchasing and selling.

In practice, each user always tries to increase their profit.

The demand response (DR) program can reduce cost or max-

imize benefits by optimizing energy consumption according

to variations in price. Use of a renewable energy, i.e., pho-

tovoltaic (PV), system is another way to improve the user’s

benefits. The user can reduce demand on the grid by using

renewable energy and sell excess energy to other residen-

tial units (RUs) or the grid. Therefore, on a small scale,

energy trading in the community is gradually growing, with

prosumers as residential units and PV renewable resources

increasingly being utilized. Each participant can trade elec-

tricity in peer-to-peer (P2P) manner [2].

However, prosumers may not be willing to participate as

energy consumers in a P2P electricity trading market due

to concerns about sharing private info, i.e., satisfaction in
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their energy demand, to the auctioneer [3], [4]. Thus, the

demand for electricity and the supply of renewable energy

can be unbalanced among RUs because participants’ energy

is traded with the grid instead of other prosumers due to con-

cerns about privacy.Moreover, to facilitate efficient exchange

of energy among all participants, the energy trading system

must meet requirements for reliability (to prevent data tam-

pering and data leakage), security (to protect participants’

identities), and scalability (to ensure that an increasing num-

ber of participants can join). Thus, it is essential to design

a secure decentralized energy trading system in such a way

that users’ behavior can be protected and the system remains

manageable with a large number of prosumers.

To this end, we propose an energy trading system with

multiple prosumers based on game theory and blockchain

techniques without revealing each user’s private information

such as bids, asks, amount of energy, and user behavior. The

main contributions are summarized as follows:

1) We propose a real-time P2P energy trading system

that simultaneously considers DR capability and PV

system usage tomaximize social welfare using a double

auction-based game theoretic approach.

2) We formulate the energy trading as a Stackelberg

non-cooperative game between prosumers and the

auctioneer. In interactions, the prosumers as buyers

determine their energy requirements by solving an opti-

mization problem to maximize social welfare. At the

same time, the auctioneer achieves the maximum aver-

age social welfare per seller.

3) We prove the existence of a unique Stackelberg Equi-

librium (SE) which is the optimal solution for the for-

mulated optimization problem. Besides, we prove the

individual rationality and incentive compatibility of our

proposed method. Simulation results show that partici-

pants get more benefit than in two existing methods.

4) We implement our proposed algorithm using blockchain

technology, which shows the feasibility of this P2P

energy trading system as well as the enhanced trading

security and privacy protection. We further measure

throughput, latency, and running time to show the

effectiveness of this blockchain-based energy trading

system.

The remainder of this paper is organized as follows.

In Section II, we provide a literature review on P2P energy

trading and blockchain technology. In Section III, the prob-

lem is defined and mathematical models representing the par-

ticipants are constructed. Section IV provides our proposed

energy trading algorithm for residential users based on double

auction and game theory. Section V provides the blockchain

implementation. Section VI discusses the simulation results,

and Section VII concludes the paper.

II. LITERATURE REVIEW

P2P energy trading has been investigated extensively [5]–[14].

In [5], the authors studied P2P energy sharing by modeling

the amount of shared energy and internal energy trading

prices using the Lyapunov optimization method and Stack-

elberg game approach. In [6], a P2P energy trading model for

smart houses was proposed. The objective of the proposed

approach is to optimizemicrogrid energy cost; thus, prices are

determined so as to minimize total energy cost. The authors

in [7] introduced different P2P energy sharing markets for

residential customers using bill sharing (BS) and mid-market

rate (MMR). A canonical coalition game, in which prosumers

cooperate to trade energy and theMMR is utilized as a pricing

mechanism to ensure stability, is introduced in [8] and com-

pared to the Feed-In-Tariff scheme by participating in P2P

energy trading. In [9], the researchers proposed a P2P trading

mechanism for sharing energy storage ownership between

multiple shared facility controllers (SFCs) and a residential

community. In [10], the authors proposed P2P energy trading

considering both optimality and fairness among prosumers in

a cooperative market. The authors in [11] proposed a novel

mechanism that performs purchase and sale of electricity

automatically with increased control to householders in the

P2P electricity market. In [12], a biding strategy using a

Bayesian game theory that ensures efficient and fair bidding

of each buyer in P2P electricity trading was introduced. The

authors in [13] investigated the feasibility of P2P energy

trading in a grid-tied power networks and proposed a practical

P2P trading scheme considering network constraints. In [14],

the authors proposed a P2P energy exchange scheme for

residential prosumers with low-voltage electricity network

constraints. Although all of the abovementioned papers are

notable, they do not consider DR.

In the smart grid community, a consumer can continually

monitor electricity prices through an energy management

system (EMS). Consumers respond to dynamic pricing to

maximize their respective benefits and/or minimize their

electricity bills. For this reason, researchers have focused on

demand response side (DRS) programs [15]–[20]. In [15],

the authors proposed an incentive-based DR program which

considers a reasonable amount of load change as the incen-

tive. The authors in [16] present a stochastic bottom-up

model designed to predict changes in household electricity

use. However, the authors in [15] and [16] do not take user

behavior into account. In [17], the authors proposed a great

approach to protecting confidential user information that uses

an iterative double auction in the microgrid. They also maxi-

mize the social welfare, as buyers aim to optimize their energy

usage utility and payment amount whereas sellers maximize

their energy consumption and reimbursement. The authors

in [18], [19] used a Stackelberg game to maximize the benefit

to participants of P2P energy trading considering DR without

revealing satisfaction of energy demand in users’ houses. The

proposed method maximizes the benefits to all participants.

