
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Peer-to-Peer Support for Large Scale Interactive Applications

Permalink
https://escholarship.org/uc/item/7rj261xr

Author
Hu, Yi

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7rj261xr
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

RIVERSIDE

Peer-to-Peer Support for Large Scale Interactive Applications

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Yi Hu

September 2012

Dissertation Committee:

Dr. Laxmi N. Bhuyan, Chairperson
Dr. Michalis Faloutsos
Dr. Srikanth Krishnamurthy

Copyright by
Yi Hu
2012

The Dissertation of Yi Hu is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I own my gratitude to all those people who have made this dissertation possible and

because of whom my graduation experience has been one that I will cherish forever.

My deepest gratitude is to my advisor, Dr. Laxmi N. Bhuyan, for his contin-

uous support of my research and study. He guided and inspired me to find and pursue

my own ideas. His firm belief in my potential motivated me to overcome all kinds of

difficulties in my doctoral study. Without him, this dissertation never would have been

done.

I would like to thank my other dissertation committee members, Dr. Michalis

Faloutsos and Dr. Srikanth Krishnamurthy for taking their time to help me in this

dissertation.

I would also like to thank all my teachers I have had throughout my life. I am

where I am today because of them.

Finally, I would like to thank my family, particularly my husband Min Feng,

my father Xianming Hu, and my mother Xiaoming Tan, for their unconditional support

during these years.

iv

This dissertation is dedicated to my family.

v

ABSTRACT OF THE DISSERTATION

Peer-to-Peer Support for Large Scale Interactive Applications

by

Yi Hu

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2012

Dr. Laxmi N. Bhuyan, Chairperson

User-interactive applications are evolving in both popularity and scale on the

Internet, ranging from simple file-sharing to more demanding interactive applications

such as collaborate workspace, and massive multi-player online games (MMOGs). These

applications are traditionally implemented by Client/Server architectures, which suffer

from significant technical and commercial drawbacks, primarily high-maintenance cost

and limited scalability. To overcome these drawbacks, this dissertation presents a Peer-

to-Peer (P2P) approach to support large-scale interactive applications.

This dissertation addresses two key design issues for P2P systems to achieve

scalability and high performance. The first issue is to provide incentives for users so

that P2P systems can aggregate free resources from unreliable users. The second issue

is to design consistency maintenance schemes so that P2P systems can provide reliable

services to meet the application requirements by using free resources from unreliable

users.

For the first issue, this dissertation starts with providing a budget based in-

centive search service, called BuSIS [106], for efficiently locating service providers in

P2P systems. Then, an incentive trading model, called FairTrade [103], is presented for

vi

P2P users to exchange service with each other. Personal currency model is employed in

FairTrade to stimulate users to contribute to the P2P community in exchange of desired

services. To cope with highly dynamic nature of P2P systems, an enhanced incentive

trading model, called CoBank [104], is presented to reduce maintenance overhead at each

user and improve robustness against malicious attacks. Cooperative banking strategy is

used in CoBank to further distribute the maintenance workload.

For the second issue, this dissertation begins by providing a consistency main-

tenance framework, called BCoM [105, 102], balancing between consistency strictness,

availability and performance for various P2P interactive applications with heterogenous

resource constraints. Then, it presents a real-time consistency maintenance P2P sys-

tem, called PPAct [101], for interactive applications such as MMOGs. View discovery

and update dissemination are decoupled in PPAct to mitigate the hot spot problem and

ensure consistency maintenance under stringent latency constraints.

Extensive experiments and simulations have been conducted at large scale net-

work scenarios to evaluate the performance of all the works in this dissertation. Results

show that comparing with flooding and random walk searches, BuSIS has the lowest

search overhead without sacrificing the hit rate. When serving selfish users, flooding

and random walk performance degrade dramatically, while BuSIS gracefully keeps the

hit rate only with 20% overhead of flooding and 25% of random walk. Applying Fair-

Trade for file-sharing applications, it achieves 100% success rate of download requests

without malicious peers, and maintains over 90% success rate even with 50% malicious

nodes. The system warms up quickly and does not assume any altruistic service or

other kind of help. On average, the system traffic stabilizes before peers issue their

second download requests. All these good performances are achieved with extremely

low trading overhead, which takes up less than 1% of the total traffic. Compare with

vii

another prominent P2P consistency maintenance scheme SCOPE [55], BCoM outper-

forms SCOPE with lower discard rates. BCoM achieves a discard rate as low as 5%

in most cases while SCOPE has almost 100% discard rate. Evaluating PPAct on two

major types of online games: role playing games (RPGs) and first person shooter (FPS)

games, the results demonstrate PPAct successfully supports 10000 players in RPGs and

1500 players in FPS games, outperforms SimMud [116] in RPGs and Donnybrook [35]

in FPS games by 40% and 30% higher successful update rates respectively.

viii

Contents

List of Figures xii

List of Tables xv

1 Introduction 1
1.1 Dissertation Overview . 2

1.1.1 Budget-Based Self-Optimized Incentive Search 2
1.1.2 Personal Currency Based Incentive Trading Model 4
1.1.3 Cooperative Banking Based Incentive Trading Model 6
1.1.4 Maintaining Data Consistency for P2P Interactive Applications . 7
1.1.5 Real-time Consistency Maintenance 8

1.2 Dissertation Organization . 10

2 Related Work 11
2.1 Incentive Models in P2P Systems . 11

2.1.1 Incentive Search Models in P2P Systems 11
2.1.2 General Incentive Trading Models in P2P Systems 12
2.1.3 Indirect Reciprocity Models in P2P Systems 14

2.2 Consistency Maintenance in P2P Systems 16
2.2.1 Consistency Maintenance in Structured P2P Systems 16
2.2.2 Consistency Maintenance in Unstructured P2P Systems 16
2.2.3 Tunable Consistency Models in P2P Systems 17
2.2.4 P2P Managed Online Game Systems 18
2.2.5 Load Balance on P2P Networks 19
2.2.6 P2P Support for Range Queries 20

3 Budget-Based Self-Optimized Incentive Search 21
3.1 Budget-Based Self-Optimized Incentive Search Model 21

3.1.1 Search Performance Estimation (SPE) 23
3.1.2 Budget Assignment (BA) . 24
3.1.3 Query Forwarding (QF) . 26
3.1.4 Parameter Maintenance (PM) . 27

3.2 BuSIS Analytical Model . 27
3.2.1 SPE Derivations . 27
3.2.2 BA Calculations . 29
3.2.3 QF Calculations . 30

ix

3.2.4 PE Calculations . 31
3.3 Performance Evaluations . 32

3.3.1 Experimental Methodology . 33
3.3.2 Network Configuration . 34
3.3.3 Experimental Results . 37

3.3.3.1 Performance Impact of Budget Assignment 37
3.3.3.2 Performance Impact of User Behaviors 39
3.3.3.3 Performance Impact of Dynamic Network Overload . . 41
3.3.3.4 Performance Impact of Heterogeneous Peers 42
3.3.3.5 Discussions . 45

4 Peer-to-Peer Indirect Reciprocity via Personal Currency 46
4.1 FairTrade Model . 46

4.1.1 Overview . 46
4.1.2 Credit Setting in FairTrade . 49
4.1.3 Bayesian Model of Credit Setting 50
4.1.4 Setting Credit with Bayesian Model 52

4.2 FairTrade Design . 54
4.2.1 Trading procedure . 54
4.2.2 Download Scheme . 55
4.2.3 Uploader Selection Policy . 56

4.3 Attack Resistance Properties . 57
4.4 Performance Evaluation . 59

4.4.1 Simulation Setting . 59
4.4.2 Simulation Results . 61

5 P2P Indirect Reciprocity via Cooperative Banking 74
5.1 CoBank Scheme Overview . 74
5.2 Scheme Description . 77

5.2.1 Preliminaries and Notations . 78
5.2.2 Basic Procedures . 79
5.2.3 Enhancement with Replication 82
5.2.4 Incentives for Participating in CoBank 84

5.2.4.1 Reward . 84
5.2.4.2 Punishment . 85

5.3 Analysis of Node Selections . 85
5.3.1 Node Availability Model . 86
5.3.2 Resource Consumption Analysis 88
5.3.3 Availability Threshold Setting 89

5.4 Attack Resistance Properties . 89
5.4.1 Resistance to Sybil Attack . 90
5.4.2 Resistance to Peer Slander . 90
5.4.3 Resistance to Whitewashing . 91

5.5 Performance Evaluation . 92
5.5.1 Simulation Setup . 92

5.5.1.1 Simulation Methodology 92
5.5.1.2 Network Model . 93
5.5.1.3 Performance Metrics . 94

5.5.2 Evaluation Results . 94

x

5.5.2.1 Performance impacts of the division factor 94
5.5.2.2 Performance impacts of the replication factor 95
5.5.2.3 Comparisons in Overhead under Churn 96
5.5.2.4 Comparisons in Robustness with Malicious Nodes . . . 100

6 Data Consistency Maintenance Framework in P2P Systems 102
6.1 Description of BCoM . 102

6.1.1 Dissemination Tree Structure . 103
6.1.2 Sliding Window Update Protocol 105

6.1.2.1 Basic Operations in Sliding Window Update 105
6.1.2.2 Window Size Setting . 106

6.1.3 Ancestor Cache Maintenance . 108
6.1.4 Tree Node Migration . 109
6.1.5 Basic Operations in BCoM . 111

6.2 Analytical Model for Sliding Window Setting 112
6.2.1 Queueing Model . 112
6.2.2 Availability and Latency Computation 114
6.2.3 Window Size Setting . 115

6.3 Performance Evaluation . 116
6.3.1 Simulation Setting . 116
6.3.2 Efficiency of the Window Size . 117
6.3.3 Scalability of BCoM . 121
6.3.4 The Overhead of BCoM . 122

6.4 Case Study . 125
6.4.1 Trace Data and Experimental Setup 126
6.4.2 Network Model . 128
6.4.3 Performance Results . 130

7 Real-Time P2P Consistency Maintenance 132
7.1 Real-Time P2P Application Background 132
7.2 Rendezvous Enabled Range Query Processing and Subscription 133

7.2.1 Overview . 133
7.2.2 Region Partitioning . 135
7.2.3 Update Forwarding and Burst Handling 137
7.2.4 Mapping Regions to Region Hosts 139
7.2.5 Mapping Objects to Object Holders 139
7.2.6 Summary of Region Hosts and Object Holders 140

7.3 Region-host Organization and Selection 141
7.3.1 Region Host DHT . 141
7.3.2 Analysis of Region-host selections 144

7.4 Performance Evaluation . 148
7.4.1 Experimental Methodology . 148
7.4.2 Evaluation Results . 150

8 Conclusions 159
8.1 Contributions . 159
8.2 Future Directions . 164

Bibliography 166

xi

List of Figures

3.1 BuSIS Flowchart . 24
3.2 System throughput changes over participation payment 36
3.3 Budget adaptive trend over system operation time 36
3.5 Overhead per query changing trend over system operation time 38
3.4 Hit rate changing trend over system operation time 38
3.6 Hit rate under selfless user behavior . 38
3.7 Overhead per query under selfless user behavior 40
3.8 Hit rate under selfish user behavior . 40
3.9 Overhead per query under selfish user behavior 41
3.10 Workload changing over system operation time 42
3.11 Hit rate of heterogeneous peers topology 42
3.12 Overhead per query of heterogeneous peers topology 43
3.13 Credit distribution among heterogeneous peers 44
3.14 Differentiated participation payment for heterogeneous peers 44

4.1 Types of Trading in FairTrade . 48
4.2 Credit Setting Model . 52
4.3 Procedures of a trading in FairTrade . 56
4.4 CDF of file sizes . 60
4.5 CDF of peers upload capacities . 60
4.6 Success rates for non-uniform pricing . 61
4.7 Success rates for uniform pricing . 62
4.8 CDF of download times of various download and pricing schemes 62
4.9 CDF of success rates of heterogeneous peers for single-fastest scheme . . 63
4.10 CDF of success rates of heterogeneous peers for single-friendly scheme . 63
4.11 Trading overhead for non-uniform pricing 64
4.12 Trading overhead for uniform pricing . 65
4.13 Success rates with various request intervals 66
4.14 Trading overhead with various request intervals 66
4.15 FairTrade warmup efficiency . 67
4.16 Distribution of download times using the multiple-source scheme 67
4.17 Distribution of download times using the single-source scheme 68
4.18 CDF of download times with various uploader selection policies 68
4.19 The impact of stride in credit setting without malicious nodes 69
4.20 The impact of default credit without malicious nodes 70
4.21 Credit distribution at heterogeneous nodes 70

xii

4.22 Success rate with malicious nodes . 71
4.23 Success rate comparison . 72
4.24 Overhead comparison . 72

5.1 Basic procedure of a currency transaction in CoBank. 75
5.2 A currency transaction procedure with replications 84
5.3 Storage overhead with varying division factors, where rep. – the replica-

tion factor . 95
5.4 Communication overhead with varying division factors, where rep. – the

replication factor . 95
5.5 Latency overhead with varying division factors, where rep. – the replica-

tion factor . 96
5.6 Storage overhead with varying replication factors, where div. – the divi-

sion factor . 97
5.7 Communication overhead with varying replication factors, where div. –

the division factor . 97
5.8 Latency overhead with varying replication factors, where div. – the divi-

sion factor . 98
5.9 Storage overhead with varying churn . 99
5.10 Communication overhead with varying churn 99
5.11 Latency overhead with varying churn . 100
5.12 Success rate with malicious nodes . 101

6.1 Dissemination Tree Example . 104
6.2 An example of sliding window update protocol. 107
6.3 Queuing Model of Update Propagation. 113
6.4 The impact of window size on discard rate. 118
6.5 The impact of window size on latency. 118
6.6 The impact of window size on inconsistency degree. 119
6.7 The impact of window size on latency estimation. 120
6.8 The impact of window size on storage overhead. 120
6.9 The impact of replica number on discard rate. 122
6.10 The impact of update pattern on discard rate. 122
6.11 The impact of replica number on latency. 123
6.12 The impact of update pattern on latency. 123
6.13 Overhead comparison between BCoM and SCOPE 124
6.14 The impact of churn rate on tree height 125
6.15 The impact of churn rate on discard rate 125
6.16 The impact of churn rate on latency . 126
6.17 CDF of the number of replica nodes per object 127
6.18 CDF of the number of updates per object 128
6.19 The total number of updates in the system per hour 128
6.20 CDF of peers upload capacity . 129
6.21 The update discard rate . 130
6.22 The average update dissemination latency (in millisecond) 130
6.23 The average buffer occupancy . 131

7.1 The procedure for getting a view . 135
7.2 Examples of region partitioning . 136

xiii

7.3 The procedure of selecting a region host and an object holder 141
7.4 Routing from region host A to region host B 143
7.5 An example of PPAct routing . 143
7.6 CDF of peers’ upload capacities . 150
7.7 Successful action rates in FPS games. Error bars show 95% confidence

intervals. 151
7.8 Successful update rates in FPS games. Error bars show 95% confidence

intervals. 152
7.9 Successful subscription rates in FPS games. Error bars show 95% confi-

dence intervals. 152
7.10 Subscription hop counts in PPAct . 153
7.11 Successful action rates in RPGs. Error bars show 95% confidence intervals.153
7.12 Successful update rates in RPGs. Error bars show 95% confidence intervals.153
7.13 Successful subscription rates in RPGs. Error bars show 95% confidence

intervals. 154
7.14 PPAct traffic analysis . 154
7.15 Successful action rates in RPGs with various scales of regions. Error bars

show 95% confidence intervals. 156
7.16 Successful update rates in RPGs with various scales of regions. Error

bars show 95% confidence intervals. 156
7.17 Successful subscription rates in RPGs with various scales of regions. Error

bars show 95% confidence intervals. 157
7.18 Successful action rates in RPGs with various scales of objects. Error bars

show 95% confidence intervals. 157
7.19 Successful update rates in RPGs with various scales of objects. Error

bars show 95% confidence intervals. 158
7.20 Successful subscription rates in RPGs with various scales of objects. Error

bars show 95% confidence intervals. 158

xiv

List of Tables

3.1 Summary of parameters setup . 34

5.1 Summary of notations . 80

6.1 Summary of FriendFeed Traces . 127

7.1 A summary of region hosts and object holders 140
7.2 A summary of game traces . 149

xv

Chapter 1

Introduction

User-interactive applications are evolving in both popularity and scale on the

Internet, where users exchange information and services with each other in various ways.

From traditional file-sharing [9, 4] to recently emerged online social networking [43], col-

laborate workspace [152], massive multi-player online games (MMOGs) [36, 35], these

applications become more demanding for large scalability and high performance. They

are traditionally implemented by Client/Server architectures, which suffer from signifi-

cant technical and commercial drawbacks, primarily high-maintenance cost and limited

scalability. To overcome these drawbacks, this dissertation is devoted to providing high

performance P2P support for large-scale user-interactive applications.

The term “peer-to-peer” (P2P) refers to a class of systems and applications

that exploit resources at the edge of the network (e.g., in homes and offices) to perform

a function in a decentralized manner. There is no centralized servers or authorities in

P2P systems, each user (also termed as a peer or a node) acts both as a client and

a server by contributing its resources and services to the P2P system and getting its

tasks done. The nature of P2P systems is well suited for interactive applications, where

1

users are equally generating and consuming informations or contributing and obtaining

resources such as file objects, bandwidth and computation power.

The success of P2P systems relies on the coordination of a large number of

peers to contribute their services (e.g., content sharing, online storage, computation)

to the P2P community so that their tasks can get completed through the service from

the community. Unfortunately, the highly dynamic nature of P2P systems, where users

are leaving and joining frequently (i.e., high churn rates), makes it challenging to pro-

vide consistent services that satisfy application requirements. Moreover, P2P users are

autonomous without any central authorities, they are selfish by nature. Aggregate suf-

ficient resources from such unreliable and selfish users becomes a barrier to the smooth

functioning of P2P systems [19, 98].

1.1 Dissertation Overview

This dissertation focuses on two key issues for designing large scale and high

performance P2P systems supporting user-interactive applications. The first issue is

to provide incentives for users to contribute, and prohibit those who purely take free

rides from the P2P systems. The second issue is to provide consistency services satisfying

various application requirements by efficiently using resources contributed by users. The

major contributions in this dissertation are briefly described below.

1.1.1 Budget-Based Self-Optimized Incentive Search

To realize the function of a P2P system, each user should contribute to the

community and help other users finishing their tasks. This reciprocity lays the foun-

dation for each user getting services from the system. This dissertation decomposes

2

user contribution into two aspects, namely helping others locating service providers,

and providing services to others. In this work, an incentive search model is proposed to

enable users to help each other in locating service providers. Also, two incentive trading

models are proposed for encouraging users to provide services to others.

To help locate service providers means forwarding or replying others search

queries according to the search protocol executed in the P2P system. To provide incen-

tives, a search protocol should associate a user’s contribution to serving others queries

with the quality of search service the user can get from the system. As a result, users

with higher contribution get better search service for their own queries. A budegt-based

self-optimized incentive search protocol (named BuSIS) [106] is proposed in this disser-

tation to differentiate search service among users based on their contribution. In BuSIS,

“credit” is used to represent a user’s contribution to serving others queries and the cost

of issuing a query search. Each query has a budget prepaid by the issuing peer. The

cost of traversing each hop along the search path is deducted from the budget, and the

query is discarded when its budget is run out. The cost for a query search accounts

for the transmission overhead, and the budget imposes a limit for the overhead a query

search will bring to the system. Therefore, the system overhead is balanced with the

resource contribution from its users. And the users have incentives to contribute more

in order to get better service.

