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Abstract- This paper presents a novel peer-to-peer energy 

trading system between two sets of electric vehicles, 

which significantly reduces the impact of the charging 

process on the power system during business hours. This 

trading system is also economically beneficial for all the 

users involved in the trading process. An activity-based 

model is used to predict the daily agenda and trips of a 

synthetic population for Flanders (Belgium). These drivers 

can be initially classified into three sets; after discarding 

the set of drivers who will be short of energy without 

charging chances due to their tight schedule, we focus on 

the two remaining relevant sets: those who complete all 

their daily trips with an excess of energy in their batteries 

and those who need to (and can) charge their vehicle 

during some daily stops within their scheduled trips. These 

last drivers have the chance to individually optimize their 

energy cost in the time-space dimensions, taking into 

account the grid electricity price and their mobility 

constraints. Then, collecting all the available offer/demand 

information among vehicles parked in the same area at the 

same time, an aggregator determines an optimal peer-to-

peer price per area and per time slot, allowing customers  

with      excess     of      energy     in     their     batteries    to 



             

share with benefits this good with other users who need to 

charge their vehicles during their daily trips. Results show 

that, when applying the proposed trading system, the en-

ergy cost paid by these drivers at a specific time slot and in 

a specific area can be reduced up to 71%.

I. Introduction

M
ore than 70% of European population is living in 

cities [1] . Most of this population is exposed to pol-

lutants at levels above the limits declared safe by 

the World Health Organization (WHO) [2]. These 

pollutants do not only affect to the urban population, but 

also increase the global average surface temperature, 

warming the climate [3]–[5]. Governments are promot-

ing different initiatives to reduce greenhouse gases (GHG) 

emissions, trying to mitigate the climate change effects 

and improve air quality in urban areas. In particular, the 

European Union (EU) has developed ambitious plans to re-

duce GHG emissions up to 85-90% by 2050, through vari-

ous initiatives [6]–[8].

Electrification of the road transportation represents 

an essential part of these plans, due to the fact that the 

transport sector is one of the largest GHG producers in 

Europe [8], [9]. In order to boost this deployment, EU Gov-

ernments are promoting electric vehicles (EVs) through 

different initiatives [10]–[13]. As a direct result of these 

initiatives, EV registration has increased in Europe up to 

49% in 2015 and Europe is leading the market share per-

centages for EVs, with significant differences depending 

on the country [14].

Despite the advantages of the electrification of the road 

transportation, a large scale deployment of EVs will impact 

on the distribution power grid, increasing power losses, volt-

age drops and unbalances, overloading distribution trans-

formers and cables, generating harmonics and degrading 

power quality. This impact can also affect to a higher level 

of the power systems, increasing the investment in new gen-

eration units and transmission networks [15]–[19].

Traditionally, a way of reducing this impact is to de-

velop smart charging algorithms for all EVs, filling the 

valleys of the electric demand profile, making a better 

use of baseload units and reducing both power losses and 

voltage deviation. One step ahead is to use EVs to support 

electric grid (known as vehicle to grid (V2G)) through an 

EV aggregator, as it was originally proposed in [20]. The 

energy stored in the EV batteries was initially used to re-

duce the peak power demands and since then, the feasi-

bility of other electric markets has been analyzed in the 

literature [21].

P2P applications began to grow in the 90s, allow-

ing millions of people around the world to share music, 

video and other digital contents over the Internet. After 

this first phase of sharing these type of intangible assets, 

these systems have evolved to create a sharing economy, 

interconnecting supply and demand in different markets, 

such as online auction, car-sharing, taxi cabs, parking 

lots, spare rooms, home services, etc. [22]. Recently, some 

new companies have broken the centralized infrastruc-

ture of the electric grid, allowing the direct connection of 

power producers and consumers, bypassing the central 

agent and trying to change the landscape of the electric 

power sector [23]. These first P2P energy applications 

are connecting small distributed renewable energy gen-

erators with consumers interested in buying cheaper and 

more renewable energy.

In [24] a novel peer-to-peer (P2P) energy trading system 

among electric vehicles was initially proposed, helping to 

reduce the demand over the electric grid during the peak 

tariff periods. This paper is a significantly extended and 

revised version of [24], with the following new contribu-

tions: a better description and justification of the validity of 

the activity-based model; a new consumption model devel-

oped for different EVs, adding variability in order to obtain 

more realistic behaviors; the consideration of the charging 

and discharging battery efficiencies, which adjusts down-

wards the expected benefit of the proposed energy trad-

ing system, and finally, the main difference arises from a 

deeper mathematical formulation of the P2P trading sys-

tem, analyzing the existence and uniqueness of the opti-

mal solution.