The competition among utility companies is modeled through

the Stackelberg game and the interactions between end-users

aremodeled as an evolutionary game. The authors in [20] pro-

posed a price-based DRmethod with energy sharing between

prosumers with their own PV systems in the microgrid.
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An iterative algorithm is used to identify the internal price

and minimize the costs to all prosumers. Nevertheless, these

implementations [17]–[20] do not consider secure platform

data exchange and scalability of the energy trading system

as they make it easy to explore personal data and show low

system reliability. To address these limitations, we propose a

P2P trading mechanism for a distributed network that makes

use of blockchain technology.

A blockchain is essentially a distributed open ledger in

which transactions are recorded openly in a decentralized

manner [21]. Each transaction is ordered and stored in a

block with a timestamp. The first blockchain software was

implemented with Bitcoin protocol [22]. The user generates

transactions and holds them in the public ledger, then the vali-

dating nodes (miners) compete to mine a group of the transac-

tions into blocks and earn a reward. This approach has many

limitations, including its significant energy consumption, the

scalability of the number of transactions per second (tps),

privacy concerns regarding use of a public ledger, and single-

purpose application. All of these factors are very important

when attempting to apply blockchain to a P2P energy trading

system since the P2P energy trading system must support

a large number of prosumers, ensure user privacy, and pro-

vide various functions. To this end, a private and consortium

blockchain (permissioned blockchain) such as Hyperledger

Fabric [23] is preferred in the field of P2P energy trading over

public blockchains such as Bitcoin [22] and Ethereum [24].

Recently, decentralized security techniques such as

blockchain have surfaced as technically competitive options

for smart grid security [25], [26]. Prosumers learn the energy

usage pattern of different sellers and buyers [25], manage

their own energy consumption through residential demand

response schemes [26], and then trade with one another,

whenever applicable, within the local community to main-

tain a good balance between supply and demand. Further

discussion of the use of blockchain-based platforms for

decentralized energy supply management via P2P trading

can be found in [27]–[29]. A blockchain-based electricity

marketplace with a demurrage mechanism was introduced

in [27] to describe a mixed complementarity problem using

shift load. A generator produces an energy token by load

shifting and a consumer buys this energy token to reduce

their electricity bill. Another paper [28] introduced a demand

side management scheme using a non-cooperative game

theory approach. The proposed method was implemented

in blockchain with a developed user interface. The authors

of [29] proposed P2P energy exchange in the microgrid,

in which energy transactions are managed using blockchain.

For secured energy trading in microgrids, Elecbay is pro-

posed in [30]. In [31] the authors utilized the IBM Hyper-

ledger Fabric architecture to create an operational model

for crowdsourced energy systems in distribution networks

considering various types of energy trading transactions and

crowdsources.

To demonstrate the feasibility of our proposed method,

we implement a real-time P2P energy trading system using

blockchain technology; we also conduct a study of the sys-

tem’s core components and benchmark performance to eval-

uate its throughput, latency, and scalability.

III. SYSTEM MODEL

A. STRUCTURE OF THE SYSTEM

Let us consider an energy market system that consists of a

large number of RUs. Each RU can be an individual house

that has installed renewable sources such as PV systems. The

entire community can generally be divided as follows:

1) Prosumers: The end-users who play as a buyer or a

seller in P2P electricity trading. Each prosumer chooses

their role according to their current energy consump-

tion and generation at time slot t .

2) System Operator: The system operator who plays the

role of the auctioneer in themarket. This entity provides

the entire energy trading service. The operator can log

in via browser to manage the overall system. Prosumers

can connect and sign up to the energy market network

via browser after installing code from the operator.

3) Smart controller: The component that allows for

exchange of information in the market. Each prosumer

has its own smart controller with which to exchange

information and value with others in the P2P energy

trading market.

A simplified diagram of the P2P energy trading system

is presented in Fig. 1. We define H as the set of prosumers

inside the energy market. B and S are the set of buyers and

set of sellers, respectively. We denote that there are N = |H |

number of prosumers, NB = |B| number of buyers, and NS =

|S| number of sellers; thus, the total number of participants

in the market is N = NB + NS . Each prosumer n ∈ N can

generate energy EPVn,t and consume energy xn,t at time slot t .

If EPVn,t − xn,t > 0, the prosumer would become a seller to

sell their energy at time slot t . Otherwise, EPVn,t − xn,t < 0,

the prosumer would opt to purchase energy in order to meet

their demand at time slot t .

FIGURE 1. Overview of the P2P energy trading system.

We consider a discrete-time system that is divided into

different slots of equal interval 1t = 5 − 15 minutes. Let

t = {1, 2, . . . ,T } denote the set of operation time slots, while

49208 VOLUME 9, 2021



H. T. Doan et al.: P2P Energy Trading in Smart Grid Through Blockchain

t ∈ T and T , |T | gives the total number of operation time

slots.

B. WELFARE MODEL OF PROSUMER

The buyer with DR can adjust its load demand according to

the price or the incentive for benefit. Therefore, we assume

that the buyer’s profit is a utility function, in which its value is

nondecreasing and concave. There exist two common types

of utility functions used to model the prosumer’s energy

consumption behavior. They are the logarithmic utility func-

tion [32], [33] and quadratic utility function [9], [19].

In this paper, we consider a quadratic utility function to

optimize the power consumption and revenue of prosumer i ∈

N at time t ∈ T .

U
(

xi,t
)

= ai,t ∗ xi,t −
θi,t

2
∗

(

xi,t
)2
0 ≤ xi,t ≤ xmaxi,t (1)

where ai,t is a bid made by prosumer i at time slot t . θi,t
represents the level of satisfaction that prosumer i consumes

a certain amount of energy at time slot t . For a higher value

of θi,t , the prosumer is willing to reduce its energy con-

sumption, i.e., reschedule the use of flexible devices for later.