To realize the features of BuSIS, an search performance analytical model is

proposed to estimate the expected search quality and the associated cost based on the

object popularity and the user reliability. A middleware emulator of BuSIS is developed

to evaluate the performance of BuSIS.

3

1.1.2 Personal Currency Based Incentive Trading Model

After giving incentives in locating service providers through BuSIS, this work

proposes an incentive trading model for motivating users in providing services. Reci-

procity is used by incentive protocols (e.g., [147, 1, 226, 223, 236, 106, 229]) to enforce

service provisions. Generally, there are two types of reciprocity: direct reciprocity (i.e.,

bilateral trading) and indirect reciprocity (i.e., multilateral trading).

In direct reciprocity, the service provider is instantly rewarded by the receiver,

and the reciprocation is synchronized. For example, in BitTorrent systems [1], peers

downloading the same file follow a rate-based “tit-for-tat” scheme to exchange file seg-

ments. The drawback is that only peers, who are simultaneously interested in each

other’s services, can trade. Discovering a trading partnership often takes tens of min-

utes [27] if such a match exists at all. The delay is usually caused by the demand-supply

mismatch and unequal peer upload rates. The problem gets worse with churn in P2P

networks.

Indirect reciprocity schemes (e.g., [226, 223, 236, 106, 229]) have been proposed

to enhance the flexibility and efficiency of direct reciprocity schemes. In indirect reci-

procity schemes, the user-provided services are priced in currency units and each user’s

contribution and consumption of services are measured in the same currency unit. With

the currency mechanism, the reciprocation can be asynchronized. The trading partner

discovery becomes much simpler and peers are incentivized to contribute even if they are

not currently interested in others’ services. However, most indirect reciprocity schemes

require a central bank or broker to mint currency, maintain each user’s account infor-

mation, resolve disputes, and punish counterfeiters. Such a centralized bank conflicts

with the goal of P2P systems.

4

This work proposes a P2P indirect reciprocity scheme called FairTrade [103],

which provides efficient multilateral trading and is resistant to all three major types

of attacks in P2P systems (i.e., sybil attacks [69], slander attacks, and whitewashing

attacks). FairTrade designs a P2P personal currency model to get rid of any global banks

or central authorities required by the global currency model. To our best knowledge,

this is the first work to propose a personal currency based indirect reciprocity model for

P2P systems.

In FairTrade, each peer issues its personal currency as payment for services,

which can be spent by its issuer or a third peer who accepted the currency before. A

peer accepts its personal currency spent by other peers and provides requested services

in return to guarantee the value of its personal currency. The challenge is that the

efficiency of a personal currency model relies on the honest behaviors of all participants

[25]. However, peers are self-interested and may overissue their personal currencies

if they can benefit more. FairTrade handles this challenge by validating a personal

currency through its acceptance at other peers instead of its issuing. The validity of a

personal currency is measured by how much it will be accepted by other peers. FairTrade

introduces peer credit limit to measure the maximum amount of personal currency issued

by a creditee peer that will be accepted by another peer as a creditor.

A Bayesian network model is provided for a peer as a creditor to dynamically

set the peer credit limit for a creditee peer by learning the creditee’s trading history and

estimating the associated risks and profits periodically. Malicious peers are detected and

banned through peer credit setting. A P2P overlay simulator is developed to evaluate

the performance of FairTrade with and without malicious peers.

5

1.1.3 Cooperative Banking Based Incentive Trading Model

FairTrade successfully enables incentive trading among peers through personal

currency schemes, which achieve the same flexibility for multilateral trading as global

currency schemes but in a distributed way. This work aims to further improve the

efficiency of incentive trading. In a highly dynamic P2P environment, a uniform global

currency is desired due to its low maintenance overhead, however, its centralized nature

conflicts the distributed requirement of P2P systems and restricts the scalability. A

cooperative banking based incentive trading model, called CoBank [104], is proposed in

this dissertation to realize a global currency based incentive trading but in a distributed

way.

CoBank supports global currency based trading without requiring any special

infrastructure to mint currency or manage accounts, as it employs a cooperative bank-

ing strategy. The management of user accounts and transactions is done through the

cooperation of peers. To ensure account security, each user account is decomposed into

several parts stored at different nodes – account holders and each transaction is per-

formed at a third-party peer – transaction arbitrator. Replication of account data and

transaction arbitrator is used to enhance the system robustness.

To enhance the robustness of CoBank in a high-churn P2P environment, an

analytical model is proposed for selecting nodes to be account holders and transaction

arbitrators. The selection model improves the reliability of a CoBank P2P system while

maintaining a sufficient level of scalability. The attack resistance properties of CoBank is

examined in the context of three major attacks in P2P indirect reciprocity schemes (i.e.,

the sybil attacks, slander attacks, and whitewashing attacks). A P2P overlay simulator

is developed to evaluate the performance of CoBank.

6

1.1.4 Maintaining Data Consistency for P2P Interactive Applications

After incentivizing users to contribute resources through previous three works

BuSIS, FairTrade, and CoBank, this work begins the second issue in this dissertation

that is to provide consistency maintenance for a wide range of user-interactive applica-

tions by utilizing the resources contributed from P2P users.

P2P user-interactive applications have various forms, including modifiable stor-

age systems (e.g. OceanStore [121], Publius [212]), mutable content sharing (e.g. P2P

WiKi [206]), even interactive ones (e.g. P2P online games [35], P2P Social Network-

ing [43], and P2P collaborative workspace [152]). All these applications involve data

replication and require consistency maintenance on data replicas to function properly.

These applications have different workload patterns, which may be keep changing. But

they all are constrained by the heterogeneous user capacities, and the dynamic P2P

settings. Neither sequential consistency [99] nor eventual consistency [199] individually

works well in a P2P environment.

Applying sequential consistency leads to prohibitively long synchronization de-

lays due to the large number of peers and the unreliable overlay. Even “deadlock” may

occur when a crashed replica node causes other replica nodes to wait forever. Hence,

system scalability is restricted due to low data availability resulting from long syn-

chronization delay. At the other extreme, eventual consistency allows replica nodes to

concurrently update their local copies, only requiring that all replica copies become

identical after a long enough failure-free and update-free interval. Since replica nodes

are highly unreliable in P2P systems, the node issuing update may have gone offline by

the time update conflicts are detected, leading to unresolvable conflicts. It is infeasible

to rely on a long duration without any failure or further updates. As a result, eventual

7

consistency fails to provide any end-to-end performance guarantee to P2P users.

This work presents a Balanced Consistency Maintenance (BCoM) [105, 102]

framework for structured P2P systems to balance between consistency strictness, object

availability for updates, and update dissemination latency. BCoM protocol serializes all

updates to eliminate the complicated conflict handling in P2P systems. It also allows

certain obsolescence in each replica node to reduce the update discard rate of imple-

menting sequential consistency. BCoM limits the extent of temporary inconsistency by

developing a sliding window update protocol. The size of the sliding window regulates

the number of allowable updates buffered by each replica node. Thus, BCoM provides

a measure of consistency guarantee which is specified by an application rather than

eventual consistency. BCoM develops an analytical model to set the window size as

follows: given an inconsistency bound, the window size is set to minimize the update

discard rate while ensuring the expected delay is no worse than the baseline by a small

given threshold. Two enhancement schemes are presented to improve the fast recovery

of node failure in BCoM and to reduce the impacts of bottleneck nodes. The P2PSim

[12] simulation tool is customized to evaluate the performance of BCoM with a real data

case study.

1.1.5 Real-time Consistency Maintenance

After presenting a consistency maintenance framework BCoM, this work pro-

poses a P2P system, called PPAct [101], supporting real-time consistency maintenance

for large-scale interactive applications. Massive Multi-player Online Game is used as an

example application to illustrate the system, while it can be applied directly to all P2P

interactive applications.

A core challenge of providing real-time consistency maintenance in P2P systems

8

is to ensure update delivery under a stringent latency constraint only using the uplink

bandwidth from peers. In a MMOG, the total number of updates sent by players is

quadratic to the total number of players. But the total supply of uplink bandwidth used

for update delivery increases only linearly with the number of players. The bandwidth

shortage limits the scalability of P2P systems.

PPAct adopts the Area-of-Interest (AOI) filtering, which is proposed in prior

works [36, 116] to reduce the number of updates sent to each player. The game map is

partitioned into regions and each player receives updates in surrounding regions. These

regions are termed as view regions. Each player subscribes to its view regions in a real-

time fashion. However, AOI filtering only alleviates the bandwidth shortage but does

not solve it fundamentally. With imbalanced workload, AOI filtering has a critical “hot

spot” problem, where the players responsible for sending updates about popular regions

still lack of bandwidth and fail to deliver on time.

PPAct solves AOI’s “hot spot” problems through dynamically balancing the

workload of each region in a distributed way. In PPAct, the roles of view discovery

are separated from consistency maintenance by assigning players as “region hosts” and

“object holders”. Region hosts are in charge of tracking objects and players within

a particular region, and object holders are in charge of sending updates about a par-

ticular object to interested players. Lookup queries for view discovery are processed

by region hosts, while consistency maintenance of objects are taken by object holders.

This separation distributes the workload and simplifies the lookup procedure and up-

date delivery. Another key idea in PPAct is that peers contribute spare bandwidth in a

fully distributed way to forwarding updates about objects they are interested in. Thus

popular objects for which demands are higher will have more peers forwarding updates

for them. A node selection model is presented to select region hosts and object holders

9

with capability and reliability considerations. A P2P network simulator is developed to

evaluate PPAct on two major types of online games: role playing games (RPGs) and

first person shooter (FPS) games.

1.2 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 reviews literature

work. Chapter 3 presents the budegt-based self-optimized incentive search model to

provide incentive for service location in P2P systems. Chapter 4 describes the personal

currency based incentive trading model to provide incentives for service provision in P2P

systems. Chapter 5 presents the cooperative banking based incentive trading model

to enhance the efficiency of incentive-aware service provision. In chapter 6, a data

consistency maintenance framework is presented to address the generalized consistency

requirements from a wide range of P2P interactive applications. Chapter 7 presents a

real-time consistency maintenance system for P2P interactive applications with stringent

latency constraints. The conclusions of the dissertation are summarized in Chapter 8.

10

Chapter 2

Related Work

2.1 Incentive Models in P2P Systems

2.1.1 Incentive Search Models in P2P Systems

There is few literature works on incentive-aware search model for P2P systems.

The BuSIS proposed in this thesis is one of the pioneer works in this area. The authors

of [131] address the incentive query propagation in unstructured P2P systems, but they

assume every node is identical and behave the same. This assumption is a fatal conflict to

real P2P systems, where nodes are highly heterogeneous and autonomous, each behaves

to maximize its own interests. While, BuSIS handles node heterogeneity by tailoring

each search query based on the issuing node capability and the queried object popularity.

The predominant search model for unstructured P2P systems is flooding, like

in Gnutella systems [8], where a search query is broadcast and rebroadcast until the

object is found, and a reply message is sent back to the requester following each inverse

search path. Or the query is dropped when its time-to-live (TTL) counter reaches zero.

Flooding has many sound features fitting the dynamic P2P environments, such as its in-

11

dependence of the underlying infrastructure, tolerance to nodes failures, and adaptation

to the dynamic network topology. However, the excessive overhead of flooding restricts

the scalability of P2P systems. Many literature works have been devoted to improve

the search efficiency of flooding from three aspects: 1) by changing the search behavior

and limiting the flooding degree, like random walker [141] [85] reduces traffic overhead

from exponential increase to linear increase; 2) by exploring the cache information like

DiCAS [213] or the congestion information like Congestion-aware Search [123] to re-

strict the search scope and cut down the overhead; 3) by matching the physical network

topology with the overlay topology like LATM [139] to trim the redundant traffic in the

underlying physical links. Random walk gains popularity by its simplicity and low over-

head, while this comes at the cost of easy convergence (rare objects in low connectivity

nodes are harder to be found), low reliability (single node crash leads to search failure)

and high delay (proportional to the search length) due to its linear search. Hence, hybrid

methods of flooding and random walk (e.g. Percolation Search [176] and BubbleStorm

[197]) are proposed to take advantages of strength of each method. Also an adaptive

random walk search based on object popularity is presented in [37]. BuSIS adopts the

simple and lightweight random walk search as basis, the hybrid of one-step flooding is

an option here, because of the in-negligible overhead of exchanging and updating the

sharing folders between neighbors. On top of this, BuSIS provides differentiated search

as an incentive to selfish users, which are not concerned by the above schemes and makes

them vulnerable to selfish user behaviors.

2.1.2 General Incentive Trading Models in P2P Systems

A number of papers from the early to mid 2000s laid the foundation for pro-

viding incentive trading in P2P systems (e.g., [89, 97, 112, 137]). The authors of [89]

12

formally analyzed the equilibria of user strategies in P2P file-sharing systems for differ-

ent kinds of payment mechanisms. A utility function is introduced in [97] to measure

user contributions and an auditing scheme is discussed to maintain the integrity of the

values of the utility function in the case of user cheating. The authors of [112] gave

each peer a EigenTrust score to indicate how many rewards the peer is entitled to.

The authors of [137] addressed the asymmetric download and upload bandwidth and

proposed using a token based accounting scheme to provide asymmetric incentives to

peers. All of these works made assumptions on peer’s availability and assumed a fixed

topology, while, the FairTrade model presented in this thesis learns dynamically from

the changing P2P environments to set credit limit for peers and adapts accordingly.

Recently, a few research works [147, 125, 140] investigated the linkage between

direct and indirect reciprocity and proposed incentive schemes residing in between of the

two extremes. The authors of [147] gave a theoretical efficiency bound comparing the

two reciprocities. The authors of [125, 140] present incentive schemes extending direct

reciprocity towards indirect reciprocity for better efficiency and flexibility. Both have

similar core techniques: an indirect trading is decomposed to hop-by-hop contribution

transfer and direct trading. The difference is that a social network [185, 224] is given in

[140] to perform the contribution transfer, while in [125] each peer has to discover its

local view of the contribution network to find a valid transfer path. The indirect trading

in [140, 125] is restricted by an intermediate bottleneck node in the contribution trans-

fer path, while the personal currency of FairTrade fundamentally solves the limitation

imposed by intermediate nodes. Each peer can use personal currency either issued by

itself or by others to trade directly. Any two peers can be trading partners without any

topology or routing constraints.

The credit setting is an important account management tool in financial worlds.

13

Several statistical and operational research methods have been applied to credit scoring,

as surveyed in [202].These economic tools are too complicated to implement in P2P

systems. Instead, P2P schemes use one or two simple calculation formulas to set credit:

for example, PledgeRoute [125] uses a monotonically sublinear growing formula and

NABT[140] uses an additive increase multiplicative decrease formula. The most critical

drawback of these simple P2P credit setting formulas is that they only consider the

trading history of the customer peer with an uploader but not with others; as a result,

their credit settings do not consider the system-wide contributions and takings, which

FairTrade credit setting model takes into consideration. Thus, peers in FairTrade detect

malicious attacks more efficiently with low the maintenance overhead for credit setting.

2.1.3 Indirect Reciprocity Models in P2P Systems

Global currency is popularly used by P2P indirect reciprocity models, where

a user earns currency units when providing service and spends when acquiring service.

Users’ savings could be tracked by using virtual currency and a central bank (e.g.,[182,

27]) or some form of digital cash and a broker or brokers (e.g., [226, 223]). Economic

theory shows that global currency systems are highly efficient [207]. However, the central

bank/broker conflicts with the distributed P2P system. The CoBank model presented in

this thesis adopts the global currency approach but gets rid of any central mechanism by

fully distributing the management workload of accounts and transactions to cooperative

peers. Karma [211] system provides distributed account management, however, it purely

uses replication to store account information thus subjects to sybil attacks and other

account abuses. To the contrary, CoBank separates the transaction arbitrators from

the account holders, and explores the cooperation among different account holders to

combat all major attacks. CoBank also uses replication to further enhance the security.

14

Pairwise currency is another popular approach to enable indirect reciprocity

for P2P users (e.g., [192, 125]), where each user maintains a distinct currency/credit

account for every other peer. The robustness and efficiency of pairwise currency schemes

reside in between those of bilateral trading (i.e., bartering) schemes and global currency

schemes. It allows asynchronous bilateral trading among networked nodes and provides

distributed account maintenance. A critical problem of pairwise currency is that each

user needs to maintain O(N) number of distinct accounts, where N is the total number

of nodes in the network. Thus, there are total O(N2) accounts maintained in the

system. Such overhead severely reduces the scalability of P2P systems. Moreover,

for each transaction the buyer has to find a valid currency/credit transfer path in the

contribution network as in PledgeRoute [125]. In the worst case, finding such a path

may have O(N) communication overhead because of node churn or insufficient currency

at the intermediate nodes. In CoBank each user only has O(1) storage overhead and

each transaction only has O(logN) communication overhead. CoBank also achieves

distributed management through cooperative banking.

Social network is introduced to reduce the account maintenance overhead of

pairwise currency approaches (e.g., [140, 162]), where each user only maintains accounts

for social peers. In [140], peers only maintain accounts for directly connected peers

(i.e., one-hop neighbors) in the social network. Trading with other peers has to be done

through currency/credit transfer along a valid path in the social network. In [162],

users maintain accounts for indirect connected social peers and calculate social distance

for each social peer. Their service provision is in reverse to the social distance. A

critical limitation of such schemes is that they rely on a given social network. Such

social network usually is not available, since users may not willing to disclose their

social relationships while participating in a P2P system. CoBank reduces the account

15

management overhead and does not have any underlying restriction.

2.2 Consistency Maintenance in P2P Systems

2.2.1 Consistency Maintenance in Structured P2P Systems

In structured P2P systems, strong consistency is provided by organizing replica

nodes to an auxiliary structure on top of the overlay for update propagation. Examples

include the tree structure in SCOPE [55], the two-tiered structure in OceanStore [121],

and a hybrid of tree and two-tiered structure in [136]. The tree construction algorithms

in SCOPE [55] and in [136] build a tree by recursively partitioning the identifier space

and selecting a representative node as a tree node for each partition. Only leaf nodes

store object copies, all the intermediate nodes only store information of the tree structure

in their sub-space. Nodes who may not be interested in the object are in the object’s

update dissemination tree, which adds unnecessary overhead of maintaining the tree

from node failures. To the contrary, the BCoM model presented in this thesis constructs

the dissemination tree dDT by only involving replica nodes who are interested in the

object, which greatly reduce the overhead of maintenance and update propagation.

BCoM also efficiently builds the dissemination tree dDT to make it balanced and robust

under the node churn.

2.2.2 Consistency Maintenance in Unstructured P2P Systems

In unstructured P2P systems, mainly two types of bounded consistency are

provided: (1) probabilistic bounded consistency: rumor spreading [63] and replica chain

[220] are used to ensure a certain probability of an update being received. The probabil-

ity is tuned by adjusting the redundancy degree in propagating an update to balance the

16

communication overhead with the consistency strictness. (2) time-bounded consistency:

TTL guided push and/or pull methods are used (e.g., [138] [194]) to indicate a valid

period for a replica copy. When the period expires, the replica node checks the validity

of the replica copy with the source to serve the following read requests. The problems of

these techniques are (1) node-level consistency is not ensured by probabilistic bounded

consistency, and (2) time-bounded consistency sets a uniform TTL timer for all nodes.