In Section I, an activity based mobility model for the 

Flanders region (Belgium) is described. From this in-

formation, and assuming that all vehicles have been 

completely recharged during the off-peak night period, 

in Section II, a consumption model for each vehicle is 

presented and the driver agents of the mobility model 

are classified into three different sets: those who com-

plete all their daily trips with an energy excess in their 

batteries (set A), those who need to and can charge 

their vehicle during their daily stops to reach their fi-

nal destination (Set B) and a third type of drivers who 

can never use EVs in their daily trips without modifying 

their scheduled mobility behavior (set C). In this work 

it is assumed that only the two first sets of agents will 

make the transition from an internal combustion engine 

(ICE) vehicle to EV as a first approximation. Agents that 

must substantially change their mobility behavior (set C) 

will not change their conventional vehicles until the EVs 

have a greater autonomy. The P2P trading system is de-

signed in two independent steps. Firstly, an optimization 

algorithm for each driver from set B is presented in Sec-

tion III. This algorithm minimizes the electricity cost to 

be paid by each driver in the time and space dimensions, 

determining when and where these EVs will be charged 

during the business hours at a minimum cost, respecting 

the mobility restrictions. Secondly, taking advantage of 

the fact that EVs from sets A and B are parked in the same 

zone at the same time slot during the day, a P2P energy 













             

current grid tariff (which is different at each day-hour) or 

can be extracted from those vehicles belonging to set A that 

are parked at the same time period and the same TAZ. In 

this case, both actors should agree on a common electric-

ity price.

Drivers belonging to set A are willing to sell energy if 

they are paid above the maximum value of the off-peak 

tariff plus an additional cost that takes into account the 

efficiency losses caused during the charging-recharging 

process and the battery degradation; this lower limit is de-

noted by pmin  and it is the same for all drivers. On the other 

hand, these drivers are willing to sell at the possible high-

est price with a fixed upper limit determined by the electric 

grid price at this particular time, pmax . These drivers fix 

an amount of energy to share in this trading (named xi
o ),  

so that they have enough energy stored in their batteries to 

finish their daily trips plus an additional security margin 

to avoid problems in their daily trips.

Drivers belonging to set B are willing to pay as little as 

they can with an upper limit, determined by the electric 

grid tariff at this particular time, pmax . If the P2P trading 

price is higher than this value, these drivers will recharge 

their vehicles directly from the electricity grid. The total 

amount of energy demanded by all vehicles from set B in a 

particular TAZ at a particular time slot t , is denoted by D.  

This demand is inelastic because all vehicles belonging to this 

set must be charged in order to fulfill their daily trips; therefore, 

this demand will not depend on the final P2P delivery price.

In order to determine a price to be paid in this P2P trad-

ing system for each TAZ and for each time period, (denoted 

by pi ), an optimization algorithm is proposed. The objec-

tive function is to minimize the total cost of the energy ex-

change by all EVs at every TAZ and every time slot.

A. Optimization of Price and Supply Distribution

For each time slot, the offer price function of each EV from 

set A is given by

 ( ) , , ,  , ...,p x x p x x i n0 1min
i i i i i i

o
!a= + =6 @  (8)

where function pi  represents the price paid to the ith EV 

from set A (in )); xi  denotes the energy extracted from 

this ith EV (in kWh); pmax  represents the maximum price 

to be paid to the ith EV in ) and pmin  represents the mini-

mum price to be paid to the ith EV in ( )p p>max min) ;  

( )/p p xmax min
i i

o
a = -  denotes the slope of the TAZ’s 

price curve; xi
o  indicates the en-

ergy available to exchange by the 

ith EV (in kWh) with other ve-

hicles, representing its offer, with 

, , , ,x i n0 1i
o

6 f2 =  and finally, n  

represents the number of vehicles 

from set A parked at this time slot 

in a particular TAZ.

Given the maximum energy deliverable by the charging 

point E 0
max
2  in each time slot, we define:

 , , , ...,minx x E i n1max max
i i

o
6= =" ,  (9)

as the maximum practical energy deliverable by vehicle i , 

so that the total combined offer relies on the feasible com-

pact region: [ , ] [ , ] [ , ] .x x x0 0 0 R
max max max n

n1 2# # #f 1X =

Finally, given D 02 , the total energy demanded (in 

kWh) by all EVs belonging to set B, parked in this particu-

lar TAZ during the considered time slot, we define the av-

erage cost function:

 ( ) ( , , ) ( ),f f x x
D

x P x x
1

x n i i i

i

1 f ! X= = /  (10)

so that the supply and demand equilibrium for each time 

slot solves the optimization problem:

 ( )min f x Dsubject to:x
x

i

i

n

1

=
!X

=

/  (11)