Otherwise, the prosumer tries to consume more energy. This

is a predetermined constant which characterizes the index of

sensitivity via utility change when there is a change in xi,t .

The term xi,t represents energy demand of prosumer i and

xmaxi,t is the maximum load for prosumer i at time t .

If the prosumer is a buyer, the welfare function of buyer

i ∈ B can be defined as follows:

Wi,t = U
(

xi,t
)

− pt ∗ xi,t (2)

where pt is a price determined by the auctioneer at time slot

t . The prosumer solves the local programming problem (2)

to choose the optimal strategy that maximizes its welfare

function, as:

x∗
i,t = argmax

xi,t
Wi,t

(

xi,t
)

0 ≤ xi,t ≤ xmaxi,t (3)

From (3), the amount of xi,t at which buyer i achieves its

maximum welfare in response to ai,t and pt can be obtained:

xi,t =
ai,t − pt

θi,t
(4)

Given (4) and the condition 0 ≤ xi,t ≤ xmaxi,t , we can easily

calculate x∗
i.t as follows:

x∗
i.t =

{

xmaxi,t , xi,t ≥ xmaxi,t

xi,t , 0 ≤ xi,t < xmaxi,t

(5)

To understand the objective function of (3), we outline the

welfare value of a prosumer with different values of θi,t and

pt while keeping all other parameters the same (Fig. 2). At the

beginning, the overall welfare continues to increase as xi,t
increases. It begins to decrease after passing the peak if xi,t
increases further, as shown in Fig. 2. In particular, for a lower

satisfaction level θi,t and price pt , the prosumer is willing to

buy more energy from the market; otherwise, the prosumer

FIGURE 2. Welfare values according to energy consumption.

wants to consume less energy due to increased satisfaction

level and price pt .

In contrast with the buyer, the seller needs to sell its surplus

energy to buyers or the grid. In typical cases, the grid buys

energy at a lower price than that at which it sells energy.

Hence, it is reasonable to assume that the seller would mainly

be interested in selling its energy to other prosumers in the

P2P market at pt . The welfare function of the seller j ∈ S can

be defined as follows:

Wj,t = −vj,t ∗ xj,t + pt ∗ xj,t (6)

where vj,t is an ask of seller j at time t and xj,t is the amount

of excess electricity that the seller can sell in the market.

C. AUCTIONEER MODEL

The auctioneer coordinates and manages the auction process.

The total amount of traded energy between the sellers and

buyers can be described as:

Eb =

K−1
∑

i=1

(xi,t − EPVi,t ) (7)

and

Es =

J−1
∑

j=1

(EPVj,t − xj,t ) (8)

where Eb is total amount of buying energy K − 1 consumers

and Es is total amount of selling energy J − 1 sellers. The

meaning of K − 1 and J − 1 are addressed in Section IV-B.

In order to maximize the average social welfare per seller

(ASWS), the objective function of the auctioneer is formu-

lated as:

ASWS =

∑J−1
j=1 (pt − vj,t )

J − 1
∗

K−1
∑

i=1

x∗
i,t (9)
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where price pt is a decision variable determined by the auc-

tioneer, and x∗
i is the optimal amount of energy that the buyer

is willing to buy at price pt .

IV. DOUBLE AUCTION-BASED GAME THEORETIC

MECHANISM FOR P2P ENERGY TRADING

P2P trading aims to maximize the welfare of both buyers

and sellers and reduce dependence on the grid. To this end,

we propose a double auction-based game theoretic mecha-

nism for P2P energy trading, which can be broken down into

the following steps:

1) Prosumers determine their role based on their energy

generation and demand.

2) Then, prosumers register in the P2P market by submit-

ting their bid/ask and amount of energy to the auction-

eer. We note that the submitted value is always positive

in terms of quantity.

3) At time slot t , the auctioneer starts to execute matching

and determine the participants according to the winner

determination rule.

4) Once the auction process is finished, each participant as

a buyer observes the price pt from the auctioneer and

solves optimization problem (3) to obtain the optimal

quantity that they are willing to trade.

5) The corresponding optimal quantity received from

buyer is used to compute ASWS in (9) and update

pt . Steps 4 and 5 is repeated until reaching the stop

condition.

6) Finally, the auctioneer determines the clearing price

and the amount of energy for all participants.

It is important to note that neither the buyer nor the seller

has access to others’ private information, such as the amount

of energy to be sold by an RU or any buyer’s energy demand

even though the rules of the auction are known to all partici-

pants.

A. DOUBLE AUCTION

The traditional Vickrey auction scheme [34] is a sealed-

bid auction. Bidders submit their reservation prices to the

auctioneer without knowing other participants’ reservation

prices. The bidder with the highest reservation price wins the

auction but pays at the second-highest bid price. In this paper,

we use a modified Vickrey auction [9] to find the solution for

the system model in Section III. The proposed auction model

consists of three elements:

1) Buyers: The RUs in set B, which have deficit demand

and engage in the market to buy electricity and expect

their profit in the market to be optimized.

2) Sellers: The RUs in set S, which own surplus energy at

a particular time of day and expect to earn some benefit

in the market instead of selling the energy to the main

grid.

3) Auctioneer: The coordinator, which uses determination

rules to reflect the number of buyers and sellers who

engage in trade. It also takes a sender role, in that

FIGURE 3. A modified Vickrey mechanism in a double auction market.

it sends buyers the price during the auction process

according to theminimum andmaximumprice. Finally,

it determines the precise quantity and price based on

pre-defined rules.

The proposed auction policies consist of a winner-

determination rule, a payment rule, and an energy allocation

rule.