In the situation where nodes have various update frequencies, it is impossible to set

a TTL timer that works for all nodes. BCoM avoids both drawbacks by using a slid-

ing window update protocol, which directly limits the inconsistency by the number of

buffered updates and ensures the bounded consistency for each replica node.

2.2.3 Tunable Consistency Models in P2P Systems

Previous works [117][230] have proposed continuous models for consistency

maintenance, which have been extended by a composable consistency model in [191] for

P2P applications. The core technique for maintaining consistency used in [191] is a hy-

brid of push and pull methods, which are also used to provide application tailored cache

consistency in [239] [138]. Although each node can specify its consistency requirement,

the model in [191] makes each node perform the strongest consistency maintenance from

all its descendant nodes in the overlay replica hierarchy. Thus, the overhead of maintain-

ing consistency at a node is not reduced even it only requires a weak consistency as long

as one of its descendant nodes requires a strong consistency. An analytical model for

adaptive update window protocol is presented in [235], where the window specifies the

number of uncommitted updates in each replica node’s buffer. The information of each

node’s update rate and propagation latency are required to optimize the window size

in [235]. Such optimization is unrealistic for P2P systems due to their required global

17

information. To the contrary, every BCoM node has a fair amount of consistency main-

tenance overhead because of the uniform buffer size and node degree in dDT. Moreover,

BCoM provides incentives for nodes to contribute more bandwidth to update dissemina-

tion, as we promote faster nodes closer to the root and they will receive updates sooner.

The window size optimization model in BCoM only requires limited information that

can be obtained in a fully distributed way.

2.2.4 P2P Managed Online Game Systems

In the literature, two major techniques are proposed to reduce bandwidth de-

mand for update delivery. One is Area-of-Interest (AOI) filtering [36, 116], where up-

dates of an object is only sent to the players within the same region as the object. This

method works well when players have limited proximity to each other, but does not help

when players are clustered in a few places, which is unavoidable due to the power law

distribution of the player population density [160]. As a result, the demand in such hot

regions still grows quadratically, and AOI does not fundamentally solve the bandwidth

shortage problem. The other technique is proposed in the system Donnybrook [35],

which limits each player to receive only a constant number of real-time updates. The

demand of uplink bandwidth for sending real-time updates is then linearly proportional

to the number of players. Since every player still has to be aware of the status of all oth-

ers, each Donnybrook player is required to broadcast less frequent guidance messages.

Therefore, their total demand of uplink bandwidth remains asymptotically quadratic to

the total number of players.

The PPAct system presented in this thesis follows the AOI filtering but solves

its “hot spot” problem by having players contribute their spare bandwidth to update

delivery in a distributed way. We also take advantage of players’ movement patterns to

18

build a 2-D DHT for reducing the lookup overhead and delay. Thus, more bandwidth

is saved for sending out update on time.

For better workload distribution, PPAct system decouples the view discov-

ery and update delivery similar to the Colyseus system [36], which decoupled object

discovery and replica synchronization. But Colyseus system [36] assumed objects were

properly placed with minimized interactive latency without any specific methods. PPAct

system devises efficient schemes for handling object placement, peer selection, and failure

recovery.

2.2.5 Load Balance on P2P Networks

Data replication and load redistribution are two major solutions to the imbal-

ance workload problem in P2P networks. The workload imbalance is due to the skewed

data popularity and heterogeneous peer capability. Data replication alleviates the over-

loaded nodes by providing extra targets for the incoming requests [235, 191, 90, 200].

Data migration requires actual data transfer between nodes to balance workload, which

has two major forms: data item exchange and node migration. Optimal load balance

needs use both item exchange between neighbor nodes and global node migration [78].

Some P2P networks use topology adjustment to assist load balance. A node in the Mer-

cury system [34] uses sampling to estimate other nodes’ workload and adjusts its long

link connections for load balance. The authors in [181] propose that each node tunes its

routing table size to balance the query workload and avoid congestion. These methods

focused on static traffic, PPAct addresses load balance for dynamic traffic and avoids

data shipment or node migration.

To balance the workload for update delivery, Donnybrook [35] also has each

player advertise its spare bandwidth to help forward updates. However, in Donnybrook

19

[35] each player has to broadcast its spare bandwidth, which requires the global knowl-

edge of all players and strictly limits the system scalability.

2.2.6 P2P Support for Range Queries

Distributed Hash Table (DHT) provides a scalable and robust substrate to

build structured P2P systems. However, DHT only supports exact-match queries be-

cause the uniform hashing of DHT destroys the data locality required by range query

processing. Existing P2P index techniques to support range queries fall into two cat-

egories: (1) DHT-preserved indexing, which maintains the original DHTs and builds

an overlay index-structure on top of DHTs (e.g., Prefix Hash Trie (PHT) [53], multi-

dimensional Lightweight Hash Tree (mLIGHT)[195], Distributed Segment Tree (DST)

[240] and Range Search Tree (RST) [80]); (2) DHT-modified indexing, which modifies

the internal structure of DHTs and develops certain locality-preserved overlay (e.g.,

multi-ring structure in Mercury [34], SkipIndex [234] incorporate space kd-tree index

into skip-graph). However, all these methods are infeasible to support real-time range

queries, where the answer is time related and the object attribute is changing dynam-

ically. Every time the change of object’s attribute value leads to changes on PHT or

object movement from one node to another. This results in cascading changes and

requires re-running load balance algorithms. PPAct successfully enhances the DHT

structure to support real-time range queries by properly partitioning regions as unit of

range index.

20

Chapter 3

Budget-Based Self-Optimized

Incentive Search

3.1 Budget-Based Self-Optimized Incentive Search Model

BuSIS consists of four components: Search Performance Estimation (SPE),

Budget Assignment (BA), Query Forwarding (QF) and Parameter Maintenance (PM).

BuSIS locates between application layer and transport layer and makes all its optimiza-

tions transparent to end uses. It can integrate with any transport layer protocol, for

example, our emulator builds BuSIS on top of TCP to run in the Internet. To request

a search, the requester peer first runs the SPE module to estimate search performance

for a certain set of operation parameters (total TTL, and the number of simultaneous

walkers). Then the requester runs the BA module to choose the most beneficial pair of

operation parameters, and assign budget on the query walkers. The QF module is run

by a peer to send out a query after assigning budget and to relay others’ query when the

query does not hit locally. A peer runs the PM module to update the input parameters

of the PE, BA and QF modules. The update is performed whenever the peer sends out

21

a query, receives a query and receives a query feedback. The feedback message is sent

along the reverse search path after a query hits.

BuSIS models the unstructured P2P file sharing system as a competitive mar-

ket [207], where each peer acts as a consumer or a producer. The major services provided

in the P2P file sharing market include object search and file transfer, and BuSIS focuses

on object search service. A peer takes the role of a consumer when initiating a search

query, and it pays the search service by associating an amount of budget on the query.

When a peer receives other’s query, it plays as a search service producer; it processes

the query and deducts its charges from the query budget. If it holds the query object,

it replies to the requester by a query feedback message, otherwise, it relays the query

to another neighbor for further search. In BuSIS, each peer charges the same for both

query hit and query forwarding in terms of providing search service. After receiving the

query feedback, the file host charges a larger amount of credits for the real file transfer.

The credit is the currency in our P2P market and in this paper, we assume no fraud

in currency implementation. The techniques for secure currency implementation are

discussed in [76] [241] [226].

Initially a peer enters the market without any credit, it gets the participation

payment from the system for each on-line time-slot. This is regardless of whether this

peer shares objects or forwards queries. After establishing connections with neighbor

peers, it receives others’ queries, processes and charges them. If the query matches the

local sharing object, it replies a feedback message to the query requester. On receiving

a feedback message, each relay peer along the reverse search path runs the PM module

to update the related input parameters. If the peer does not have the object, it runs the

QF module to forward the query to another neighbor. In both cases this peer charges

the query the same price. In case the query lacks budget, if the peer holds the object it

22

still charges and sends back the feedback message, indicating the amount the requester

needs to pay later. If the peer does not have the object, it stops forwarding and drops

the query with insufficient budget.

To search an object, the peer first runs the SPE module to estimableate the

expected search performances for all sets of feasible operation parameters, which are

then used by the BA module to choose the most beneficial one and set the query budget

to be the associated search cost. To issue a search query, the requester peer should wait

until it earns enough credits to prepay the budget determined by the BA module. After

accumulating enough credits, the peer runs probabilistic forwarding in the QF module

to send out each walker of the query search and deducts the budget from its credits

account. If the query hits and the requester successfully receives the feedback message,

it directly contacts the file host to perform file transfer.

Figure 3.1 shows the basic operations and data flowchart of the BuSIS protocol.

The equations cited in the flowchart are used to compute various cost functions based on

which the decisions are made. For better readability, we describe the protocol operations

in this section and derive the equations in Section 3.2. The detailed derivations may be

skipped without affecting the flow of the paper. In the following, we elaborate the four

modules in detail.

3.1.1 Search Performance Estimation (SPE)

Given certain operation parameters, the SPE module estimates the expected

search performance. BuSIS is built on top of the random walk search, where the re-

quester sends out several walkers. Each walker is assigned a TTL and randomly searches

along a path until a hit occurs or its TTL reaches zero. SPE module uses the total TTL

23

Figure 3.1: BuSIS Flowchart

Tq and the number of simultaneous walkers xq as the operation parameters to estimate

the expected hit rate probq, hit delay delq and search reliability Rq, assuming each walker

equally shares the total TTL. For better readability, we put the detail derivation steps

in Section 3.2.1.

3.1.2 Budget Assignment (BA)

Instead of setting uniform TTL, BuSIS uses the budget to control the number

of search hops for each walker. The requester peers prepays an amount of budget for

a query search, which is the associated search cost for an expected search performance.

Clearly, low budget limits the search scope and can result in a low hit probability, while

surplus budget wastes resources and causes unnecessary traffic overhead. The total

budget per query can also be split among the multiple simultaneous walkers to shorten

the search delay, while the number of simultaneous walkers cannot exceed the node

connection degree. In case of query hit, the remaining budget is saved and returned

to the requester. But for multiple walkers, even if one of them hits, the other ones

will still use up their budget. The BA module determines the budget amount and the

24

simultaneous walkers number with the aim to maximize the search requester’s interests,

represented by the utility function. The cost and utility functions to determine the

budget assignment are derived in Section 3.2.2 for better readability.

A selfish peer is modeled as a utility maximizer, making all choices toward

maximizing its search utility. Since the specific form of utility function is essentially

unknown, we aim to formulate it in a simple form and properly reflects the impacts of

relevant factors.

The requester i scans all feasible pairs of total TTL T and the number of

walkers x, calculates the resulting utility from each pair, and chooses the pair (T , x)

with the maximum utility as Equation 3.12 in Section 3.2.2. The utility goes up with

better performance and gets lowered by larger search cost, and the maximum utility

balances search performance with the cost, which automatically constrains the total

search overhead. This makes bound the total TTL explicitly unnecessary. But without

any constraints, the peer will initialize queries once they earn a little credits. The query

budget is subject to the amount of credits this peer currently has, even under the utility

function control, issuing queries with insufficient credits leads to poor search performance

and large overhead. Therefore, the utility function requires that the estimated hit

probability should be no worse than the acceptable hit probability threshold Pthre.

Furthermore, to adapt to time sensitive applications, the estimated hit delay should

be no worse than the delay threshold Dthre.

After selecting the pair (T , x) with maximal utility, the requester i waits to

earn enough credits to prepay the associated cost Ci(T, x) as the budget, then sends out

x simultaneous walkers with equal share of budget.

25

3.1.3 Query Forwarding (QF)

The QF is run by a peer for two cases, one is for forwarding other’s query

because no local objects match, and the other is for sending out the query initiated by

itself. The forwarder adopts the probabilistic forwarding assisted by the knowledge of

the object popularity, outgoing link quality and network condition. The goal of QF is

to increase the query hit probability for future search under its budget constraint.

First, if the query is other’s, the local peer i checks the remaining budget of

the query and computes its search price Xi
srch. The query is dropped if the remaining

budget cannot afford Xi
srch. The search price is determined by the link quality, the more

neighbor connections the more choices it has to forward the query; the shorter queuing

delay the faster the query will move forward and the lower risk being dropped due to

buffer overflow. Better link quality deserves higher charge. The search price calculation

is given in Section 3.2.3. We allow each peer to locally compute its price, assuming the

peers are honest. To prevent fraud in price calculation, some security techniques can be

applied, like having the system administrator conduct random anonymous sampling to

examine the price.

The peer i takes inputs as the object popularity popxi of the query object x, and

the outgoing link hit rate hiti,k to calculate Prxk , the forward probability to neighbor k

for searching object x. The calculation of Prxk is given in Section 3.2.3.

When the object holder is unknown, probabilistic forwarding gives each outgo-

ing link some chances to find the object. For a popular object, an existing good path is

preferred, so the forward probability is biased on high hit rate link. For a rarer object,

uniform random forwarding is chosen to explore potential good path, so the forward

probability equally distributes to each link. Since biased on high hit rate links con-

26

verges the search path to those “hot peers”, which have high connectivity and can easily

be visited, and restricts the search scope. This will make some low connectivity peers

rarely be visited.

Finally, peer i charges this hop cost Xi
srch from the query budget, updates the

query remaining budget, and forwards the query.

3.1.4 Parameter Maintenance (PM)

The PM module maintains five input parameters used by the SPE, BA, QF

modules, which are per hop search cost, object popularity, link hit rate, credit account

balance, and performance threshold. The first three are periodically updated. We

consider a discrete time domain, where time is slotted and one time slot equals a update

duration. The estimated value of these three parameters are weighted averages of the

previous estimation and the most recent estimation. We use α to denote the weight

of the previous estimation, where 0 < α < 1. Whenever a peer receives a query, or a

feedback message, it examines the packet header and updates the most recent estimation

of the related parameters. No extra communication is required to perform the parameter

maintenance. The exact update equations are given in Section 3.2.4.

3.2 BuSIS Analytical Model

3.2.1 SPE Derivations

Following some analytical expressions in [37], this section gives detail deriva-

tions of the search performance estimation made in the SPE module.

Hit rate: Given a feasible operation parameter pair: total number Tq of hops

and number of simultaneous walkers xq, we use a uniform random distribution model.

27

Assuming p is the probability that a peer holds the target object (p is the expected

popularity of the object). Equation 3.1 is the expression of the expected hit probability

probq.

probq = 1− (1− p)Tq (3.1)

Hit Delay: We measure the expected hit delay delq by the number of hops

before the walker terminates, which we denote as D, and assume that ρ is the average

per hop delay. E[D] is the expected value of D, and for a single random walker, the ter-

mination probability at each hop is defined in Equation 3.2, since the walker terminates

either by a query hit or exhausting Tq hops. Thus the expected hit delay for a single

random walker is defined in Equation 3.4, and E[D] is defined in Equation 3.3.

P (D = j) =

p ∗ (1− p)j−1 1 ≤ j < Tq

(1− p)j−1 j = Tq

(3.2)

E[D] = Σ
Tq

j=1 j ∗ P (D = j) (3.3)

delq = E[D] ∗ ρ (3.4)

In the case of xq simultaneous random walkers, and each with
Tq

xq
hops for

searching, the expected delay of each walker E[Dx] is defined in Equation 3.6. And the

expected hit delay for simultaneous x walkers is defined in Equation 3.7.

P (Dx = j) =

(1− (1− p)x) ∗ (1− p)x(j−1) 1 ≤ j <
Tq

xq

(1− p)x(j−1) j =
Tq

xq

(3.5)

E[Dx] = Σ

Tq

xq

j=1 j ∗ P (Dx = j) (3.6)

delq = E[Dx] ∗ ρ (3.7)

Search Reliability: Since the query hit reply propagates back to the re-

quester through the reverse search path, any relay peer on the path may disconnect

28

after forwarding the query but before the reply is back. So we model the reliability for

a query hit path, which reflects the possibility that the query hit result may never reach

the requester and should be considered in the requester’s utility function. Let ton be

the average peer online time slots, and E[Dx] be the number of hops the query hit away

from the requester. ton can be set locally by observing neighboring peers average online

time. For easy notation, set y equal to E[Dx] and relay peers are ordered as p1, p2 . . . py

based on their hops from the requester. We define the holding period for each relay peer

pj (1 ≤ j ≤ y) in Equation 3.8 as the number of time slots it should wait for the hit

reply after it forwards the query.

P j
hold = 2 ∗ (y − j) (3.8)

Then the probability for pj (1 ≤ j ≤ y) keeping online during its holding period

is given in Equation 3.9.

pjon = (1−
1

ton
)P

j
hold (3.9)

Thus, the expected search reliability Rq associated with (Tq, xq) is the proba-

bility that all relay peers remain online during the whole query hit reply period, which

is given in Equation 3.10.

Rq =

y
∏

j=1

pjon (3.10)

3.2.2 BA Calculations

Search cost: Let Ci
q(Tq, xq) denote expected cost for peer i to conduct a

search with Tq total hops and xq simultaneous walkers. Let Ci
hop be the estimated per

hop cost at peer i. The expected total cost Ci
q(Tq, xq) pays the estimated hops before

each independent walker terminates and is defined in Equation 3.11.

Ci
q(Tq, xq) = x ∗ Ci

hop ∗ {Σ
Tq

xq

j=1 j ∗ P (D = j)} (3.11)

29

Search requester’s utility: The utility function, defined in Equation 3.13,

takes the total hop counts Tq and the number of simultaneous walkers xq as input and

follows the derivations in Section 3.2.1 to get the expected hit probability probq, hit

delay delq, search reliability Rq and search cost Ci
q(Tq, xq).

(T, x) = arg max Ui(Tq, xq) s.t. probq ≥ Pthre, delq ≤ Dthre (3.12)

Ui(Tq, xq) =
probq ∗Rq

Ci
q(Tq, xq)

(3.13)

In Equation 3.13, a weight can be added to the estimated hit probability as an

coefficient to scale the impacts of hit probability and search reliability. In this work, we

treat them equally.

3.2.3 QF Calculations

Search price calculation: The search price Xi
srch of peer i is defined in

Equation 3.14, where Ni is the connection degree of peer i, Li and Qi are the average

link and queuing delay of peer i, which consist of one hop delay. ωhpd is the weights on

one hop delay, which tunes the connection degree and per hop delay to be comparable. In

our experiment, we set ωhpd based on the relationship between node average connection

degree and estimated per hop delay.

Xi
srch = Ni +

ωhpd

(Li +Qi)
(3.14)

Forward probability of an outgoing link: The forward probability to

neighbor k for searching object x: Prxk is defined in Equation 3.15, where Si denotes

the neighbor set of peer i, hiti,k denotes the hit rate of outgoing link (i, k), which is the

ratio between the number of query hit from this link and the total number of queries

30

forwarded through this link. popxi is the query object popularity observed by peer i.

Prxk =
hit

popxi
i,k

∑

q∈Si
hiti,q

popxi
(3.15)

3.2.4 PE Calculations

Parameter Update:

1. Per Hop Cost

Let Chop
i (t) denote the estimation in the tth time slot, α denote the weight of pre-

vious estimation, Ci
total(t) denote the total search cost the peer i counts during the

tth time slot, and N i
hop(t) denote the total search hops paid by Ci

total(t). Ci
total(t)

and N i
hop(t) are computed by examining the query packets passing through peer

i, and the query results replying to peer i during the tth time slot. The updating

is performed as in Equation 3.16.