Let us call 1X  the set of points of X  satisfying (11); note that 

1 Q!X  if and only if:

 x D
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i

i

n

1

$

=

/  (12)

B. Quadratic Programming Formulation

Problem (11) can be formulated as a quadratic program-

ming one with cost function:

  
, ..., , ( , ..., )
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and the following linear restrictions ( ) , , ,g j n0 1xj f# =

and ( ) ,h 0x =  where:

  ( ) , , , ; ( )g x x x j n h x D1 x
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j j i

i

j
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Note that a solution *x  of (11)–(13)–(14) will implicitly 

satisfy * 0x 2  (i.e., ,x i0>i 6* ). The Karush-Kuhn-Tucker 

conditions to be satisfied by *x  are:
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In order to reduce the impact of recharging EVs on the electric 

grid during the business hours, a P2P trading system is proposed.







752.4 kWh to 990 kWh, while the maximum demanded ener- 

gy during this period is 27.6 kWh. Therefore, the P2P delivery 

price barely varies between  27 ) /MWh and 27.62 ) /MWh. 

This price is reached at 15:00, when the grid electricity price 

is the lowest, although it is still 71% higher  than the P2P de- 

livery price (47.22 ) /MWh). 

The interpretation for the medium  ratio zone is as fol- 

lows:  the  offered  energy  at  each  period  varies  between 

493 kWh and  4291 kWh, while  the  maximum demanded 

energy  is 1215 kWh. The maximum P2P delivery  price  is 

reached at 07:45, 32 ) /MWh, while  the grid price  at this 

instant  is 46.04 ) /MWh  (44% higher). A similar  price  is 

reached during  the  periods  12:00 –13:00 and  15:00 –17:00, 

whereas the demand is kept low during  the other day peri- 

ods (08:00 –10:00 and 17:00 –24:00). 

Finally, the high ratio  zone shows  that  both the offered 

and  the  demanded energy  are  low. The  offered  energy  in 

each  period  varies  between  0.825 kWh (one  vehicle)  and 

5.775 kWh (seven vehicles) and the demanded energy varies 

between  0 and 1.65 kWh (two vehicles).  During  the period 

10:30–11:00 the offered energy is equal to the demanded en- 

ergy, which implies that the P2P delivery price is equal to the 

grid price, as it is shown in Fig.11. At other periods in which 

this ratio is still high (e.g., 11:00–11:45) the P2P delivery price 

is still lower  than  the grid electricity  price  but it is higher 

than the previous  P2P delivery prices  obtained  in the other 

analyzed zones. 

 

VII. Conclusions 

T h is  paper  has  presented a  novel  P2P energ y t rad i ng 

system  bet ween  EVs wh ich  ca n be  used  to reduce  t he 

i mpact  of EV  cha rg i ng  on  t he  power  g r id  du r i ng  t he 

pea k per iods. 

The  paper  has  a nalyzed  t he elect r i f icat ion of a f leet 

of pr ivate vehicles  i n a nat ionw ide scale, classi f y i ng t he 

d r ivers  of EVs i nto  d i f ferent  categor ies,  depend i ng  on 

t hei r  dai ly  i nter med iate  cha rge  requ i rements.  It  has 

been  obser ved  t hat  t he  nu mber  of vehicles  requ i r i ng 

i nter med iate cha rge is much  smal ler t ha n t hose not re- 

quir ing it. 

Two disjoint optimization problems  are solved. Firstly, 

an  individual  optimal  charging algorithm has  been  de- 

signed to obtain the best daily charging schedule (in time 

and space),  according  to public day-ahead grid electricity 

prices for those vehicles requiring intermediate charge. 

Once   this   individual   optimization  problem   has   been 

solved, the  total  expected  demand, D, per  each  time  slot 

and per TAZ is determined. 

Secondly, a P2P energy trading mechanism between EVs 

which are parked  in the same TAZ at the same time period 

is developed. This mechanism determines the optimal P2P 

delivery price to be paid at every location and during  each 

time slot. The proposed P2P energy trading system severely 

modifies the price  currently paid by those  vehicles  which 

require intermediate charge,  reducing the total daily en- 

ergy cost up to 71%. 

Decoupling   both  optimization procedures  allows  for 

a simple practical  implementation where  the decision of 

where and when to charge is independent of the consequent 

P2P saving benefits. 

Future  works will study the coupling  between  both op- 

timization  problems,  analyzing  how the first optimization 

procedures is affected if some P2P market  price  informa- 

tion is available  in advance;  in addition  we will also take 

into consideration other applicable  business models which 

may maximize  the monetary gain of the energy  providers 

or may consider  additional  costs to the DSOs. 
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