B. WINNER DETERMINATION

Once the auction process is initiated, the auctioneer deter-

mines the number of buyers and sellers who can participate

in trade based on a double auction. Winner determination is

executed in the following manner. The buyers are sorted in

decreasing order of their reservation bid price, i.e.,

a1 > a2 > · · · > aB (10)

In contrast, the sellers are sorted in increasing order of their

reservation ask price, without loss of generality, as,

v1 < v2 < · · · < vS (11)

Once the auctioneer orders the sellers and buyers, it gen-

erates the aggregate supply and demand curves using (10)

and (11), as shown in Fig. 3. The auctioneer then determines

the number of participating buyersK and sellers J that satisfy

aK ≥ vJ from the intersection point of the two curves, which

can be found using any standard numerical method [35].

We note that the number of buyers K and sellers J are

determined at the intersection point, but a fundamental rule of

any auction mechanism is that no participant can cheat once

payment rules and allocations are established. Therefore,

in this paper, we assume that K − 1 buyers and J − 1 sellers

eventually engage in the market. The winner determination

procedure is intuitively illustrated in Fig. 3. The blue curve

describes the buyers’ bids in decreasing order, and the orange

curve depicts the sellers’ offers in increasing order. The two
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curves meet at the intersection point, and a buyer in the blue

area and a seller in the orange area engage in a trade.

C. PAYMENT RULE

While the winner determination procedure is used to identify

the intersection point and the participants who engage in the

trade, we use a combination of Vickrey auction and game

theory to reflect the price pt according to the competition

among buyers. The auctioneer decides on the price that the

buyer needs to pay to the seller, which also allows the buyer

to choose the amount of energy they are willing to buy from

the seller. We note that the price range in the auction market is

determined according to the Vickrey auction mechanism [34]

and the second-highest reservation price. Therefore, the max-

imum price pmaxt will be the highest reservation price at

the intersection of demand and supply for the participating

K − 1 RUs. The minimum price pmint is the second-highest

reservation price.

The interaction behaviors between buyers and sellers that

are used to determine the clearance price can be modeled

as a Stackelberg game with multilevel decision-making.

In the Stackelberg game, multiple decision-makers (follow-

ers) respond to the leading players’ decisions (leaders). The

leader makes decisions from the perspective of his purpose,

while followers make decisions based on the leader’s deci-

sion. In this paper, the auctioneer is the leader that sets the

price for energy trading, which observes the best response

for the seller. The buyers are the followers who are trying to

optimize individual benefits. We can formulate the game as

G =
{

(K ∪ {Au}) , {Xi}i∈K−1 , {P} ,ASWS
}

(12)

which consists of the following components:

1) K represents the prosumers in set K − 1, which are

the followers that optimize their choice in demand

corresponding to the price set by the auctioneer (Au),

who plays as the game leader.

2) Xi is the strategy set, or amount of energy to buy,

of prosumer i ∈ K − 1, which is constrained by

0 ≤ xi,t ≤ xmaxi,t .

3) P is the set of strategies set by the auctioneer,

which are price vectors. The price is constrained by

pmint ≤ pt ≤ pmaxt .

4) ASWS is the average social welfare per seller j, which

captures the benefit to the seller of trading energy with

other prosumers, EPVj − xj∀j ∈ L − 1.

The objective of all buyers and the auctioneer is to

maximize their welfare function by their chosen strategies.

To achieve this goal, the game considers the Stackelberg

equilibrium (SE) as one possible solution. The leader obtains

the optimal price with the best response from the followers,

and the followers determine their optimal levels of energy

consumption. At the SE, neither the leader nor any follower

can benefit by changing their strategies. Inmore detail, we use

a Stackelberg game between buyers and the auctioneer. The

auctioneer sets the auction price p to maximize the aver-

age social welfare for sellers and to meet their need to sell

energy. The competition among buyers is considered a non-

cooperative game, in which the buyers decide on the vector

containing the amounts of energy x = [x1, x2, . . . , xK−1] that

they would like to trade into the market such their benefits

are maximized. The details of the auction process are shown

in Fig. 4 and Algorithm 1.

FIGURE 4. Stackelberg game among prosumers and the auctioneer at
time slot t .

Algorithm 1 Real-Time DR Operation

1: Input: u = {u1, u2, . . . , uN }

2: Output: o = {o1, o2, . . . , oN }

3: Initial: ASWS∗ = 0, p∗ = 0, p = pmaxt

4: Determinate both trading range price pmaxt and pmint

and participants using double auction Vickrey-based

in Section IV-A and B.

5: For price p from pmaxt to pmint do

6: For each RUs i ∈ [1, 2, . . . ,K − 1] do

7: Solve optimization problem (3)

8: End for

9: The auctioneer computes the average social welfare

ASWS using (9)

10: If ASWS ≥ ASWS∗ then

//The auctioneer updates the optimal price and

maximum average social welfare

11: p∗ = p and ASWS∗ = ASWS

12: End if

//Update price

13: p = p− 1p

14: End for

The SE
(

x∗
t , p

∗
t

)

is achieved

Definition 1: The Stackelberg game G defined in (12)

which has a set of strategies
(

x∗, x∗
−i, p

)

establishes the SE

of this game if and only if it meets the following set of

inequalities:

Wi

(

x∗, x∗
−i, p

∗
t

)

≥ Wi

(

xi, x
∗
−i, p

∗
t

)

, ∀i ∈ K − 1,

∀xi ∈ Xi, p
∗
t ∈

[

pmint , pmaxt

]

(13)

and
∑L−1

j=1 (p∗
t − vj,t )

L − 1
∗

K−1
∑

i=1

x∗
i,t ≥

∑L−1
j=1 (pt − vj,t )

L − 1
∗

K−1
∑

i=1

x∗
i,t

(14)
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where x∗ = [x1, x2, . . . , xK−1], x
∗
−i = [x1, . . . , xi+1, xi−1,

. . . , xK−1].