Ci
hop(t) = α ∗ Ci

hop(t− 1) + (1− α) ∗
Ci
total(t)

N i
hop(t)

(3.16)

2. Object Popularity

The estimated popularity of the object x is derived from the average hit rate. Let

qxi (t) denote the estimated popularity in the tth time slot, and popxi (t) denote the

weighted average popularity until the tth time slot. The estimated popularity is

updated as Equation 3.17.

popxi (t) = α ∗ popxi (t− 1) + (1− α) ∗ qxi (t) (3.17)

3. Link Hit Rate

The estimated hit rate of an outgoing link is the ratio of total number of queries

forwarded through that link to total number of feedback messages received through

that link, the final result is averaged over time. For each neighbor j, let hiti,j(t)

31

denote the weighted average hit rate examined by peer i up to the tth time slot

for outgoing link (i, j), hi,j(t) denote the estimated hit rate in the tth time slot.

The link hit rate is updated as Equation 3.18.

hiti,j(t) = α ∗ hiti,j(t− 1) + (1− α) ∗ hi,j(t) (3.18)

4. Credit Account Balance

Ci denotes the total available credits at peer i, which is updated after each time

peer i issues a search, forwards and replies others’ queries. For security reason,

some authentication and forge-proof mechanism must be used to manage the peer

credit account. In our protocol, we adopt the simple receipt method and assume

that each peer is honest in maintaining the credit account.

5. Performance Threshold

Performance threshold includes the thresholds of hit probability Pthre and hit

delayDthre. These constants are set once at initialization to prune out infeasible

operation parameters.

3.3 Performance Evaluations

In this section, we develop a custom emulator to evaluate the performance of

BuSIS, and compare with random walk and flooding search techniques. We introduce

our experimental methodology in Section 3.3.1 and explain the network figuration in

Section 3.3.2. Then, in Section 3.3.3, we analyze the experimental results, elaborate the

implications of the figures and discuss some important performance issues.

32

3.3.1 Experimental Methodology

It is infeasible to configure a large number of peers in Gnutella network with

BuSIS to evaluate the performance. Thus, we develop a BuSIS-emulator middleware,

which can be deployed in a large distributed system to form a BuSIS-based unstructured

P2P network. Our BuSIS-emulator creates multiple independent processes; each pro-

cess representing a single peer and implementing BuSIS middleware on top of TCP/IP

protocol to run in the Internet. A peer is emulated for joining and leaving the network,

establishing and maintaining connections with neighbor peers, generating queries, pro-

cessing and replying others’ queries, and updating sharing directories to simulate file

transfers. Current emulations are based on deployment in the LAN in our computer

science department to simulate the performance with 1000 nodes. Our emulations aim

to verify:

1. the adaptivity and self-optimization capability of BuSIS in the face of changing

object popularity;

2. the effectiveness of BuSIS under selfish and selfless user behavior;

3. the positive impact of BuSIS on smoothing the query injection in case of traffic

burst;

4. the effectiveness of BuSIS for heterogeneous peers topologies.

We design different emulation scenarios to fulfill the above four objectives, and the

results are presented in the following sections.

BuSIS strives for both better user-perceived search quality and system effi-

ciency, so we focus on two metrics: the hit rate and the overhead-per-query. Hit rate is

defined as the number of query hits over the total number of issued queries. And the

33

Table 3.1: Summary of parameters setup

Symbol Definition Value

Pthre hit probability threshold 0.5

Dthre hit delay threshold 10s

ωhpd weight of per hop delay in search price calculation 0.1

α weight of previous estimation for periodic updates 0.8

overhead-per-query is defined as the total search overhead (total number of hops queries

traversed) divided by the total number of issued queries.

3.3.2 Network Configuration

There are total five parameters need to be set up, which are summarized at

Table.3.1. Their setup values is based on their functionalities we explained when intro-

duced them.

When a new peer joins, it first tries its cache, which contains addresses of

previous neighbor peers and peers who replied its queries before, to establish neighbor

connections. If those cached peers are not active, the new peer asks a well known node

(landmark) for a list of candidate neighbors. We bound the maximum connection degree

of each node to xmax. Then the landmark node sends back a list of xmax recent active

peers. The new node connects to neighbors from this list. When a peer’s connection

degree becomes smaller than half of xmax, it re-sends request message to the landmark

node for more candidate neighbors. In emulation we set the maximum node degree to

5, based on the average Gnutella node degree of 3 to 5.

P2P networks are highly dynamic with peers that go on-line and off-line fre-

quently. It has been shown that 20% of the P2P connections last no more than 1 minute,

and around 60% of peers keep on-line no more than 10 minutes each time after they en-

ter the system [179]. We emulate the dynamics of P2P networks by assigning each peer

34

a lifetime, which is the time period the peer will be online in the system. The lifetime

follows the distribution observed in [174], with the mean value to be 10 minutes [179].

During each second, a number of peers leave the network with there lifetime reduced

to zero. We let the same number of new peers enter the network to keep the network

size as 5000 peers. The query generation by a peer follows a poisson process with inter

generation time of 5 seconds. The number of replicas of any object ranges from 10 to

200, all of which are randomly spread in the network. Each peer queries objects which

are locally unavailable with the query object popularity simulated as Zipf distribution

[41].

For TTL setting, BuSIS initiates a query search by determining the number of

simultaneous walkers and allocating a budget to each walker. The actual TTL of each

walker is determined by the assigned budget and the charges of relay peers. To fairly

compare performance with flooding and random walk, we set their TTL such that the

total search hop counts remain the same, and use this as an upper bound for BuSIS.

In our emulation we set random walk TTL to be 25 given the average node connection

degree is 5, then TTL for flooding is set to be 2. For multiple walkers in random walk,

the total TTL can be split equally among the walkers. We also bound the maximum

TTL for our incentive protocol to 25 for fairness.

Another important parameter is participation payment, whose setting is subtle

and impacts the system functionality. Small participation payment leads to long warm

up period of low system throughput due to shortage of credits for activating query

searches. A new-join peer has no credit to issue query until earning enough participa-

tion payment. On the other hand, large participation payment will make peers ignore

the earning from processing others’ queries. It is because staying online earns enough

credit to afford good search service. This undesirably stimulates the peers only to be

35

online but not contribute and serve others. Besides, large participation payment causes

currency inflation as the total credits in the system grows unbound. We test the sys-

tem throughput by varying the participation payment, the results is shown in Figure

3.2 based on which we set participation payment to be 5 for our emulation. Because

this value is large enough to achieve good system throughput, but small enough to not

generate query injection burst due to surplus credits.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 5 10 15 20 25 30

T
h

ro
u

g
h

p
u

t

Participation payment

BUSIS

Figure 3.2: System throughput changes over participation payment

 30

 32

 34

 36

 38

 40

 42

 44

 46

 0 100 200 300 400 500 600

B
u

d
g

e
t

Time

BUSIS

Figure 3.3: Budget adaptive trend over system operation time

36

3.3.3 Experimental Results

3.3.3.1 Performance Impact of Budget Assignment

In this emulation we examine the adaptivity and self-optimization capability

of BuSIS in the face of changing object popularity. We emulate the object popularity

changes by letting each peer perform searches and provide the search result as a replica

to share with others. Initially each node holds 10% of total object, that is, an average

object popularity is 0.1, and the object popularity increases as the system runs thus

making the object search easier. The experimental results show that the average query

budget decreases from 44 to 32 by 25% as shown in Figure 3.3, while the hit rate

increases from 40% to 70% in Figure 3.4. The overhead per query is moderate from 6.5

hops to 5.5 hops as in Figure 3.5. The reason for such changes is that initially each peer

does not have any knowledge on the input parameters, it takes the warm-up period to

learn and update its estimation. Then assisted by the updated estimation, the utility

function helps the peers to conduct the most beneficial search with high hit rate and

low overhead. The self-optimizing and adaptability of BuSIS makes the search sensitive

to the object popularity changes and always keep good performance with low overhead.

37

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600

O
v

e
rh

e
a

d
 p

e
r

q
u

e
ry

Time

BUSIS

Figure 3.5: Overhead per query changing trend over system operation time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

H
it

 r
a

te

Time

BUSIS

Figure 3.4: Hit rate changing trend over system operation time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

H
it

 r
a

te

Number of replicas of each object

BUSIS
Flooding

Random walk

Figure 3.6: Hit rate under selfless user behavior

38

3.3.3.2 Performance Impact of User Behaviors

In this emulation we model selfless and selfish users by assigning different life-

times, and compare the performance of BuSIS with that of Random walk and flooding.

The selfless users keep on-line after they join the network, while the selfish users only

join for searching file objects and leave once they get the objects. We first apply the

selfless user behavior model, and compare the performance for the three search methods

under fair TTL settings while adjusting the number of objects available per node. As

shown in Figure 3.6, the hit rate of the three methods are similar, but the per query

overhead sharply differs in Figure 3.7. Overhead is defined as the average number of

hops used for each query. Flooding has the heaviest overhead, random walker has much

less overhead than flooding and BuSIS has the lowest overhead, averaging around 25%

of flooding and 50% of random walk. Especially when each user only holds a small

percentage of the total objects (like 1%), BuSIS has remarkably reduced overhead while

achieving the same hit rate. This scenario is common to the P2P file sharing systems,

where each user only has a small number of files and needs to collaborate with others to

get mutual benefits. The overhead reduction in BuSIS results from the self-optimization

in the utility calculation, which optimizes the query budget to gracefully control the

search scope according to the estimated object popularity.

When we apply the selfish user behavior model, BuSIS outperforms flooding

and random walk by a larger amount than that in selfless user behavior model. As

in Figure 3.8, the hit rate of BuSIS in most cases is higher than that of flooding and

random walk. More importantly, comparing their results in Figure 3.9 with Figure

3.7 selfish behavior leads to dramatic overhead increase for both flooding and random

39

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160 180 200

O
v

e
rh

e
a

d
 p

e
r

q
u

e
ry

Number of replicas of each object

BUSIS
Flooding

Random walk

Figure 3.7: Overhead per query under selfless user behavior

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

H
it

 r
a

te

Number of replicas of each object

BUSIS
Flooding

Random walk

Figure 3.8: Hit rate under selfish user behavior

walk. In contrast, BuSIS keeps low overhead; especially when each node only has a

small percentage of objects, our overhead is only 20% of flooding and 25% of random

walk. This demonstrates that BuSIS always reduces the search overhead without hurting

the hit rate, and is especially resilient to selfish user behavior. Flooding always has

the largest overhead no matter whether users are selfless or selfish. Random walk has

moderate overhead when users are selfless, but sharply increased overhead in case of

selfish users, which is the common situation in real P2P file sharing systems.

40

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160 180 200

O
v

e
rh

e
a

d
 p

e
r

q
u

e
ry

Number of replicas of each object

BUSIS
Flooding

Random walk

Figure 3.9: Overhead per query under selfish user behavior

3.3.3.3 Performance Impact of Dynamic Network Overload

In this emulation we examine the effectiveness of BuSIS in regulating user’s

behavior of query injection and moderating the query traffic load. We compare the

query injection load by BuSIS and random walk under the same user demands, and

the results are shown in Figure 3.10. To simulate user demands, after the warm up

period at time t = 300 we put 100 queries at each peer’s outgoing queue. The random

walk produces the traffic burst around t = 330 due to the queuing delay and network

conditions. In contrast, BuSIS does not generate traffic burst, the most intense traffic is

around 1/3rd of random walk’s. This smoothed traffic resulted from the query budget

constraint in BuSIS. The peers are restricted from aggressively issuing queries, because

they should wait until they earn enough credits to pay for the budget as decided by the

utility function. So the traffic load is moderated over time by BuSIS.

41

 0

 20000

 40000

 60000

 80000

 100000

 120000

 300 350 400 450 500 550 600

W
o

r
k

lo
a

d

Time

BUSIS

Random walk

Figure 3.10: Workload changing over system operation time

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 6 8 10 12 14 16 18 20

H
it

 r
a

te

Ratio of normal nodes over super nodes

BUSIS
Random walk

Figure 3.11: Hit rate of heterogeneous peers topology

3.3.3.4 Performance Impact of Heterogeneous Peers

All previous simulations only consider homogeneous peers, that is each peer

on an average holds the same number of objects and has the same number of neighbor

connections. Here we examine the heterogeneous peers (which is practical for the P2P

systems), where each end user is of different bandwidth and processing capacity, and has

different number of file objects. There are two kinds of nodes: normal nodes (termed

as n-nodes) and super nodes (termed as s-nodes). Each normal node holds 10 objects

and has around 4 to 5 neighbors, while a super node has 100 objects and 50 neighbors.

We vary the ratio of normal nodes over super nodes and show the results of hit rate

42

 0

 5

 10

 15

 20

 4 6 8 10 12 14 16 18 20

O
v

e
rh

e
a

d
 p

e
r

q
u

e
ry

Ratio of normal nodes over super nodes

BUSIS
Random walk

Figure 3.12: Overhead per query of heterogeneous peers topology

and overhead per query in Figure 3.11 and Figure 3.12 respectively. When the ratio of

regular nodes over super nodes is small, random walk has higher hit rate than BuSIS but

with much higher overhead, BuSIS reaches 2/3 hit rate of random walk with only 1/2

the overhead. This is because random walk search path easily converges at the super

nodes, who aggregate the majority of the objects and make the common object search

easier. However, this gain in performance requires a large portion of super nodes, around

20%, which is not the case in practice. When the portion of super nodes decreases, the

hit rate of BuSIS catches up with that of random walk, while the overhead always stays

at only half of the random walk. As shown in Figure 3.11 and Figure 3.12, when the

percentage of super-nodes is around 5%, the hit rate of BuSIS is almost the same as

random walk, but only with 50% overhead.

Credit distribution among heterogeneous peers is shown in Figure 3.13, where

credit accumulations at a random s-node and at a random n-node are plotted. All

nodes receive the same initial participation payment as 100 credit units for the first 100

seconds and generate the query at the same rate as 1 query per 5 seconds. The curve’s

fluctuations reflect earning credit by forwarding or replying queries and spending credits

43

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600

C
re

d
it

Time (sec)

s-node
n-node

Figure 3.13: Credit distribution among heterogeneous peers

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600

C
re

d
it

Time (sec)

s-node
n-node

Figure 3.14: Differentiated participation payment for heterogeneous peers

in issuing qureies. After a brief warm-up period of 50 seconds, an s-node earns credit

at a much faster pace than an n-node because of superior node connections and initial

local files. As a result, an s-node issues queries more frequently, affords higher budget

for each of its queries and accumulates more credits than an n-node. On the contrary, an

n-node has to wait for earning enough credits to issue a query which has been generated

and stored at its local buffer.

Results of differentiated participation payment for heterogeneous peers are

shown in Figure 3.14, where each s-node does not receive any participation payment

and each n-node receives 100 credit units for the first 100 seconds. The query genera-

44

tion rate is the same as before. The results of Figure 3.14 are similar to that of Figure

3.13 except that an s-node does not has any credit for the initial period. Once n-nodes

start to issue queries by using their participation payment, s-nodes earn credit fastly

and afford to issue query freqently. The results confirms that the pariticpation payment

does not affect long-term or stable system performance but only serves to warm-up the

system.

3.3.3.5 Discussions

BuSIS was designed to augment the random walk search with one-step implicit

flooding by replicating neighbors sharing directories. This hybrid technique increases the

hit rate of searching and also provides a greater chance for the peer’s objects to be hit by

others’ queries to earn more credits. But this imposes more communication overhead for

exchanging directories with neighbors. Especially, the overhead is heavier for updating

the directories while the objects are replicated in more peers due to downloads. So we

put this as an option for end users.

45

Chapter 4

Peer-to-Peer Indirect Reciprocity

via Personal Currency

4.1 FairTrade Model

In this section, we first introduce the basic elements in FairTrade. Then, we

present the Bayesian network model for peer credit setting and explain how a peer

applies it.

4.1.1 Overview

In FairTrade, a P2P sharing system is modeled as a market. In this paper, we

use a P2P file-sharing system as an example for illustrating FairTrade. A price is set for

uploading a unit of data. The payment for downloading a file is the unit price times the

file size. The requester peer pays to the uploader peer/peers for each file downloading.

The basic elements of FairTrade are as follows.

Personal currency. Instead of relying on a central bank to issue a global

currency, each peer issues its personal currency in FairTrade which will be used as

46

payment. A peer’s personal currency can be spent by the issuer or any other peer who

received it before. The value of a personal currency is guaranteed by the issuer, as

a peer must accept its personal currency as payment when offering services to others.

The unit value of each personal currency is the same. But the acceptance of different

personal currencies varies and depends on its issuer’s capability and reliability to realize

the value of its personal currency.

Peer credit limit. Each peer as a creditor sets the peer credit limit for

accepting personal currencies issued by other peers as creditees. Creditor peer i sets a

peer credit Cij to a creditee peer j as the maximum amount of j’s personal currency

that will be accepted by peer i. The value of Cij quantifies the trust peer i holds in peer

j and depends on j’s contribution and trading history with i or more reputable peers

from i’s perspective. Peer credit is asymmetric and is from the creditor’s perspective,

as Cij is not necessarily equal to Cji. Cij will not be manually set by creditor peer i;

FairTrade provides a Bayesian network model for dynamically setting Cij on behalf of

peer i.

Peer balance. At any given time, there is a peer balance between a pair

of peers i and j who have been involved in a trading before. Bij is the amount of

j’s personal currency that peer i is holding, and similarly Bji is the amount of i’s

personal currency that peer j is holding. By the definition of peer credit limit, we have

0 ≤ Bij ≤ Cij and 0 ≤ Bji ≤ Cji. The available amount of peer j’s personal currency

that can be accepted by peer i is Cij −Bij , while peer j can also use the amount Bji of

peer i’s personal currency at any time.

Multilateral trading. In a trading, it is valid for the buyer peer (e.g., the

downloader) to spend any personal currency it holds as payment as long as the issuer

47

(a)

(b)

(c) (d)

Figure 4.1: Types of Trading in FairTrade

has enough peer credit at the vendor peer (e.g., the uploader).

We define three basic types of trading in FairTrade: uploader guaranteed,

downloader guaranteed, and third-party guaranteed. In an uploader-guaranteed trad-

ing, the downloader pays the uploader with the currency issued by the uploader, as shown

in Figure 4.1(a). In a downloader-guaranteed trading, as shown in Figure 4.1(b), the

downloader pays the uploader with the currency issued by itself. In a third-party-

guaranteed trading, as shown in Figure 4.1(c), the downloader pays the uploader with

the currency issued by a third peer. An actual trading may be any combination of the

three basic types. Figure 4.1(d) shows an example in which the downloader pays the

personal currencies issued by itself and two other peers.

The uploader accepts any amount of its personal currency when providing

services. This is required for reciprocation, because other peers who hold the uploader’s

personal currency must have provided services to the uploader peer or on behalf of the

uploader peer. With respect to other personal currencies, the uploader accepts up to an

amount such that the issuer’s peer balance does not exceed its peer credit limit.

48

4.1.2 Credit Setting in FairTrade

Each peer as a creditor sets the peer credit limit for every creditee peer pe-

riodically. All required information for setting the peer credit limit is collected and

maintained by the creditor in a distributed way. There is no standard rule for setting

the credit limit because it is a personal choice of the creditor. The setting calls for

anticipating the probability that a creditee peer will cheat and evaluating the profit the

creditee will bring [202]. On the conservative end, peer credit limit is set to a creditee

peer to minimize the risk, while, on the liberal end, it is set to maximize the profit

a creditee will produce. Peer credit limit can be any positive number, which induces

infinite possibilities and complicates the problem.

To provide a practical solution in P2P systems, FairTrade simplifies the credit

setting to a set of credit limit levels configured by the creditor peer. Each creditee

peer is promoted one level at a time by accumulating successful trading experience

with the creditor and other trustful peers from the creditor’s perspective. Once the

creditee cheats, its credit limit drops to zero. This level by level promotion gives the

creditor adequate opportunities to learn the related characters of the creditee. The

pace of promotion can be tuned to control the risk that the creditor is willing to take.

Malicious peers are punished by losing all their peer credits, because the efficiency

of the personal currency market is excessively degraded or even broken down due to

participants’ cheating [25].

In FairTrade, every peer gives a default amount of peer credit to all other peers.

This default peer credit initializes the system without reliance on altruistic services. The

amount of default peer credit is not sufficient to enable downloading an entire file, but

helps a new peer start trading. Only after a new peer provides a service in return, does it

49

earn other personal currencies and build up its peer credit to complete the downloading.

4.1.3 Bayesian Model of Credit Setting

We transform the peer credit setting into a classification problem, which is

solved by a Bayesian network model. Each peer as a creditor defines a set of credit limit

levels in ascending order SL = {L0, L1, . . . , Lm} where Li < Li+1, 0 ≤ i < m. Each

creditee peer starts from the default level L0. Lm is the maximum peer credit a creditee

may get from the creditor. The input for the credit setting is a set of character values

of the creditee peer and its current peer credit limit level, and the output is divided into

“Qualified” or “Disqualified” for promotion to the next level.

A set of variables X = {x1, x2, . . . , xk} is defined as the influential characters of

a creditee, where the values of these variables reflect the creditee’s previous reciprocity

with the creditor and other reliable peers from the creditor’s perspective. Let Vi(0 ≤ i <

m) denote the character value set of creditees at credit limit level Li. Vi is partitioned

into two subsets, V Q
i and V U

i . x ∈ V Q
i is the set of character values of a partner who

qualifies for upgrading to level Li+1, and x ∈ V U
i is the set of character values of a

partner who does not qualify for a credit limit upgrade. It is impossible to classify

everyone correctly, given that the information available for each peer is distributed

collected from the dynamic P2P environment. FairTrade builds a Bayesian network

model to minimize incorrect decisions and maintain a desirable level of consistency and

continuity in the classification.

We use the following notation. For all variables, 0 ≤ i < m. x denotes a set of

character values of a creditee.

• pQi is the proportion of creditees with credit limit Li who qualify for upgrading to

Li+1.

50

• pUi is the proportion of creditees with credit limit Li who are not qualified for

upgrading to Li+1.

• pi(x|Q) is the probability that a creditee qualifies for Li+1 with character values

x.

• pi(x|U) is the probability that a creditee is not qualified for Li+1 with character

values x.

• pi(x) is the probability that a creditee with Li has character values x.

• qi(Q|x) is the probability that a creditee of character values x qualifies for Li+1.

• qi(U |x) is the probability that a creditee of character values x is not qualified for

Li+1.

We have conditional probabilities qi(Q|x) =
pi(x|Q)pQi

pi(x)
and qi(U |x) =

pi(x|U)pUi
pi(x)

.

Let Ci denote the profit loss from classifying a qualified customer as disqualified

and rejecting its upgrade to Li+1. The loss is proportional to the difference between

the two levels of credit limit with coefficient c as Ci = c · (Li+1 − Li). Let Di denote

the deficit incurred by classifying a disqualified customer as qualified and upgrading it

to Li+1. The deficit is proportional to Li+1 with coefficient d as Di = d · Li+1. The

expected total loss is given by Equation 4.1.

Ci

∑

x∈V U
i

qi(Q|x)pi(x) +Di

∑

x∈V
Q
i

qi(U |x)pi(x) (4.1)

To maximize the set of qualified creditees with positive profits, the character

values are classified as in Equation 4.2.

V
Q
i = {x|Dipi(x|U)pUi ≤ Cipi(x|Q)pQi } = {x|

pUi

p
Q
i

≤
Cipi(x|Q)

Dipi(x|U)
} (4.2)

We normalize the multivariate in x with common covariance; then Equation

4.2 is reduced to a linear rule as Equation 4.3, where yi is the threshold character value

51

for creditees with Li to upgrade to Li+1.

V
Q
i = {x|w1x1 + w2x2 + . . .+ wkxk > yi} (4.3)

A linear scoring function is adopted to develop a classification rule due to

its simplicity, robustness and efficiency compared with other forms (e.g., quadric), as

proved in [145]. FairTrade defines a scoring function si(x) for the set of character values

x from creditees at each credit limit Li as si(x) = w1x1 + w2x2 + . . . + wkxk, where

w1, w2, . . . , wk are the impacting weights of the corresponding character variables. Now,

the problem with k dimensions, represented by pi(x|Q), pi(x|U), is reduced to one

dimension, represented by pi(s|Q), pi(s|U). Maximizing the set of qualified customers

with positive profits expressed by Equation 4.1 is equivalent to finding the optimal

cut-off y∗i for the score as Equation 4.4.

y
∗
i = argmin

yi
{Ci

∑

s<yi

pi(s|Q)pQi +Di

∑

s≥yi

pi(s|U)pUi } (4.4)

Figure 4.2 gives the overview of our Bayesian network model of credit setting.

Figure 4.2: Credit Setting Model

4.1.4 Setting Credit with Bayesian Model

A cut-off score y∗i is calculated periodically by a creditor for each level of

peer credit limit Li(0 ≤ i < m). To calculate the set of y∗i , each creditor peer builds a

52

scoreboard accumulatively on the character values of all creditees. FairTrade instantiates

three variables X = {x1, x2, x3} to essentially capture a creditee with low overhead.

• x1 is the total amount of service the creditee has provided to the creditor. It is a

direct indicator of a creditee’s credibility.

• x2 is the average value of the creditee’s peer credit limit at other peers having

higher peer credit limit at the creditor. Since a P2P system needs to make sure

that the total consumption of peers is no more than their contribution to stabi-

lize at a positive equilibrium, a creditor considers the creditee’s contributions to

others. While, only peers with higher peer credit limit are worth referring, so a

malicious peer can only create fictitious peers with lower credit limit level. This

is less beneficial than accumulating credit on its own, because every contribution

is accounted only to one peer’s credit history.

• x3 is the credit limit level the creditor has at the creditee, which indicates the

reciprocation degree between the creditee and the creditor.

The three variables are monotone increasing, so the higher the score of the scoring

function si(x) = w1x1 +w2x2 +w3x3 the better. The impacting weights w1, w2, w3 and

the coefficients of loss and deficit c and d are estimated by the maximum likelihood

method.

Each time a creditor completes a trading, it updates the x values of all involved

creditees in the scoreboard. Every T time period, the creditor compares each creditee’s

score with the corresponding cut-off score to check whether a creditee qualifies for the

next level of peer creditlimit .

53

4.2 FairTrade Design

In this section, we first describe the trading procedure in FairTrade. Then, we

present the download schemes and uploader selection policies that have been applied in

FairTrade.

4.2.1 Trading procedure

Figure 7.1 shows the procedure of a trade that consists of the following six

steps.

1. A downloader peer i requests file f from a set of file holders Hf , which are discov-

ered through a distributed hash table (DHT) lookup.

2. Each holder j ∈ Hf replies to peer i with its price pj , upload bandwidth bj ,

estimated finish time tfj , red list Redj , black list Blackj , and default credit limit

Lj
min. The total download price for file f is the unit price pj times the file size.

Each peer j maintains an estimated finish time tj for all tasks in its service queue.

The estimated finish time for downloading file f from peer j is tfj = tj+size(f)/bj .

The red list Redj is a list of peers having high peer credit limit at j. The black

list Blackj is the list of peers having zero peer credit at j. The default credit limit

Lj
min is the amount that j accepts for a new peer’s personal currency.

3. The downloader peer i collects all replies from Hf and selects an uploader k by

one of the rules described in Section 4.2.3.

4. The downloader peer i sends its payment – a set of personal currencies – to the

selected uploader k for a validity check.

5. The selected uploader k checks with each issuer whose personal currency is paid

54

by i.

6. If the payment is valid, k acknowledges i with the payment acceptance. Otherwise,

k notifies i of the invalid personal currency. i then returns to step 4.

Each node in FairTrade maintains a constant-size red list, which limits the

communication overhead and sufficiently serves the purpose even in a large-scale P2P

system. The reason is that a peer’s interests are likely to cluster around a number of

objects or topics as indicated by the power-law distribution. When a peer has established

a stable trading experience with another peer, these two peers have high peer credit limit

with each other, which makes them prefer continuing trade with each other. So each

peer will have a relatively stable group of trading partner peers even when the system

grows larger, and a constant-size red list captures these groups of stable trading partner

peers. The size of the red list can be adjusted based on the network size.

A personal currency issued by a peer in FairTrade is a virtual currency, which

is represented by the peer balance between the issuing peer and the accepting peer.

Validating a peer currency means checking with both the issuing peer and the accepting

peer for the peer balance between them and notifying them to update the peer balance

if the peer currency is used.

4.2.2 Download Scheme

In FairTrade, the basic download scheme is to get a file from a single uploader,

termed the single-source scheme. The single-source scheme is easy to implement but

inefficient. In real networks, the bandwidth allocation is asymmetric because the uplink

bandwidth takes only 1/10th of the downlink bandwidth in most cases. The downloader

wastes its downlink bandwidth in the single-source scheme.

55

���������	
���������������	�

�������	���

��������	�
����

�������	����

��������������������������

�������������

���������������

��������������

�������� �����

Figure 4.3: Procedures of a trading in FairTrade

We propose a multiple-source scheme to fully utilize the downlink bandwidth.

In the multiple-source scheme, each file is divided into a number of segments and a

downloader peer can download segments from multiple holders simultaneously. The

multiple-source scheme also relaxes the peer credit requirement. When a downloader is

short of personal currency to pay one uploader for an entire file, it may have enough

personal currency for downloading some segments from one uploader and other segments

from another uploader.

4.2.3 Uploader Selection Policy

When a downloader gets replies from a set of file holders, it needs to select one

uploader or more. We present two rules for choosing uploader/uploaders in FairTrade.

Most-friendly selection. For a peer, its most-friendly uploader is the one

from which it can download the most data using the personal currency in hand. Under

the most-friendly rule, in the single-source scheme, the most-friendly peer in the set of

file holders is selected as the uploader; and in the multiple-source scheme, the most-

56

friendly holder is selected as the major uploader and the remaining holders are used as

assistant uploaders.

Fastest selection. The goal of the fastest selection is to minimize the down-

load time of a task. In fastest selection, a downloader prefers an uploader from which

it can finish the download soonest. In the single-source scheme, the fastest peer in the

set of file holders is selected as the uploader. In the multiple-source scheme, the fastest

holder is selected as the major uploader and the remaining holders are used as assistant

uploaders. Among the assistant uploaders, data is preferentially downloaded from faster

uploaders.

4.3 Attack Resistance Properties

In this section, we show that FairTrade is resistant to the three major types of

attacks in P2P indirect reciprocity systems: sybil attacks, slander attacks, and white-

washing attacks.

Sybil-proof : A sybil attack [69] is when a peer creates a large set of identities

(i.e., sybils), and directly modifies their peer credit limits to create an arbitrary contri-

bution among them with the purpose of abstracting resources from the P2P network.

We argue that this sybil strategy will not be profitable for the attacker. The reason is

that the capacity of this network of sybils to extract resources from the remaining P2P

network is bounded by the peer credit limits that these sybils have at normal peers,

which is, in turn, bounded by the contributions that the sybils make to normal peers.

There is no incentive to create large numbers of identities: no other peers will give peer

credit for these sybils following the credit setting model in Section 4.1.4; thus, none of

the sybils will get service from other normal peers.

57

Slander-proof : FairTrade is also designed to mitigate peer slander, where

peers lie about the contribution they make to and receive from others. Since we require

each pair of peers to agree on the peer credit limit and peer balance, no single peer can

cheat on its contribution. Otherwise, it will not have any peer credit at other peers.

Our credit setting model lets each peer build up its credit slowly through a history of

honest trading.

To prevent double-spending and fake currency, FairTrade requires a validity

check with the currency issuer before the currency is accepted. Whether the personal

currency is spent by its issuer or other peers, its issuer should be online for the validity

checking, otherwise it cannot be used. This in-person checking simplifies the procedure

and imposes the online time requirement for peers who want to improve the acceptance

of their personal currencies. Short-lived nodes, who cannot stay online long enough for

other nodes to use their currencies, will not accumulate high peer credit at other nodes.

Hence, the amounts of valid currencies issued by short-lived nodes are limited to the

default amounts, which have negligible impact on the overall system performance. The

majority of currencies exchanged in the system are issued by stable nodes based on our

peer credit setting procedures. Thus, the in-person validation will not drag down the

downloading process.

Whitewashing-proof : FairTrade is resistant to whitewashing attacks: the

creation of fictitious identities, such that any penalties imposed by the system on a

malicious peer is washed away. Since the only way to make whitewashing unprofitable is

to make a newcomer and a heavily punished node indistinguishable, FairTrade prevents

whitewashers by not offering any free service in the system. For each file, the default

peer credit limit can only be used to download a fixed small segment of the file regardless

of the identities of the downloaders or uploaders. Thus, a malicious peer with different

58

identities will only get the same small segment of a file repeatedly by using the default

peer credit limit, which is useless on its own.

4.4 Performance Evaluation

4.4.1 Simulation Setting

We developed a P2P overlay simulator for FairTrade performance evaluation.

A P2P file-sharing network is simulated with 104 peers. Each peer periodically generates

requests to download movies, music files, games, and software in a catalog of 4 ·104 files.

The file size is collected from real traces [6]. The cumulative distribution function (CDF)

of file size is shown in Figure 4.4. We simulate the system for 7.2 ∗ 105 seconds in each

simulation run and average over 20 runs to produce a result. The file popularity follows

a Zipf distribution with parameter ρ = 0.27. The statistics of peer upload bandwidth is

collected in the U.S. Broadband report [2], as shown in Figure 7.6, which ranges from

256 Kb/s to 10 Mb/s. In terms of willingness to share, we simulate two types of peers,

as in [140]: 10% of the peers are content rich, each sharing 100 files; 90% of the peers

are content lacking, each sharing 20 files. The initial sharing directory of each peer is

a subset of files randomly selected based on the Zipf distribution. Each download file

is cached in the requester’s sharing directory. The file download request is generated at

each peer following a Poisson process with average one request per 2000 seconds. Peers

dynamically leave and join the system. When a peer reenters the system, it has the

same sharing directory, peer credit limit, and peer balance as when it last left.

After generating a download request, the peer attempts to find an uploader

via DHT routing. We use the Pastry overlay [170]. The peer may need to request the

59

0 %

20 %

40 %

60 %

80 %

100 %

 0 200 400 600 800 1000 1200

C
D

F
 %

 o
f

fi
le

s

File size (MB)

Figure 4.4: CDF of file sizes

0 %

20 %

40 %

60 %

80 %

100 %

10
0

10
1

10
2

10
3

10
4

C
D

F
 %

 o
f

m
a
c
h

in
e
s

Upload capacity (Kb/s)

Figure 4.5: CDF of peers upload capacities

file several times, since it may not find a suitable uploader at the first attempt. Each

peer buffers at most five unscheduled requests; a newly generated request is discarded

when the buffer is full. As an uploader, each peer maintains a service queue to buffer

all scheduled requests and serves them in order of their arrival times.

To simulate FairTrade peer credit setting, each peer sets a minimum credit limit

level Lmin (i.e., default credit limit), a maximum credit limit level Lmax and a stride ξ,

so the set of peer credit limit levels is SL = {Lmin, Lmin + ξ, Lmin + 2ξ, . . . , Lmax}. By

default, Lmin is set to 10, ξ is 5, and Lmax is 200. Specific pricing schemes are out of

the scope of the paper. We apply one uniform pricing and one non-uniform pricing as

60

example pricing schemes in FairTrade. For uniform pricing, a standard price p0 is set for

downloading a unit of data from any peer. For non-uniform pricing, each peer customizes

its price based on p0 and its upload bandwidth. Peer i’s price pi =
bi

bavg
∗ p0, where bi is

its upload bandwidth and bavg is the average upload bandwidth. The standard price p0

in both cases eliminates exchange rate calculations between all personal currencies, since

all of them are normalized with this common numeraire [25]. By default, the standard

price is 1 unit of personal currency to download 1 MB data. The most-friendly uploader

selection policy and the multiple-source download scheme are used by default.

4.4.2 Simulation Results

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

S
u

c
c
e
s
s
 r

a
te

Number of nodes

single most-friendly
single fastest

multiple

Figure 4.6: Success rates for non-uniform pricing

Success rate: We measure the success rates of different FairTrade policies

while increasing the total number of nodes from 1000 to 10000. The success rate is the

ratio of the number of successful requests over the sum of successful and unsuccessful

requests. Figure 4.6 and Figure 4.7 show results of non-uniform pricing and uniform

pricing. In the figures, the single-source and multiple-source schemes are abbreviated

61

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

S
u

c
c
e
s
s
 r

a
te

Number of nodes

single most-friendly
single fastest

multiple

Figure 4.7: Success rates for uniform pricing

0.0×10
0

5.0×10
4

1.0×10
5

1.5×10
5

2.0×10
5

2.5×10
5

 0
×10 0

 1
×10 5

 2
×10 5

 3
×10 5

 4
×10 5

 5
×10 5

 6
×10 5

 7
×10 5

N
u

m
b

e
r

o
f

fi
le

s

Download time (sec)

multiple non-uniform
multiple uniform

single non-uniform
single uniform

Figure 4.8: CDF of download times of various download and pricing schemes

as “single” and “multiple”, respectively. It is impressive that no matter which uploader

selection policies or pricing schemes are used, the multiple-source scheme always keeps

100% success rate. This is because the improved download bandwidth efficiency and

relaxed credit requirement from the multiple-source scheme make downloading more

flexible and faster, fewer requests are buffered than in the single-source scheme, and

no request is discarded. The most-friendly uploader selection outperforms the fastest

uploader selection in both pricing schemes, as can be seen by comparing the curves of

“single most-friendly” and “single fastest” in Figure 4.6 and Figure 4.7. The reason

is that credit requirement is the bottleneck for the single-source scheme. The most-

62

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

S
u

c
c
e
s
s
 r

a
te

Percentage of nodes

s-node
n-node

Figure 4.9: CDF of success rates of heterogeneous peers for single-fastest scheme

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

S
u

c
c
e
s
s
 r

a
te

Percentage of nodes

s-node
n-node

Figure 4.10: CDF of success rates of heterogeneous peers for single-friendly scheme

friendly selection targets downloading as much content as possible. When download

success is not guaranteed, the download speed is not the most important factor, and

fastest uploader selection does not benefit the success rate. The overall performance

of uniform pricing is better than that of non-uniform pricing, especially for the single-

source scheme with fastest uploader selection. The reason is that non-uniform pricing

requires a longer wait to earn enough credit for downloading from a high-bandwidth

peer. Longer waiting times cause more requests to be buffered and dropped. This is

confirmed by the statistics of download times of non-uniform and uniform pricing, as

shown in Figure 4.8.