Therefore, when the game reaches the SE and the auc-

tioneer chooses the optimal price p∗
t , the participants cannot

increase their profit by choosing a different price other than

p∗
t . Similarly, no prosumer can improve their social welfare

by choosing other strategies different from x∗
i.t .

Existence and Uniqueness of SE: In this section, we pro-

pose a theorem and proof to validate the game formulated in

Section IV-C regarding whether an SE satisfies (13) and (14).

Theorem 1: There always exists a unique SE that satisfies

(13) and (14) for one leader and multiple followers. The

Stackelberg game G between the auctioneer and prosumer

RUs is in the set {1, 2, . . . ,K − 1}.

Proof: First, as previously mentioned, the strategy of the

auctioneer is a non-empty set within the range
[

pmint , pmaxt

]

.

Hence, the auctioneer always finds the optimal price that

provides the maximum average social welfare for any given

x chosen by different prosumers. The optimization problem

can be reformulated as

p∗
m,t = argmaxASWS

(

pm,t

)

s.t. psg,t < psm,t ≤ pm,t ≤ pbm,t < pbg,t (15)

where p∗
m,t is the optimal price in the market at time slot t . psg,t

and pbg,t are the buying and selling price from the grid at time

slot t , respectively. If any participating bid or ask is beyond

the range, the corresponding RUwill buy or sell directly from

the main grid. pbm,t and p
s
m,t are the maximum and minimum

price at which the buyer/seller can buy/sell in the market at

time slot t .

Second, for any price pt , the welfare function Wi in (13)

is strictly concave concerning xi, ∀i ∈ {1, 2, . . . ,K − 1},

i.e., the second derivative ∂2Wi

∂x2i
< 0. Hence, for any price

pt ∈
[

pmin, pmax
]

, each prosumer will have a unique xi,t ,

which will be chosen from a bounded range and maximize

Wi,t . We can reformulate it as

x∗
i,t = argmaxW

(

xi,t
)

∀i ∈ N

s.t. 0 ≤ xi,t ≤ xmaxi,t (16)

Therefore, from (15) and (16), it is clear that our proposed

game will have a unique p∗
t and x∗

i,t such that the ASWS

and welfare values are maximized, with which game G will

consequently reach its unique SE; thus, Theorem 1 is proved.

Using mathematical formulas, we can find the unique price

p∗
t by substituting the value of xi in (4) into (9). The auction

clearance price p∗
t that maximizes the average social welfare

of sellers can be written as

p∗
t =

(

∑K−1
i=1

ai,t
θi,t

)

+

(

∑J−1
j=1

vj,t
J−1

) (

∑K−1
i=1

1
θi,t

)

∑K−1
i=1

2
θi,t

(17)

D. ENERGY ALLOCATION

Once the auction price p∗
t is determined, the auctioneer allo-

cates the quantity Q to be traded by each buyer i and seller j

according to the following rule:

Qα,t = x∗
α,t − ηα,t (18)

where α is a prosumer who engages in the trade and ηα is

the burden value of prosumer α for their contribution at time

slot t . The energy balance is established under the propor-

tional allocation rule. To clear electricity in the market, we

consider the following three cases:

Case 1: Equilibrium, in which the total demand of all

participating buyers i ∈ {1, 2, . . . ,K − 1} and total supply of

all participating sellers j ∈ {1, 2, . . . , J − 1} are equivalent.

Participants can trade the amount of energy that they bid or

ask.

Case 2: Over-supply, in which the total supply exceeds

the total demand. Every buyer i can buy all of the energy

that they bid in the market, but each seller j will receive an

amount of energy proportional to the burden of the over-

supply, as follows:

ηj,t =

(

∑J−1
j=1 x

∗
j,t −

∑K−1
i=1 x∗

i.t

)

∗ xj,t
∑J−1

j=1 x
∗
j,t

,

j ∈ [1, 2, . . . , J − 1] (19)

Case 3: Over-demand, in which the total demand exceeds

the total supply. Every seller j can sell the amount of energy

that they ask in the market, but each buyer i will receive

an amount of energy proportional to the burden of the over-

demand, calculated as,

ηi,t =

(

∑K−1
i=1 x∗

i,t −
∑J−1

j=1 x
∗
j,t

)

∗ xi,t
∑K−1

i=1 x∗
i,t

,

i ∈ [1, 2, . . . ,K − 1] (20)

We note that the maximum amount of power that will be

traded is min
(

Eb,Es
)

. After the amount of energy Qα,t to

trade is decided, the participants trade with the main grid if

needed to meet the supply-demand of individual houses. In

other words, a buyer can buy energy from the main grid at

price pbg,t to meet the load demand. Otherwise, the sellers sell

surplus energy to the main grid at price psg,t .

E. PROPERTIES OF THE AUCTION PROCESS

The auction process can be considered a game in which there

is always the possibility that participants will cheat (state

a different amount of energy) when the auction process is

executed. This section explains that the participants are not

motivated to cheat their amount strategies during the auction.

In this context, we study two properties, individual rationality

and incentive-compatibility, in the framework of our proposed

scheme.

Theorem 2:The proposed scheme delivers individual ratio-

nality for all participants in the market. The K − 1 rational

buyers and J − 1 rational sellers actively participate in the

mechanism to gain higher welfare.