63

To further understand the preferences of hetergeneous nodes on different down-

loading schemes, Figure 4.9 shows CDF of success rates of super nodes (termed as s-

nodes) and normal nodes (termed as n-nodes) for single-fastest scheme, and Figure

4.10 shows that for single-friendly scheme. Since all nodes acheive 100% success rates

at multiple-source schemes, the analysis on preferences only focuses on single-source

schemes. Results show that s-nodes have much higher success rates in both schemes

than n-nodes, and the differences between the two schemes are smaller for s-nodes than

for n-nodes. For single-fastest scheme, the majority of s-nodes have 80% to 90% success

rates, while the majority of n-nodes have 20% to 40% success rates. For single-friendly

scheme, the majority of s-nodes have 85% to 95% success rates, while the majority of

n-nodes have 40% to 70% success rates. s-nodes take advantage of larger inital local

files and are more robust to different schemes while keeping high success rates. n-nodes

have to rely on multiple-source schemes to achieve good success rates for breaking down

the credit requirement is critical to them.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

O
v
e
rh

e
a
d

 (
%

)

Number of nodes

single most-friendly
single fastest

multiple most-friendly
multiple fastest

Figure 4.11: Trading overhead for non-uniform pricing

Trading Overhead: The overhead is measured as the ratio of maintenance

traffic divided by download traffic. The maintenance traffic only counts the communi-

64

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

O
v
e
rh

e
a
d

 (
%

)

Number of nodes

single most-friendly
single fastest

multiple most-friendly
multiple fastest

Figure 4.12: Trading overhead for uniform pricing

cations given in Figure 7.1. Figure 4.11 and Figure 4.12 show the results of non-uniform

pricing and uniform pricing. The overheads of all schemes are under 1.5% because the

maintenance packet size is much smaller than the content size. Only the overhead of

the “single fastest” scheme noticeably increases as the total number of nodes increases,

while the overheads of other three schemes remain almost the same. This is because

the success rates of the three schemes remain the same as the total number of nodes

increases. Thus, although the maintenance traffic increases, the download traffic also

increases and therefore the ratio remains the same. But the success rate of the sin-

gle fastest scheme drops as the total number of nodes increases, resulting in increased

overhead.

Workload intensity: We vary the workload intensity by changing the request

interval from 500 to 4000 seconds; a smaller interval gives a more intensive workload.

The resultant success rates and overhead are shown in Figure 4.13 and Figure 4.14. The

performance of all schemes is robust to workload intensity changes. This is because

personal currency makes trading flexible: when more requests are generated, more op-

65

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500
 1000

 1500

 2000

 2500

 3000

 3500

 4000

S
u

c
c
e
s
s
 r

a
te

Interval (sec)

single most-friendly
single fastest

multiple most-friendly
multiple fastest

Figure 4.13: Success rates with various request intervals

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 500
 1000

 1500

 2000

 2500

 3000

 3500

 4000

O
v
e
rh

e
a
d

 (
%

)

Interval (sec)

single most-friendly
single fastest

multiple most-friendly
multiple fastest

Figure 4.14: Trading overhead with various request intervals

portunities are opened for trading. The success rates of multiple-source schemes drop

from 100% to around 85% when the workload is extremely intensive. This is because the

total upload bandwidth of all peers is less than that required by the download requests

in this case.

Warmup: The warmup period of FairTrade ends before peers issue their sec-

ond requests, as shown in Figure 4.15, where each peer generates a request every 2000

seconds on average. The traffic stabilizes before 4000 seconds. We capture only the first

20000 seconds of the simulation to show the traffic trend. The small spike at the be-

ginning stems from sending out buffered requests due to initialization. Issuing personal

66

 2×10
9

 3×10
9

 4×10
9

 5×10
9

 6×10
9

 0 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

T
ra

ff
ic

 (
M

B
)

Time (sec)

10000 nodes
5000 nodes

Figure 4.15: FairTrade warmup efficiency

currency enables newcomers to start trading more easily, and the system does not need

to rely on altruistic services, especially for newcomers.

 0×10
0

 2×10
5

 4×10
5

 6×10
5

 8×10
5

 1×10
6

 0 100
 200

 300
 400

 500
 600

 700
 800

 900
 1000

D
o

w
n

lo
a
d

 t
im

e
 (

s
e
c
)

File size (MB)

Figure 4.16: Distribution of download times using the multiple-source scheme

Download Time: The download time of a file is defined as the time between

its request generation and download completion. As shown in Figure 4.12, the over-

head is less than 1.5% of total traffic; the download time is also dominated by the file

transfer time in FairTrade. Figure 4.16 and Figure 4.17 plot the distribution of down-

load times using the multiple-source and single-source schemes, respectively. In these

67

 0×10
0

 2×10
5

 4×10
5

 6×10
5

 8×10
5

 1×10
6

 0 100
 200

 300
 400

 500
 600

 700
 800

 900
 1000

D
o

w
n

lo
a
d

 t
im

e
 (

s
e
c
)

File size (MB)

Figure 4.17: Distribution of download times using the single-source scheme

0.0×10
0

5.0×10
4

1.0×10
5

1.5×10
5

2.0×10
5

2.5×10
5

 0×10
0

 1×10
5

 2×10
5

 3×10
5

 4×10
5

 5×10
5

N
u

m
b

e
r

o
f

fi
le

s

Download time (sec)

multiple fastest
multiple most-friendly

single fastest
single most-friendly

Figure 4.18: CDF of download times with various uploader selection policies

two experiments, we use uniform pricing and most-friendly uploader selection. The

multiple-source scheme completes more downloads especially for large files which the

single-source scheme cannot finish, due to extremely long download times. As shown in

Figure 4.16 and Figure 4.17, the data points are more dense with the multiple-source

scheme than with the single-source scheme.

Figure 4.18 shows the CDF of download times. We tried four different combi-

nations of download schemes and uploader selection policies. The two selection policies

have their own advantages. Most-friendly selection speeds up downloading when the

single-source scheme is applied because the peer credit is usually a bottleneck in this

68

case. Fastest selection achieves the shortest download times when the multiple-source

scheme is applied, where the peer credit is no longer a bottleneck.

Churn: In our simulation, each node follows an exponential distribution to

independently decide when to leave. Peers enter and leave the system to make the

total number of nodes stable. We vary churn rates, with probabilities of 10% to 50%

of leaving during every 2000 seconds. By default, all results shown are simulated with

20% probability of churn. Performance with varying churn rates (not shown) is never

less than the results shown by more than the width of the 95% confidence interval, so

we do not show the results repeatedly. FairTrade is robust against churn because each

trading in FairTrade does not rely on state information. New peers start up easily and

rejoining peers resume quickly.

1.7×10
5

1.8×10
5

1.9×10
5

2.0×10
5

2.1×10
5

2.2×10
5

2.3×10
5

2.4×10
5

2.5×10
5

 0 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

N
u

m
b

e
r

o
f

fi
le

s

Download time (sec)

default=1, stride=1
default=1, stride=5

default=1, stride=10

Figure 4.19: The impact of stride in credit setting without malicious nodes

Credit Setting: Credit setting is determined mostly by the default credit limit

and the stride, which specify the amount of default credit limit level and the pace of

credit limit increasing. Figure 4.19 and Figure 4.20 show their impacts on the download

time. The success rates and overheads do not change significantly. The performance is

69

1.7×10
5

1.8×10
5

1.9×10
5

2.0×10
5

2.1×10
5

2.2×10
5

2.3×10
5

2.4×10
5

2.5×10
5

 0 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

N
u

m
b

e
r

o
f

fi
le

s

Download time (sec)

default=1, stride=10
default=5, stride=10

default=10, stride=10

Figure 4.20: The impact of default credit without malicious nodes

 0

 200

 400

 600

 800

 1000

 1200

 0 20000 40000 60000

C
re

d
it

Time (sec)

s-node
n-node

Figure 4.21: Credit distribution at heterogeneous nodes

slightly affected by the default credit limit but hardly affected by the stride. Increasing

the stride from 1 to 10 does not change the results, as shown in Figure 4.19, while

increasing the default limit from 1 to 5 reduces the download time, as shown in Figure

4.20. Further increasing the default limit to 10 yields much smaller improvement. This

is because the default credit limit gives the startup fund for newcomers, which only

affects the system warmup. After a peer starts trading, earning credit is not a problem

for a non-malicious peer even when the peer credit limit increases slowly. Excessive

default credit limit does not benefit the performance but fosters free-riding.

Credit Distribution: As described in experimental setting, two types of

70

 0

 0.2

 0.4

 0.6

 0.8

 1

0 % 20 % 40 % 60 % 80 % 100 %

S
u

c
c
e
s
s
 r

a
te

Percentage of malicious nodes

FairTrade multiple
FairTrade single

Figure 4.22: Success rate with malicious nodes

nodes are simulated: 10% of the nodes are content rich, each sharing 100 files (termed

as s-nodes); 90% of the nodes are content lacking, each sharing 20 files (termed as n-

nodes). Figure 4.21 plots credit accumulations at a random s-node and at a random

n-node. The curve’s fluctuations reflect earning credit by uploading files and spending

credits in downloading files. After a brief warm-up period of 5000 seconds, an s-node

earns credit at a much faster pace than an n-node because of richer initial local files.

As a result, an s-node is able to download more files and accumulate more credits than

an n-node. On the contrary, an n-node only can not accumulate spare credits but only

make a balance between earning and spending credits.

Malicious Nodes: Malicious nodes are simulated as peers who reject their

own personal currencies and do not provide service for others. We measure the success

rate of non-malicious peers in the system as shown in Figure 4.22, where the population

of malicious peers ranges from 0 to 100% of the total nodes. Both FairTrade schemes

are robust to malicious nodes because our credit setting not only considers the credi-

tee’s trading history with the creditor but also with other trustful peers. As a result, the

uploader as a creditor learns from others in addition to drawing lessons from past expe-

rience to quickly identify malicious nodes. The multiple-source scheme is more resilient

71

than the single-source scheme because the multiple-source scheme requires using other

peers’ personal currencies for downloading from assistant uploaders, which effectively

prevents cheating.

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

S
u

c
c
e
s
s
 r

a
te

Number of nodes

FairTrade single
FairTrade multiple

PledgeRoute

Figure 4.23: Success rate comparison

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

O
v
e
rh

e
a
d

 (
%

)

Number of nodes

FairTrade single
FairTrade multiple

PledgeRoute

Figure 4.24: Overhead comparison

Comparison: We compare FairTrade with PledgeRoute [125], which is a re-

cent P2P scheme designed for distributed indirect reciprocity. The core methods of

FairTrade and PledgeRoute are described as follows.

• FairTrade: Each peer issues its personal currency that is used as payment for

downloading in the system. A trade is successful when the downloader pays the

72

right amount of personal currencies whose issuers have enough peer credits at the

uploader.

• PledgeRoute [125]: Each peer constructs its local view of the contribution network,

which is a graphical representation of all contributions that have been given and

received in the P2P system. A trading is successful when the downloader finds a

path in its local view of the contribution network to the uploader with sufficient

pairwise credit for contribution transfer.

Figures 4.23 and 4.24 shows the success rates and overhead of FairTrade and PledgeR-

oute with the total number of nodes ranging from 103 to 104. “FairTrade single” uses the

single-friendly scheme and “FairTrade multiple” uses the multiple-fastest scheme. Both

FairTrade schemes have higher success rates than PledgeRoute, because the personal

currency enables directly paying other personal currencies for downloading. Compared

to the hop-by-hop contribution transfer required by PledgeRoute, trading via personal

currencies is more flexible and is more likely to success in FairTrade. The overhead

of PledgeRoute increases more quickly than that of FairTrade because PledgeRoute re-

quires more frequent topology discoveries of the contribution network as the system gets

larger.

73

Chapter 5

P2P Indirect Reciprocity via

Cooperative Banking

5.1 CoBank Scheme Overview

We give an overview of CoBank in this section. We begin with describing the

basic procedure of a currency transaction in CoBank. Then, we list the issues that we

target and explain how CoBank addresses these issues.

A P2P system is often modeled as a market for trading. Each peer earns

currency by providing service and spends currency to get service. A currency transaction

occurs when a peer – buyer buys service from another peer – vendor. In the transaction,

the buyer pays an amount of currency to the vendor for the service.

Our scheme CoBank is designed to support the currency transactions between

peers in a P2P system. We use a global currency to price the service system-wide. Each

peer is associated with an account that records how much currency the peer possesses.

Instead of having a central server that holds all peers’ account data like in existing

74

���������	�

��������	�

�

����

����	�

���	���

�	�����

�������	�
�����

�������������

�������	��������

����
��

�

Figure 5.1: Basic procedure of a currency transaction in CoBank.

popular P2P systems [9, 4], we store and manage the account data in a distributed

fashion, called cooperative banking. Each peer in the P2P system holds a small portion

of account data, which is independent of the network size. For security purpose, the

account data of each peer is decomposed into several parts, each of which is encoded and

stored at a different peer. A peer is not responsible for managing the account data it

holds. When two peers initiate a transaction, a third-party peer is selected as transaction

arbitrator, which is responsible for managing and modifying the corresponding account

data. CoBank uses distributed hash table (DHT) to locate the account data holders

and transaction arbitrator for each transaction.

Figure 5.1 shows the basic procedure of a currency transaction in CoBank.

When two peers initiate a transaction, they send requests to the peers that hold their

account information. The account holders use the stored account information to val-

idate these requests. If the requests are valid, the account holders then forward the

account balance to the selected arbitrator. The transaction arbitrator aggregates the

account information from different account holders and performs the transaction. Once

getting the updated balances for both accounts, the transaction arbitrator decomposes

the balances into parts and sends each part of the updated balances back to its holders.

Finally, each account holder updates the part of account balance it stores and sends an

75

acknowledgment to the transaction initiator.

Next we briefly describe how the design of CoBank addresses the following

issues - applicability (i.e., reducing the deployment requirements), scalability (i.e., sup-

porting larger number of nodes in a P2P system), security (i.e., preventing various

malicious attacks), and transaction atomicity (i.e., preventing a partially conducted

transaction being exposed and protecting the integrity of a transaction).

Applicability. CoBank can be applied to all kinds of P2P applications since

it uses global currency. Global currency does not have any special infrastructure require-

ment. For example, unlike pairwise currency [140, 162], global currency does not require

a social network topology that gives the relationship information between peers. Be-

sides, CoBank does not require any cryptographic infrastructure or central bank/broker,

which is necessary for e-coin-based schemes [226, 223] to prevent the counterfeiters.

Scalability. CoBank is scalable with respect to the network size for the fol-

lowing three reasons. First, the communication overhead of each transaction grows

logarithmically with the network size. In CoBank, the communication involved in each

transaction is composed of a constant number of transmissions between overlay peers.

If we use DHT as the overlay routing protocol, the communication overhead of each

overlay transmission grows as the logarithms of the network size. Second, the storage

overhead for maintaining account information at each node is a constant since the total

size of account data is linear to the network size. Finally, as the management of the

account data is taken care by the peers in a distributed fashion, there is no performance

bottleneck in the P2P systems. For each transaction, the transaction arbitrator per-

forms the transaction and the account holders actually store the updated account data.

In CoBank, there is no central server for managing accounts or performing transactions.

Security. CoBank prevents the following attacks/abuses. First, CoBank can

76

prevent and detect slander attacks. With each peer’s account data being divided and

stored at different nodes, an account holder cannot misappropriate another peer’s ac-

count since it does not hold the entire account information such as password. Since

the arbitrators of a transaction only get the information related to the transaction and

do not know the identity of the buyer or the vendor, they cannot misappropriate the

accounts either. CoBank can also detect vicious falsification of account data by replicat-

ing the account data and using multiple arbitrators, which will be elaborated in Section

5.2.3. Second, CoBank can prevent sybil attacks [69] and white washings [125]. In

CoBank, we do not give peers any startup fund. Each peer can earn currency by acting

as an account holder and a transaction arbitrator. Therefore, creating new account does

not give any benefit to the user. Our attack resistance properties are further analyzed

in Section 5.4.

Transaction atomicity. CoBank ensures the transaction atomicity to protect

fairness of each party in a transaction. We ensure the atomicity of each transaction by

locking the related account data during the transaction. CoBank prevents a transaction

being performed partially. A successful transaction must transfer the right amount of

currency from the buyer’s account to the vendor’s account. No intermediate transaction

state will be exposed in our scheme. With transaction atomicity, we also prevent peers

abusing their account balance, e.g., double-spending [226].

5.2 Scheme Description

In this section, we describe our scheme – CoBank in details. First, we present

the preliminaries and notations that will be used throughout the paper. Then, we

formally define the procedure of a currency transaction in CoBank. Finally, two en-

77

hancement schemes are proposed, which further enhance the security of CoBank and

provide incentives for peers to follow through our scheme CoBank.

5.2.1 Preliminaries and Notations

Table.5.1 summarizes the notations. In a currency transaction, we denote the

buyer as B and the vendor as V . Each peer is associated with an account, which includes

a peer ID, a password, and an account balance. For example, the buyer B’s account

consists of a peer ID IDB, a password PSWB, and an account balance ACCB.

Each account is decomposed into k parts, where k is a parameter called di-

vision factor. Each part is stored at a peer, called holder. In other words, k holders

cooperatively store a complete copy of an account. The holders are selected by hashing

the peer ID of the account. For example, k holders for the account of peer B are de-

termined by hash(IDB) = {H1B, H2B, . . . , HkB}, where HiB is the peer ID of the ith

holder. The password and balance of the account are encoded and divided into k parts,

each of which is stored at an account holder for B. The original password is encoded

and divided into a set of k parts as f(PSWB) = {P1B, P2B, . . . , PkB}. Similarly, the

account balance is encoded and divided as f(ACCB) = {C1B, C2B, . . . , CkB}. Each

holder stores the entire peer ID with a pair of password part and account balance part

as H1B :< IDB, P1B, C1B >, . . . ,HkB :< IDB, PkB, CkB >.

Each transaction has a transaction ID TrID. The transaction ID TrID is

generated by a random number generator taking inputs of the buyer ID, vendor ID and

the time. The transaction arbitrator T is selected by hashing the transaction ID. For

example, peer B (i.e., Buyer) wants to buy service from peer V (i.e., Vendor) at time

t. The transaction ID TrID is calculated by random(IDB, IDV , t) =< TrID > and the

transaction arbitrator is selected by hash(TrID) = IDT , where IDT is the peer ID of

78

the transaction arbitrator.

To enhance the account security, we replicate each account to have m complete

copies stored at m sets of holders, where each set has k holders. The parameter m is

called replication factor. We hash the account’s peer ID to m sets of holder IDs, like peer

B’s m sets of holders are hash′(IDB) = {H1
1B, H

1
2B, . . . , H

1
kB; . . . ;H

m
1B, H

m
2B, . . . , H

m
kB}.

The password and account balance are encoded and divided into k parts and paired into

a set of k pairs, the same as for one set of holders. Each of the k pairs is replicated

to m copies and stored at one holder of each set. For example, the first holder in each

set stores the first pair and the mth holder in each set stores the mth pair, such as

H1
1B :< IDB, P1B, C1B >, . . . ,Hm

1B :< IDB, P1B, C1B >; . . . ;H1
kB :< IDB, PkB, CkB >

, . . . ,Hm
kB :< IDB, PkB, CkB >.

Similar to the account holder replications, we can select m arbitrators for each

transaction by hashing the transaction ID to m peer IDs. Given a transaction ID TrID,

m transaction arbitrators can be selected by hash′(TRID) = ID1T , . . . , IDmT >.

We define a reward interval with time duration ∆. Each user rewards its

responsible account holders once every ∆ time. The amount of bonus for each reward

is $Bn. An irresponsible holder is fined $Fn each time.

5.2.2 Basic Procedures

We use the example: at time t peer B wants to buy service from peer V at the

price $Pay. For better clarity, we first describe the basic procedure by setting replication

factor m to 1 and division factor k to 2. Thus, each account has one complete copy of

the account information stored at a set of two holders. We explain the procedure with

replicated account copies in Section 5.2.3.