Proof: According to the energy allocation, the buyer

that wins the game can buy Qi,t ≥ 0 amount of energy.
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Besides, according to the payment rule, the price paid is p∗
t ,

which is less than the winning buyer’s bid, ai,t . Thus, each

buyer is incentivized to take part in the game, i.e., Wi ≥ 0.

The seller, similarly, who wins the game can sell quantity

Qj,t ≥ 0 where vj,t ≤ p∗
t , and is thus rewarded when the

trade is successful in the market instead of selling to the

main grid, i.e., Wj ≥ 0. Therefore, during time slot t , both

participants are incentivized to participate in energy trading,

and our scheme achieves individual rationality. We note that

prosumers who do not win the game at time slot t , Qα,t = 0,

get no benefit at all.

Theorem 3: The auction process is incentive-compatible,

which means that all participants are able to achieve the

maximum SW if and only if any buyer i ∈ {1, 2, . . . ,K − 1}

and any seller j ∈ {1, 2, . . . , J − 1} report true valuation.

Proof: For the buyers in the auction process, accord-

ing to (15), it is clear that all buyers can choose the best

strategies x∗ =
[

x∗
1 , x∗

2 , . . . , x∗
K−1

]

for any price p∗
t received

from the auctioneer, as proven in Theorem 1, which con-

firms the stability of their selections in their action; thus,

buyers do not have any motivation to report untruthful val-

ues. In other words, the buyer may cheat their amount by

reporting untruthful values to achieve more benefit during

trade, but their benefit will be decreased if they choose

another strategy in Fig. 2, thus, the buyer will submit their

truthful value. On the other hand, once the auction process

is begun, the seller cannot modify their amount of energy

to sell; thus, the seller cannot cheat in game G. Besides,

when gameG reaches the SE, the auctioneer conducts energy

allocation according to the allocation rule as motioned in (18)

i.e., x∗
j ∀j ∈ [1, 2, . . . , J − 1] and the auctioneer obtains zero

benefit in trade, thus it does not want to change their strate-

gies. According to the formula described in (15) and (16), it

is clear that both sides achieve the maximum social welfare

at SE. Therefore, none of buyers, sellers or the auctioneer is

motivated to report an untruthful value for allocation if (18) is

adopted for energy trading. Therefore, Theorem 3 is proven.

V. BLOCKCHAIN FOR ENERGY TRADING

In this section, we implement a real-time P2P energy trad-

ing system using blockchain technology, which performs

the algorithm for optimizing DR and energy matching

explained in Section IV. We describe the overall architecture

of the blockchain-based energy trading system and provide

a detailed explanation of the information exchange between

participants and the energy trading system during the auction

process.

A. REQUIREMENTS FOR BLOCKCHAIN-BASED ENERGY

TRADING SYSTEMS

For P2P energy trading, the blockchain platform must meet

certain requirements. It must be trustworthy (for data secu-

rity), capable of fast computations for real-time energy trad-

ing algorithms, show good performance for the consensus

algorithms, and ensure the privacy of user information.

Furthermore, the identities of all participants must be

verified prior to their participation in energy trading through

blockchain. Based on this analysis, the Hyperledger Fabric

was selected as it meets the requirements of energy trading

systems and displays the necessary blockchain features. Our

proposed blockchain-based P2P energy trading system runs

fast enough to pair prosumers in real time, protects users’

private information, and identifies the user to allow partici-

pation. Finally, smart contracts are implemented as the chain-

code in the blockchain, which comes with smaller execution

costs and allows for easier implementation compared with

other public blockchains. The hierarchical architecture of our

proposed blockchain-based energy trading system is shown

in Fig. 5.

FIGURE 5. The blockchain-based architecture of our proposed P2P energy
trading system.

B. BLOCKCHAIN IMPLEMENTATION USING

HYPERLEDGER FABRIC

Blockchain is a technical infrastructure that provides an

immutable ledger and smart contract (chaincode) services to

the application. In a blockchain, transactions are generated

as needed to execute a smart contract. The peer node in the

network then executes the steps in the contract in sequential

order, and the result is recorded on its copy of the ledger.

In a public blockchain, peers usually perform order-execute

transaction. However, peers in Hyperledger Fabric perform

transactions in a three-step process of execute-order-validate

to increase speed. First, client transactions are executed in

parallel in a sandbox to determine read-write sets without

considering an order. Transactions are then ordered by an

ordering service. Finally, each peer validates and commits the

transactions to the blockchain in sequence.

We integrate Algorithm 1 in the smart contracts of

Hyperledger Fabric with the optimization model given in

Section III. The presented energy trading implementation1

1Source code is available in https://github.com/hiengithub/A-Double-
Auction-Based-Game-Theoretic-Approach.
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FIGURE 6. Sequence diagram of our proposed blockchain based P2P energy trading system.

consists of three areas: end-users, decentralized applications

(DAPPs), and blockchain. End-users execute the User.py

source code written by Python to play the role of prosumers.

If a user takes the buyer’s role, it solves the optimization prob-

lem in Section III. Second, DAPPswere built on top of Hyper-

ledger Fabric SDK, which supports communication between

the end-users and smart contracts. Third, the blockchain

implemented as smart contracts takes the coordinator’s role

in energy matching.

The operation of our proposed blockchain-based P2P

energy trading system is illustrated in Fig. 6. At the pre-set

time intervals, a trigger is activated and the following auction

procedure is executed: first, the system operator issues a new

transaction to start the matching process by calling DAPP

(startGame.js.), which then broadcasts the transaction invo-

cation request using Hyperledger Fabric SDK to the endorser

peers. The endorser peers check the certificate and validate

the transaction. Then, the chaincode is executed to obtain and

decode all user information from the ledger database. The

algorithm finds the interaction point according to the winner

determination in Section IV-A. According to the payment

rules, the price range and the temporary price are determined

and then necessary key information (i.e., the price range, tem-

porary price p (TP), optimal price (OP), winners, and maxi-

mum average social welfare per seller (MASWS)) is stored in

the ledger to allow for tracking of the auction process. This

key information is updated each time the smart contract is

executed. In the next step, the endorser peers return transac-

tion approval or rejection as part of the endorsement response

to the DAPP. After the delivery of transaction approval to the

committing peers, all nodes on the network will be synced

with the same ledger. Finally, the process is finished byDAPP

relaying the price to the users. Each user then computes their

actual quantity depending on the given price. Steps 1 to 4 are

then repeated in the auction process until the price reaches

the minimum price. The smart contract in the blockchain gets

data from the ledger, calculates the average social welfare

(ASW), and updates MASWS if necessary according to the

quantity received from buyers. Each transaction record is

included in the blockchain stored at each peer’s repository

and protected by the blockchain mechanism.

As can be seen in this section, our implementation supports

thousands of participating users in real-time and is easy to use

and reliable.

VI. SIMULATION AND RESULTS

This section presents the results of numerical analyses and

assesses the performance of the proposed approach. For ease

of illustration, we conducted the simulation using ten pro-

sumers. It is important to note that we chose to consider

only ten prosumers in this simulation in order to clarify the

analysis of the simulation results. Each house’s energy load

is selected randomly from 0.1 to 5 kWh for each time slot,

and the output of PV power is calculated according to the

size and efficiency of the PV system [36], in which η is

0.95 and S from 1 to 5. Prosumers’ bids and asks are assumed

to be float numbers chosen randomly in the range of 5 to 22,

while the step size 1p is 0.1. For the weight factor θi,t of
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satisfaction level, we assume that all buyers take the same

value of 3 at all times. Finally, the simulation time is from

7 to 19 h. It is important to note that all chosen parameter

values are particular to this study and can vary according to

energy demand, the number of RUs, and trading policy.

The simulation was conducted in Ubuntu 16.04.04 LTS

with an Intel(R) Core (TM) i7-6700 CPU@ 3.4GHz (4 core)

and 20.0 GB of RAM. We implemented the blockchain using

Hyperledger Fabric v1.4.7, in which there are three peers, one

endorser peer and two committing peers, in one organization,

and one-ordering service. We evaluate the blockchain under

different transaction configurations in terms of batch, batch

timeout and the number of participants to understand the

impact of different configurations on the execution time of

Algorithm 1.

A. PERFORMANCE OF THE PROPOSED APPROACH

We first show the convergence of the Stackelberg game in

Algorithm 1 at time slot 16 in Figs. 7 and 8, where we assume

that the market has five buyers and five sellers. From Fig. 8,

we first note that the proposed Stackelberg game reaches the

SE after 9 interactions when average social welfare per seller

reaches a maximum. In addition, the amount of energy each

buyer wishes to consume from the market is also observed in

the game. As can be seen in Fig. 7, prosumers 1, 2 and 3 reach

the SE much faster than prosumers 4 and 5.

FIGURE 7. Increase in energy consumption during the auction process.

The interaction between the auctioneer and the prosumers

is thought of as a game. The auction price p is updated in

each iteration. Once the auction price for any buyer becomes

smaller than its reservation bid, the buyer would purchase its

energy from the market (supplied by the sellers). The energy

consumption is adjusted in the range between the maximum

and the minimum amount of energy that the buyer needs at

time slot t . As a result, as shown in Fig. 7, prosumers 1, 2, and

3 with lower bids would receive all of their energy from the

market much sooner, i.e., at the 1st iteration, than prosumers

4 and 5 with higher reservation bids. After the 20th and 24th

iterations, prosumers 4 and 5 reach the SE once the action

price is high enough for them to consume more energy.

FIGURE 8. Average social welfare achieved by the auctioneer during the
auction process.

In Fig. 8, the average social welfare is shown according to

the price and the amount of energy consumed by the buyers.

The welfare utility of all participants rises due to a rise in

price p. However, when the curve starts to decrease after

passing the top vertex, the buyers do not buy more energy

because the social welfare per seller reaches the maximum

value.

In Figs. 9 and 10, we compare our proposed scheme with

DAAPM [37] and the average price mechanism in terms of

total social welfare and the number of energy trades. We note

that the average price mechanism is established with clear-

ance price calculated as,
bK−1+sJ−1

2
, where bK−1 is the bid

of buyer K − 1 and sJ−1 is the ask of seller J − 1 at the

intersection point. The winner determination and allocation

rules were similar to those used in our proposed scheme.

Because PV energy is self-consumed by each prosumer

in time slots 10, 18, and 19, no more energy can be traded

inside the market. In other words, sellers take no profit in

time slots 10, 18, and 19, so the prosumer’s social welfare

in these time slots remains zero. On the other hand, in time

slots 7 – 9 and 11 – 17, as shown in Figs. 9 and 10, surplus

energy is traded, so social welfare and the quantity of traded

energy is optimized by the proposed scheme.

FIGURE 9. Total social welfare.
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FIGURE 10. The quantity of energy traded.

Fig. 9 illustrates all participants’ social welfare in the intra-

daymarket where our proposedmethod achieved higher value

than two other schemes: 114.3 cents in our proposed scheme,

97.7 cents in the average method, and negative 66.4 cents

in DAAPM. This is because our proposed method allows

for flexibility such that buyers can benefit by adjusting their

energy consumption. The auctioneer acts on behalf of the

sellers, so the scheme produces the maximum value of social

welfare per seller. Therefore, the scheme always achieves a

positive value of social welfare. On the other hand, the two

other schemes frequently obtain negative values of social

welfare. In time slots 8, 11, 12, 13, 15, and 17, the DAAPM

scheme produced a negative value because of the impact of

the buyer’s welfare function. For a similar reason, the average

method achieved a negative value at time slots 8 and 11.