79

Table 5.1: Summary of notations

Symbol Definition

B the buyer

V the vendor

T the transaction arbitrator

k the number of parts that an account is divided into

m the number of copies that an account is replicated

TrID the transaction ID

IDB ID of peer B

PSWB password of peer B

ACCB account balance of peer B

PiB the ith part of B’s password

CiB the ith part of B’s account balance

Hj
iB the ith holder in jth set for B’s account

$Pay the amount of payment in a transaction

$Bn the amount of bonus reward

$Fn the amount of fine

STEP 1: The buyer and the vendor initiate a transaction by sending request

to their account holders through DHT routing, respectively. The request includes the

verification information (i.e., the peerID and the partial password), and the transaction

information (i.e., the transaction ID and the payment amount).

• In step 1, buyer B sends the following information to its holders H1B and H2B:

B
<IDB ,P1B ,T rID,−$Pay>

−→ H1B and B
<IDB ,P2B ,T rID,−$Pay>

−→ H2B.

• Similarly, vendor V sends the following information to its holders H1V and H2V :

V
<IDV ,P1V ,T rID,+$Pay>

−→ H1V and V
<IDV ,P2V ,T rID,+$Pay>

−→ H2V .

STEP 2: After verifying the partial password, each account holder locks the

account and forwards the transaction request to the arbitrator T through DHT routing.

Each holder hashes the transaction ID TrID to get the arbitrator ID T . The request

includes the holder ID, the partial account balance, the transaction ID, and the payment

amount.

• In step 2,H1B and H2B forward the transaction request to the arbitrator T :

80

H1B

<IDH1B
,C1B ,T rID,−$Pay>

−→ T and H2B

<IDH2B
,C2B ,T rID,−$Pay>

−→ T .

• Similarly, H1V and H2V forward the transaction request to the arbitrator T :

H1V

<IDH1V
,C1V ,T rID,+$Pay>

−→ T and H2V

<IDH2V
,C2V ,T rID,+$Pay>

−→ T .

STEP 3: The transaction arbitrator combines all parts of account balance to

get the original account balance for both the buyer and the vendor. It then checks

whether the buyer has enough currency to pay. If the buyer has sufficient currency,

the arbitrator transfers the payment from the buyer’s account to the vendor’s account

and sends back the updated account balances to each account holder. Otherwise, the

arbitrator aborts the transaction and notifies each account holder of the transaction

failure. The arbitrator directly contacts back with each holder and does not need DHT

routing.

• T combines C1B with C2B, decodes the result to get the account balance ACCB,

and checks whether the buyer has enough currency to pay (i.e., whether ACCB is

larger than $Pay).

– If ACCB > $Pay, T also combines C1V with C2V to get the account balance

ACCV . T then transfers $Pay from ACCB to ACCV , i.e., ACCB = ACCB −

$Pay, ACCV = ACCV + $Pay.

– Otherwise, T terminates the transaction and notifies the account holders of

both parties, i.e., T
<TrID,failure>

−→ {H1B, H2B, H1V , H2V }.

• T encodes the updated accounts of both parties, divides them, and sends each

part to the corresponding account holder. T
<C1B ,T rID,OK>

−→ H1B, T
<C2B ,T rID,OK>

−→

H2B, T
<C1V ,T rID,OK>

−→ H1V , and T
<C2V ,T rID,OK>

−→ H2V .

81

STEP 4: The account holders directly send back the transaction result to the

buyer and the vendor, respectively. Each account holder then unlocks the account.

• If the transaction succeeded, the updated account information is sent back with

transaction ID. H1B
<C1B ,T rID,OK>

−→ B, H2B
<C2B ,T rID,OK>

−→ B, H1V
<C1V ,T rID,OK>

−→

V , and H2V
<C2V ,T rID,OK>

−→ V .

• If the transaction failed, the original account information is sent back with the

lack of fund notification. H1B
<C1B ,T rID,failure>

−→ B, H2B
<C2B ,T rID,failure>

−→ B,

H1V
<C1V ,T rID,failure>

−→ V , and H2V
<C2V ,T rID,failure>

−→ V .

5.2.3 Enhancement with Replication

To enhance the account security, we replicate the account information of each

peer to have m (i.e. the replication factor) copies. Each account then has m sets of

account holders. We also use m arbitrators for each transaction. Figure 5.2 shows a

currency transaction procedure in CoBank with replications, where the replication factor

m = 3. Each cloud represents a single set of account holders. The transaction procedure

has the same four steps as the basic one as shown in Section 5.2.2, except that the buyer

and vendor send transaction requests to all m sets of account holders. Each account

holder forwards request to all m arbitrators. Then, each arbitrator uses the majority

rule to detect any irresponsible holders and obtain the correct account balance of both

parties. After a transaction is performed by an arbitrator, the transaction result is sent

back to each holder in all m sets. In this way, each account holder receives results from

m arbitrators so that any misbehavior of an arbitrator can be detected and corrected.

To carry out the majority rule, m is at least 3.

Each transaction arbitrator uses a timeout Tout to avoid endless waiting for

82

missing requests from some account holders. Such missing requests may be caused by

packet loss or node failures. After receiving the first arrived transaction request from

an account holder, an arbitrator starts the timeout Tout, and stops waiting for other

not-yet-arrived requests when Tout expires. As long as an arbitrator receives requests

from a predefined minimal number of account holder sets, it performs the transaction;

otherwise, it aborts the transaction. If an application has special security concerns, the

minimal number of sets required to perform a transaction may be set larger as well as

the replication factor. The timeout Tout is set to cover a round-trip-time (RTT) between

an account holder and an arbitrator on average, which is equal to the average hops in a

DHT routing multiplied by the RTT for each hop.

With replication, the communication overhead for each transaction is O(k ∗

m2 logN), where N is the total number of peers, k is the division factor and m is the

replication factor. Since the values of k and m are small constants (e.g., k = 2, m = 3),

CoBank keeps O(logN) communication overhead for each transaction. The storage

overhead for each account is no more than m ∗ k times an account size, which is still a

small constant.

83

�����������

�

	
���

��
����������

����	
���

������

��
����������

����������

������

������

������

������

������

������

Figure 5.2: A currency transaction procedure with replications

5.2.4 Incentives for Participating in CoBank

Peers may lack interests to take part in the distributed account and transaction

management in our scheme. We offer monetary incentives by rewarding responsible

holders periodically, and punish any irresponsible holder or arbitrator every time it is

detected.

5.2.4.1 Reward

Periodically each peer rewards its account holders, who are reliably taking the

role during the period, with an amount of bonus $Bn. The length of the reward period

is large enough to balance off the communication overhead for the reward transaction

and justify the amount of bonus. The basic procedure for rewarding is as follows: when

peer B wants to reward its account holder H1B, B sends a bonus certificate to all H1B’s

account holders H1H1B
, H2H1B

as B
<IDB ,IDH1B

,T rID1,$Bn>
−→ H1H1B

, H2H1B
. The reward

transaction is performed by the arbitrator T1, whose ID is hashed by the transaction

ID TrID1. The arbitrator T1 increases the account balance of H1B by $Bn, and then

84

sends back the updated parts to H1H1B
, H2H1B

, respectively. Account holders H1H1B

and H2H1B
then notifies H1B and B of the reward result.

5.2.4.2 Punishment

In each transaction, each of the m arbitrators applies the majority rule, and

detects irresponsible account holder if there exists any. An account holder is marked

irresponsible because of cheating on the account information or not participating. The

punishment message is encoded by the arbitrator who detected this and sent back to the

account owner (i.e., either the buyer or the vendor in the transaction) through piggyback

on another good account holder. After receiving the punishment message, the account

owner initiates a punishment transaction in the same way as the reward transaction,

except deducting an amount of $Fn from the holder’s account rather than adding an

amount of $Bn.

For each transaction, an account holder also applies the majority rule on the

results received from m arbitrators so that any misbehaved arbitrator is detected and

punished by a fine of $Fn. Each account holder, who detected an arbitrator misbe-

havior, reports to the account owner (i.e., the buyer or the vendor of the transaction)

and synchronizes the result with other account holders. The account owner initiates

a punishment transaction for a bad arbitrator in the same way as for a bad account

holder.

5.3 Analysis of Node Selections

A sufficient level of CoBank efficiency is ensured by reliable account holders

and transaction arbitrators (termed as accounting nodes), since every trade requires par-

85

ticipations of related accounting nodes. Thus, we select reliable nodes to be accounting

nodes. In this section, we analyze node reliability, examine resource consumptions for

being an accounting node, and optimize the selection threshold constraint by resource

budget. We analyze the most scarce resource – the bandwidth consumption in our

model.

5.3.1 Node Availability Model

We propose a distributed scheme to select the most stable peers with adequate

bandwidth to be accounting nodes, which form a new DHT called accounting DHT (A-

DHT). All the nodes in CoBank are organized into a DHT by default, and use their ID to

hash into accounting DHT for locating their account holders and transaction arbitrators.

To estimate the number of qualified accounting nodes, we analyze the distri-

bution of peers’ availability.

We consider a system with n nodes in steady-state. Each node switches between

two states: ON when the node gets online during its uptime and OFF when the node

goes offline during its downtime. A node’s uptime is the time interval between joining

and leaving. Its downtime is the time interval from departure to re-joining. U(·) is

the cumulative distribution function (CDF) of the node uptime, and ū is the average

uptime. D(·) is the CDF of the node downtime, and d̄ is the average downtime. A node’s

availability a is measured by the probability that a node is in the ON state, a = ū
ū+d̄

.

The expected number of nodes in the ON state is an.

We examine nodes with expected uptime above T . The information about the

node uptime can be obtained either by sampling or by prediction techniques [149, 148].

Let n′ be the number of nodes above the threshold T and in their uptime, n′ ≤ n.

ρ = n′

an
represents the ratio of such nodes, 0 < ρ ≤ 1. U ′(·), D′(·), ū′, d̄′ and a′ represent

86

the counterpart attributes of the nodes with expected uptime above T as U(·), D(·), ū, d̄

and a of all nodes, respectively. Our analysis assumes a node maintains log(n′) overlay

connections which is the same as with the general DHT.

Measurement results [175, 130] demonstrate that node uptime is well modeled

by a long-tailed distribution. We adopt a shifted Pareto distribution to depict the

independence of node uptime as [214]. The probability density function (PDF) of node

uptime u(t) is shown in Equation 7.1, where α > 1, β > 0.

u(t) =
α

β
(1 +

t

β
)−(α+1) (5.1)

And the CDF of the node uptime U(t) is shown in Equation 7.2, where α >

1, β > 0.

U(t) = 1− (1 +
t

β
)−α (5.2)

The smaller value of α means a stabler system with longer node uptime. The

PDF of the selected A-DHT node uptime u′(t) is derived in Equation 7.3.

u′(t) =

0 t < T

u(t)∫∞

t=T
u(t)dt

= (1 + T
β
)αu(t) t ≥ T

(5.3)

And the CDF of the selected A-DHT node uptime U ′(t) is derived in Equation

7.4.

U ′(t) =

0 t < T

U(t)−U(T)∫∞

t=T
u(t)dt

= (1 + T
β
)α(U(t)− U(T)) t ≥ T

(5.4)

The availability of the selected A-DHT nodes is measured by their average

87

uptime ū′ derived in Equation 7.5.

ū′ =

∫ ∞

t=T

t · u′(t)dt =
β + αT

α− 1
(5.5)

The higher the threshold T , the better the system stability ū′. This system stability

determines the frequency of maintenance probing and thus the expected overhead.

To calculate the ratio of selected A-DHT nodes over all nodes, we compute

the values of n′ and ρ as a function of the selection threshold T . According to Little’s

Law, the average number of nodes in a stable system equals their average arrival rate

multiplied by their average uptime in the system. Applying to all nodes in the ON state,

we get an = λū, where λ is the average arrival rates of nodes to the ON state. Applying

Little’s Law to the selected A-DHT nodes in the ON State, we get n′ = λ(1− U(T))ū′.

Substituting the variables an, n′, U(T) and using ū =
∫∞
t=0 t·u(t)dt =

β
α−1 , the percentage

of selected A-DHT nodes ρ is derived in Equation 7.6, which estimates how many nodes

are qualified for the threshold T .

ρ =
n′

an
= (1 +

T

β
)−α(1 +

α

β
T) (5.6)

5.3.2 Resource Consumption Analysis

We examine the bandwidth resource consumption for being an accounting node,

which comes from three aspects: workload for participation in trades as an account

holder B1, workload for participation in trades as a transaction arbitrator B2, mainte-

nance workload in A-DHT B3. We use qr to denote the average trade rate initialized

by a node, dc to denote the average size of an account information stored at an ac-

count holder, dm to denote the average size of maintenance package in A-DHT, rc to

denote the number of replicas for an account information stored in A-DHT. We sets the

88

probe frequency for checking the availability of A-DHT neighbors to be A
ū′ , A is a small

constant A > 1.

B1 =
an

n′
kmqr4dc (5.7)

B2 =
an

n′
mqr2kdc (5.8)

B3 =
A

ū′
log(n′)dm +

an

n′
kmdcrc

1

ū′
(5.9)

The total bandwidth consumption for being an accounting node is B1+B2+B3.

5.3.3 Availability Threshold Setting

We set the availability threshold T ∗ as in Equation 7.10 to select the most

reliable nodes as accounting nodes constrained by their available bandwidth resource

constraint. We use bw to denote the bandwidth budget per node used for being account-

ing nodes.

T ∗ = arg maxT s.t. B1 +B2 +B3 ≤ bw (5.10)

5.4 Attack Resistance Properties

In this section, we show that CoBank is resistant to all three major types of

attacks jeopardizing P2P indirect reciprocity systems – sybil attacks, slander attacks

and whitewashing attacks. We address each type of attacks by considering all possi-

ble attackers in the context of CoBank: buyers, vendors, account holders, transaction

arbitrators, and all other peers.

89

5.4.1 Resistance to Sybil Attack

The sybil attack [69] takes the following form: a user creates a large set of

identities (i.e., fictitious users) and makes up their account balances to create arbitrary

contributions among them. The attacker then tries to use the invented contributions to

extract extra resources from the network.

CoBank prevents the sybil attack for the following two reasons. First, the

account information of a peer is stored at a set of account holders. All the account

holders are selected through hashing the peer ID. Thus, the user cannot forge its account

balance. Second, CoBank does not need to provide startup fund for newcomers since

it provides incentives for participating in CoBank. Thus, users cannot gain any benefit

by creating an additional user identity. Therefore, we prevent sybil attacks by making

a user cannot take advantage of the attacks.

5.4.2 Resistance to Peer Slander

The slander attack consists of all cases that a user lies regarding its contribution

or contributions of others. We list all possible cases in CoBank and discuss how we

mitigate them one by one.

• A user cheats on its account balance. CoBank prevents this case by initializ-

ing each new comer’s account balance to 0 and distributing the information to a set

of account holders. In the user’s transactions, its account information is directly

retrieved from and updated to the account holders. Thus, the user cannot modify

its account to cheat. Moreover, CoBank also prevents a user “double spending”

the currency, since we use virtual currency (i.e. the account balance) rather than

the e-coins or e-currency as in [226, 223].

90

• An account holder cheats on the account balance stored. First, CoBank

prevents an account holder impersonating an account owner, since each account

holder only stores partial information of the account password and balance. No

single account holder has the complete account information. Second, CoBank

prevents an account holder lying about the account balance by replicating multiple

sets of account holders. In each transaction, an arbitrator will compare the account

balance sent from each set of holders and detect the cheaters.

• A transaction arbitrator abuses the account balance for either of the two

transaction parties. CoBank prevents this case by hiding the account owner ID

and password from the arbitrator, who has no way to impersonate the account

owner or reuse the account balance. Besides, for each transaction each account

holder receives results from m arbitrators, thus any misbehaviored arbitrator can

be detected by the majority rule.

5.4.3 Resistance to Whitewashing

The whitewashing attack is that a user creates disposable identities and dis-

cards any identity that has been labeled as malicious by the system. In this way, the

penalty imposed on malicious user is whitewashed.

CoBank prevents the whitewashing attacks for the following two reasons. First,

we penalizes the malicious account holders and arbitrators by deducting a fine of $Fn

from their account balance every time. When a peer’s account balance is penalized to

zero or below, we block the peer either through the DHT application-specific security

policies [238] or marking its original information that is used to assign its peerID when

the peer first joining the DHT, such as IP address [170]. We also store the blocking

91

information in the DHT, which only adds a negligible storage overhead. Second, we

do not provide any extra fund to new comers. There is no advantage for whitewahsers

to abandon a currently used identity with non-zero account balance and rejoin again.

Therefore, our scheme does not suffer from whitewashing attacks.

5.5 Performance Evaluation

In this section, we evaluate our scheme CoBank using a file-sharing applica-

tion. While file-sharing is useful as a tangible example, the operations in CoBank can

be used equally well for other kinds of resources, such as storage spaces in a backup

system, messages in a publish subscribe system, or the results of a computation in a

grid computing system.

5.5.1 Simulation Setup

5.5.1.1 Simulation Methodology

We developed a P2P overlay simulator for CoBank performance evaluation. A

P2P file sharing network is simulated with 104 peers. Each peer periodically generates

requests to download movies, music files, games and softwares in a catalog of 4 ·104 files.

We aim to verify:

1. the scalability of CoBank in terms of the success rate and three major types of

overhead.

2. the robustness of CoBank against node churn and malicious peers.

92

5.5.1.2 Network Model

The single hop Round-Trip-Time (RTT) in DHT routing is simulated by draw-

ing 104 nodes from the Xbox 360 data set [127] that is spread over Western U.S. The

mean, median, and standard deviation of inter-peer RTT of this data set are 81 ms, 64

ms, and 63 ms. We use the two-state Gilbert model [83], which models the packet loss

property of Internet paths, setting loss rate to 1% and mean loss burst time to 100 ms

as in [35]. The distribution of peer inter-arrival times follows a Weibull distribution, and

the session length distribution (i.e., how long peers remain in the system each time they

appear) follows a log-normal distribution as the study of churn in [188]. By default, all

results shown are simulated with 20% probability of churn. When a peer re-enters the

system, its account information remains the same as when it last left.

In terms of willingness to share, we simulate two types of peers as in [140]: 10%

of the peers are content-rich, each sharing 100 files; 90% of the peers are content-lacking,

each sharing 20 files. The file download request is generated at each peer following a

Poisson process with average arrival rate one request per 2000 seconds. The price of

downloading a file is 10, and each buyer randomly chooses a vendor if there are multiple

vendors available. By default, the reward for good account holders $Bn is 10 with the

reward period 4 ∗ 104 seconds. The reward period is set to cover the time duration of 20

requests on average, so that the reward transaction overhead is balanced off. And the

fine for bad account holders $Fn is 100 followed the rules in [25].

We simulate the system for 7.2∗105 seconds in each simulation run and conduct

over 20 runs for each result.

93

5.5.1.3 Performance Metrics

We adjust our timeout and DHT parameters to guarantee 100% successful

request rate if the buyer has enough currency to pay. Then, we mainly present the results

of three types of overhead when the success rate acheives 100%: (1) the storage overhead

is defined as the average storage space at each node for storing account information

or transaction information; (2) the communication overhead is defined as the average

bandwidth consumption for each transaction; (3) the latency overhead is defined as the

average delay from issuing a request to the completion of the transaction.

5.5.2 Evaluation Results

5.5.2.1 Performance impacts of the division factor

We increase the division factor k from 2 to 11, and measure the three types of

overhead as shown in Figures 5.3, 5.4, 5.5. We compare the results when the replication

factor is 1 (i.e., no replication) or 3 (i.e., minimum requirement for detecting malicious

peers).