Fig. 10 shows the total energy traded in the market. The

two other schemes achieved larger energy consumption than

our method. The reason, as discussed in Section III, is that the

goal of our proposedmethod is tomaximize the social welfare

of prosumers according to the given price. Therefore, each

user is only willing to buy more energy if its welfare function

is satisfied. In general, for higher values of θi,t , users are not

willing to consume a large amount of energy. For lower values

of θi,t , users are willing to buy more energy to meet their load

demand at time slot t .

B. BLOCKCHAIN PERFORMANCE FOR ENERGY TRADING

We conducted a performance test for our proposed

blockchain-based energy trading system using Hyperledger

Caliper [38] for the two cases shown in Table 1 according

to varying parameters. The performance of the blockchain

platform is analyzed in terms of three performance metrics:

throughput, latency, and scalability.

In case 1, we study the impact of varying transaction send

rates on the throughput using 100, 200, 300, 400, 500, 600,

and 700 transactions per second (tps).

In case 2, we study the impact of the number of transactions

in a block on the throughput, where the send rates are 150,

200, 250, 300, 350, 400, 450, 500, and 550 tps and the number

of transactions are 10, 20, 30, 40, 50, and 60.

TABLE 1. Configuration used to identify the impact of send rate and
message count on throughput.

FIGURE 11. Throughput of invoke transaction.

TABLE 2. Configuration used to identify the impact of number of
participants and batch timeout on run time.

Fig. 11 shows the throughput and average latency of invoke

transactions under case 1. The data indicates that there is a

linear increase in throughput with an increase in the send rate,

with a low average latency in the beginning until the send rate

reaches about 500 tps. The throughput increases slowly, and

average latency grows quickly before it reaches the saturation

point at about 509 tps. After the saturation point, higher send

rates may cause a reduction in throughput and higher average

latency due to a bottleneck in the ordering service.

Fig. 12, for case 2, shows the throughput curve over differ-

ent message counts, which are the number of transactions in

a block. The data indicates that the throughput rises rapidly

as the message count in a single block increases. When the

message count reaches 50, the system throughput seems to

reach a saturation point at about 500 tps. Therefore, we con-

clude that a larger message count increases the throughput

and no bottleneck appears before the message count reaches

the critical point.

One of most important goals of the proposed method is to

execute energy matching in real-time. Therefore, as shown
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FIGURE 12. Impact of message count on throughput.

FIGURE 13. Impact of the number of participants and batch timeout on
run time.

in Fig. 13, we study how batch timeout (block timeout) and

the number of participants affect the run time with the various

parameters defined in Table 2. As shown in Fig. 13, as the

number of participants increases, run time increases linearly,

and the DAPP spends a great deal of time communicating

with end-users. In general, the batch timeout is the amount

of time that the system will wait before creating a block.

Therefore, when increasing the batch timeout, the run time

increases because the DAPP must wait to confirm the trans-

action even though the matching process took only millisec-

onds to be executed. In our system, the time required for

the matching procedure was 54 – 70 ms with 2000 partici-

pants. Since our algorithm has multiple interactions during

the entire matching procedure, the time complexity of run

time can be computed in polynomial form as x×y× z, where

x is the number of transactions during the auction process, y is

the waiting time necessary to validate and commit the block,

and z is the waiting time necessary to receive a response on

each transaction. Thus, when the batch timeout decreases,

the running time decreases. A lower value of batch timeout

means that blocks are created more quickly due to a decrease

in batch timeout; in this instance, the presence of too many

blocks negatively impacts the commit procedure. It is clear

that we achieve the minimum run time at a small value of

batch time, i.e., the system took 102.17 seconds to match

1000 buyers and 1000 sellers and 130.83 seconds with a batch

timeout of 2 seconds with the same number of participants.

Therefore, we conclude that our proposed scheme is suitable

for real-time execution. Note that run time will increase when

considering the time to communicate with end-users in the

real world.

VII. CONCLUSION

We have presented a real-time P2P energy trading system via

a game-theoretic model, in which RUs can buy or sell energy

in a manner that is profitable to both sides rather than trading

energy with the main grid. This structure is flexible enough to

accommodate prosumers with different roles in different time

slots throughout the day. Each individual prosumer’s smart

controller automates the trading negotiation process among

prosumers. Using the double auction based approach, we

have designed a whole system which consists of the winner

determination, payment, and energy allocation rules of the

auction. Especially, the payment rule of this scheme is aided

by a one-leader multiple-follower Stackelberg game between

RUs and the auctioneer. We have proposed a game, guaran-

teed to reach SE, that allows the auctioneer and prosumers to

decide on the auction price and amount of energy that is put

into the market to balance supply and demand. We further

studied the properties of the auction scheme and the game,

and showed that the proposed auction scheme possesses

individual rationality and incentive-compatibility due to the

unique Stackelberg equilibrium. Finally, an implementation

of blockchain through IBM Hyperledger Fabric is discussed

with optimization models. This implementation allows the

system operator to manage network users to trade energy

seamlessly. In this case study, we showed that the results of

the system are beneficial under a variety of scenarios with

different simulation parameters. Finally, the combination of

the blockchain and the Stackelberg game showed that our

proposed method can be executed in real-time with multiple

interactions and one thousand users.

In our future work, we plan to improve the performance of

the blockchain and apply our proposed scheme into the real

market.
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