As each account is decomposed into k parts, each of which is stored at a different

holder, the minimum requirement for preventing a holder from impersonation is k = 2.

The storage overhead as in Figure 5.3 and communication overhead as in Figure 5.4 are

linearly increasing with the division factor k. And the latency overhead slightly increases

with k increases as in Figure 5.5. This is because if the network is error-free, the latency

is kept the same when the network size is unchanged, but the non-zero packet loss rate

causes some arbitrator to abort the transaction due to timeout. In this case the account

holder needs to retransmit, and the latency overhead of that transaction increases.

We set the default value of the division factor k to 2 because larger k is only

94

useful for preventing account holder collusions but at the cost of increasing all three

types of overhead. Since we use replication (i.e. the replication factor m ≥ 3) to detect

malicious holders, the division factor 2 suffices for prevent accounts being impersonated

with low overhead.

���������������������������

� � � � � � 	
 �� ����������	�
	��
����	�

����������	
���
����������

Figure 5.3: Storage overhead with varying division factors, where rep. – the replication
factor

�������������������������

� � � � � � 	
 �� �����������	
�
��������

����������	
���
����������

Figure 5.4: Communication overhead with varying division factors, where rep. – the
replication factor

5.5.2.2 Performance impacts of the replication factor

We increase the replication factor m from 3 to 12, and measure the three kinds

of overhead as shown in Figures 5.6, 5.7, 5.8. We compare the results when division

factor is 2 (i.e., minimum requirement) or 4.

As each account is replicated and stored at m sets of account holders, the

95

��������������������

� � � � � � 	
 �� ����������	
����
������

����������	
���
����������

Figure 5.5: Latency overhead with varying division factors, where rep. – the replication
factor

minimum requirement for detection and correction of any holder or arbitrator cheating

is m = 3. The storage overhead as shown in Figure 5.6 is linearly increasing and the

communication overhead as shown in Figure 5.7 is quadratically increasing with the

replication factor m. The latency overhead as shown in Figure 5.8 increases with m.

The reason is similarly to that with k, retransmissions may occur due to the timeout

caused by packet loss.

We set the default value for the replication factor m = 4 to ensure our scheme

with 100% successful request rate under node churn and with normal range of malicious

peers. The reason is that the replication factor m = 3 can ensure nearly 100% successful

DHT routing as long as churn rate is no more than 50% [170], but we need to ensure

that at least requests from 3 sets of account holders are successfully received to detect

malicious nodes. Hence, we choose m = 4 to protect the security with low overhead.

5.5.2.3 Comparisons in Overhead under Churn

We compare our scheme CoBank with PledgeRoute [125] because both are

distributed indirect reciprocity schemes for P2P systems. The primary difference is that

96

����������������������	��
������

� � � � � 	
 �� �� ����������	�
	��
����	�

���������	
�����	
����������

Figure 5.6: Storage overhead with varying replication factors, where div. – the division
factor

������������������������������

� � � � � 	
 �� �� �����������	
�
��������

���������	
�����	
����������

Figure 5.7: Communication overhead with varying replication factors, where div. – the
division factor

PledgeRoute provides pairwise currency while CoBank provides global currency. We

compare the three types of overhead in both schemes with varying the churn rate as in

Figures 5.9, 5.10, 5.11.

For fairness, the results of overhead are measured where both schemes ensure

almost 100% successful request rate if buyers have enough currency. Specifically, we

set the parameters as follows: in CoBank the division factor k is 2, the replication

factor m is 4, and the timeout Tout is 280ms, which is the average RTT from any two

peers through DHT routing. In PledgeRoute, each peer has 150 neighbors on average,

and 25 random-walk announcements are issued by each peer periodically with stopping

probability 0.01 for topology discovery of the contribution network as in PledgeRoute

[125]. The length of the announcement period is adjusted based on the churn rate to

97

�����������������������������	���
��������

� � � � � 	
 �� �� ����������	
����
������

���������	
�����	
����������

Figure 5.8: Latency overhead with varying replication factors, where div. – the division
factor

ensure the success rate.

As shown in Figure 5.9, our storage overhead is an order of magnitude lower

than that of PledgeRoute because PledgeRoute storage overhead is linear to the total

number of nodes while ours is kept to a small constant. With increasing churn rates,

the storage overhead of PledgeRoute increases faster than CoBank, as each PledgeRoute

peer has to maintain a distinct account for every other peer who once appeared in the

network. However, CoBank storage overhead is only based on our division factor k and

replication factor m, independent of the total number of nodes.

Our communication overhead is only half of that in PledgeRoute as in Figure

5.10. It is because each node in PledgeRoute has extra topology discovery overhead

for constructing their local contribution networks [125], which is counted into the av-

erage communication overhead for each transaction. The topology discovery frequency

increases for higher churn rates. Moreover, for each transaction a PledgeRoute buyer

has to find and reserve a valid contribution transfer path in its local contribution net-

work. In the worst case, finding a path may have the communication overhead linear

to the network size. However, we use global currency which is uniform in the network

so that our peers do not have to know others’ contributions. Each transaction overhead

98

only consists of the communication among the buyer/vendor, their account holders and

arbitrators, which only grows logarithmly with the network size.

We incur latency overhead 1/3 less than PledgeRoute as in Figure 5.11 because

for each transaction in PledgeRoute the buyer may fail several times in finding and

reserving a valid contribution transfer path due to churn or lack of currency in the

intermediate nodes. This adds to extra latency overhead in their scheme, which becomes

larger with increasing churn. CoBank uses replications of account holders and arbitrators

to combat churn with only slight latency increase.

������������������������

� � �� �� �� �� �� �� �� ����������	�
	��
����	�

���������	
��	
������������

Figure 5.9: Storage overhead with varying churn

�����������������������������	���

� � �� �� �� �� �� �� �� �����������	
�
��������

���������	

���������������

Figure 5.10: Communication overhead with varying churn

99

������������������������

� � �� �� �� �� �� �� �� ����������	
����
������

��������	
��	
������������

Figure 5.11: Latency overhead with varying churn

5.5.2.4 Comparisons in Robustness with Malicious Nodes

We simulate malicious nodes by having account holders and arbitrators cheat-

ing in CoBank, and nodes cheating in their contribution networks in PledgeRoute. We

compare transaction success rates of two schemes by varying the percentage of malicious

nodes as shown in Figure 5.12. Without malicious nodes, CoBank achieves almost 100%

success rate and PledgeRoute has slightly less because a few transactions fail due to lack

of valid contribution transfer path. CoBank maintains 90% success rate with 10% of

malicious nodes and around 50% success rate with almost 1/3 malicious nodes. This is

because the replication of account holders and arbitrators is very effective for detecting

and correcting malicious behaviors as long as the majority nodes are good. The success

rate of PledgeRoute drops to lower than 25% when 1/3 of nodes are malicious because

they use random-walk to construct local contribution networks. One malicious node

fails all random-walk searches it receives. There is no guarantee in PledgeRoute for

successfully contructing local contribution networks or finding a contribution transfer

path, when malicious nodes are present. Therefore, their transaction success rate drops

quickly.

100

���������������������	��
����

� � �� �� �� �� ��
����������	�

���������	
����	��
���������������

Figure 5.12: Success rate with malicious nodes

101

Chapter 6

Data Consistency Maintenance

Framework in P2P Systems

6.1 Description of BCoM

BCoM aims to: (1) provide bounded consistency for maintaining a large num-

ber of replicas of a mutable object; (2) balance the consistency strictness, object avail-

ability for updating, and update propagation performance based on dynamic network

conditions, workload patterns, and resource constraints; (3) make the consistency main-

tenance robust against frequent node churn and failures. To fulfill these objectives,

BCoM organizes all replica nodes of an object into a d-ary dissemination tree (dDT)

on top of the P2P overlay for disseminating updates. It applies three core techniques:

the sliding window update protocol, the ancestor cache scheme, and the tree node mi-

gration policy on a dDT for consistency maintenance. In this section, we first introduce

the dDT structure, and then explain the three techniques in detail.

102

6.1.1 Dissemination Tree Structure

For each object, BCoM builds a tree with node degree d rooted at the node

whose ID is the closest to the object ID in the overlay identifier space. We denote this

d-ary dissemination tree of object i as dDTi. Each node in dDTi is a peer who holds a

copy of object i. We name such a peer as a “replica node” of i, or simply as a replica

node. An update can be issued by any replica node, but it should be submitted to the

root. The root serializes updates to eliminate conflicts.

With node churn and failures in P2P systems, a dDT serves two cases of

insertions: (1) a single node joining, and (2) a node with subtree rejoining. The goal of

constructing a dDT is to minimize the tree height with low overhead in both cases.

We show an example of dDTi construction with node degree d set to 2 in

Figure 6.1. The replica nodes are ordered by their arrival times as node 0, node 1, node

2, etc. At the beginning, node 1 and node 2 joined. Both were assigned by node 0

(i.e., the root) as its children. Then, node 3 joined. Since node 0 cannot have more

child, it passed node 3 to a child who has the smallest number of subtree nodes. Since

both children (i.e., node 1 and node 2) had the same number of subtree nodes, node 0

randomly selected one to break the tie, say node 1, and increased the number of subtree

nodes at node 1 by one. Node 1 assigned node 3 as its child because it had a space

for a new child. When node 4 joined, node 0 did not have space for a new child and

passed node 4 to the child with the smallest number of subtree nodes, node 2. Similarly,

node 5 and node 6 joined. When node 6 crashed, all of its children detected the crash

independently and contacted other ancestors to rejoin the tree. Every child of node 6

acts as a delegate of its subtree to save individual rejoining of the subtree nodes. Section

6.1.3 explains how to contact an ancestor for rejoining. The tree construction algorithm

103

is given in Algorithm 1. We use Subno.(x) to count the number of subtree nodes of node

x, including itself.

Figure 6.1: Dissemination Tree Example

Algorithm 1 (Dissemination Tree Construction)

Input: node p receives node q’s join request

Output: parent of node q in dDT

IF p does not have d children

Subno.(p)+ = Subno.(q)

RETURN p

ELSE

find a child f of p s.t. f has the smallest Subno.

Subno.(f)+ = Subno.(q)

RETURN dDT Construction (f, q)

The dDT construction algorithm uses the number of subtree nodes as the met-

104

ric for insertions, instead of the tree depth used in traditional balanced tree algorithms.

This is because a rejoining node with a subtree may increase the tree depth by more

than one, which is beyond the one by one tree height increase handled by traditional

balanced tree algorithms. In addition, maintaining the total number of nodes in each

subtree is simpler and more time efficient than maintaining the depth of each subtree.

Internal nodes need to wait until an insertion completes, then the updated tree depth

can be collected layer by layer from leaf nodes back to the root. This makes the real

time maintenance of the tree depth difficult and unnecessary when tree nodes are fre-

quently joining and leaving. However, internal nodes can immediately update the total

number of subtree nodes after forwarding a new node to a child. In BCoM, the tree

depth is periodically collected to help set the sliding window size, where its result does

not need to be updated in real time as discussed in Section 6.1.2.2. But using an out-

dated tree depth for insertions to dDT will lead to an unbalanced tree and degrade the

performance.

6.1.2 Sliding Window Update Protocol

6.1.2.1 Basic Operations in Sliding Window Update

The sliding window update protocol regulates the consistency strictness in

a dDT . “Sliding” refers to the incremental adjustment of the window size based on

dynamic system conditions. If dDTi of object i is assigned a sliding window size ki,

any replica node in dDTi can buffer up to ki unacknowledged updates before getting

blocked from receiving new updates. In other words, each node in dDTi is given a buffer

of size ki. At the beginning, the root receives the first update, sends it to all children

and waits for their ACKs. There are two types of ACKs, R ACK and NR ACK. Both

105

indicate that the update has been received. The difference is that R ACK means the

sender is ready to receive the next update; NR ACK means the sender is not ready.

While waiting, the root accepts and buffers the incoming updates as long as its buffer is

not overflowed. When receiving an R ACK from a child, the root sends the next update

to this child if there is a buffered update that has not been sent to this child. When

receiving an NR ACK from a child, it marks the update to be received by this child and

stops sending update to this child. After receiving ACKs from all children, the update

is removed from the root’s buffer.

There are two cases of buffer overflow: 1) when the root’s buffer is full, the new

updates are discarded until there is a space; 2) when an internal node’s buffer is full, the

node sends NR ACK to its parent for the last received update. An R ACK is sent to

its parent when the internal node has a space in its buffer to resume receiving updates.

A leaf node does not have any buffer. After receiving an update, it immediately sends

an R ACK to its parent.

Figure 6.2 shows an example of the sliding window update protocol with the

window size set to 8. V stands for the version number of an update, as V 10−V 13 means

that the node keeps the updates from the 10th version to the 13th version. Each internal

node keeps the next version for its slowest child up to the latest version it received. Each

leaf node only keeps the latest version it received.

6.1.2.2 Window Size Setting

The sliding window size ki is critical for balancing the consistency strictness,

object availability for updating, and update dissemination latency. A large ki masks the

106

�
��
��
��

�
�
��
�

�
�
��
��

�
�
��
�

�
�
��
� �

�
��
�

�
�

�
��

�
�
�

�
�

�
	

�
�

�
�

�
�

Figure 6.2: An example of sliding window update protocol.

long network latency and the temporary unavailability of replica nodes, thus lowers the

update discard rate. But a large ki enlarges the discrepancy between the local version of

a replica node with the latest version at the root. Thus, a large window size ki weakens

the consistency and increases the queueing delay of update propagation in dDTi. On the

extremes, infinite buffer size provides eventual consistency without discarding updates,

and buffer size zero provides sequential consistency with the worst update discard rate.

We present an analytical model in Section 6.2 to set the sliding window size

ki so that the discard rate is minimized under a delay constraint and a consistency

constraint. The detail formula is given in Section 6.2. Here, we explain the procedure

for setting the window size. The root sets the window size for all tree nodes and adjusts

it periodically when needed. The root measures the input metrics for computing the

window size every T seconds and adjusts the value of ki only after the metrics stabilize

and the old ki violates certain constraints. In this way, unnecessary changes due to

temporary disturbances are eliminated to keep dDTi stable. If ki needs to be adjusted,

107

it is incrementally increased or decreased until the constraints are satisfied.

The input metrics of computing the window size ki include the update arrival

rate λ, the tree height L, and the bottleneck service time µL. The arrival rate is

directly measured by the root. The tree height and bottleneck service time are collected

periodically from leaf nodes to the root in a bottom-up approach. The values of the two

metrics are aggregated at every internal node so that the maintenance message keeps

the same size. The aggregation is performed as follows: each leaf node initializes the tree

height to zero (L = 0) and the bottleneck service time µL to the update propagation

delay between itself and its parent. Each node sends the maintenance message to its

parent. Once an internal node receives the maintenance messages from all children,

it updates L as the maximum value of its children’s tree height plus 1 and µL as the

maximum value among its and every child’s service time. If its service time is longer

than a child’s, a non-blocking migration is executed to swap the parent with the child.

The aggregation continues until the root is reached.

6.1.3 Ancestor Cache Maintenance

Each replica node maintains a cache of mi ancestors starting from its parent

leading to the root in dDTi. The value of mi is set based on the node churn rate (i.e.,

the number of nodes joining and leaving the system during a given period) so that the

probability that all mi nodes simultaneously fail is negligibly small. If a node does not

have mi ancestors, it caches all the ancestors from its parent to the root.

A node contacts its cached ancestors sequentially layer by layer upwards when

its parent becomes unreachable. This can be detected by ACKs and maintenance mes-

sages. Sequentially contacting enables a node to find the closest ancestor. The root is

finally contacted if all the other ancestors are unavailable. The root failure is handled

108

by the overlay routing, as a node with the nearest ID will replace the crashed node to

be the new root. Different replication schemes may be used to reduce the cost of root

failure, which is specific to a structured P2P overlay and beyond the scope of this paper.

The contacted ancestor runs the tree construction Algorithm 1 to find a new

position for a rejoining node with its subtree. BCoM does not replace a crashed node

with a leaf node to maintain the original tree structure because migration brings down

a bottleneck node to the leaf layer for performance improvement. The new parent node

transfers the latest version of the object to the new child if necessary. Since each node

only keeps ki previous updates, content transmission is used to avoid the communication

overhead for getting the missing updates from other nodes. The sliding window update

protocol resumes for incoming updates.

The ancestor cache provides fast recovery from node failures with a small over-

head. Assuming the probability of a replica node failure is p, an ancestor cache of size

mi has a successful recovery probability as 1 − pmi . An ancestor cache is easily main-

tained by piggybacking an ancestor list on each update. Whenever a node receives an

update it adds itself to the ancestor list before propagating the update to its children.

Each node uses the newly received ancestor list to refresh its cache. There is no extra

communication, and the storage overhead is also negligible for keeping the information

of mi ancestors.

6.1.4 Tree Node Migration

Any non-leaf node will be blocked from receiving new updates if one of its

descendants has a buffer overflow in the sliding window update protocol. It is quite

possible that a lower layer node performs faster than a bottleneck node. This motivates

us to promote the faster node to a higher level and degrade the bottleneck node to a

109

lower level. For example in Figure 6.1, assume node 1 is the bottleneck node causing

the root 0 to be blocked. The faster node may be a descendant of the bottleneck node

as shown in (A) or a descendant of a sibling of the bottleneck node as shown in (B).

When blocking occurs, node 0 can swap the bottleneck node 1 with a faster descendant

who has more recent updates, like node 4, to remove blocking. Before blocking occurs,

node 1 can be swapped with its fastest child who has the same update version to prevent

blocking. The performance improvement through node migration is confirmed by our

analytical model in Section 6.2.

There are two forms of node migration, as described below.

• Blocking triggered migration: the blocked node searches for a faster descendant

who has a more recent update than the bottleneck node, and swaps them to remove

blocking.

• Non-blocking migration: when a node observes a child performing faster than

itself, it swaps with this child. Such migration prevents blocking and speeds up

the update propagation for the subtree rooted at the parent node.

The swapping of (B) in Figure 6.1 is an example of blocking triggered migration and

(A) is an example of non-blocking migration. Both forms of migration swap one layer

at a time and, hence, multiple migrations are needed for multi-layer swapping. The

non-blocking migration helps promote faster nodes to upper layers, which makes the

searching in blocking-triggered migration easier. Since the overlay DHT routing in

structured P2P networks relies on cooperative nodes, we assume BCoM is run by these

cooperative P2P nodes transparent to end users. Tree node migration uses only the

local information and improves the overall system performance.

110

6.1.5 Basic Operations in BCoM

BCoM provides three basic operations:

• Subscribe: if a node p wants to read the object i and keep it updated, p sends a

subscription request to the root of dDTi through the overlay routing. After receiv-

ing the request, the root runsAlgorithm 1 to locate a parent for p in dDTi, who

will transfer its most updated version of object i to p. p receives the subsequent

updates by following the sliding window update protocol. The message overhead

of a subscription is at most the tree height as inserting a new node searches along

a path from the root to a leaf in dDTi.

• Unsubscribe: if a node p is not interested in object i anymore, it promotes its

fastest child as the new parent and transfers its parent and other children’s infor-

mation to the newly promoted node. p also notifies them of the newly promoted

node to update their related maintenance information. The message overhead of

an unsubscription is constant, since the number of involved nodes is no more than

the tree node degree, and each node has a constant overhead to update its local

maintenance information.

• Update: after subscribing, if a node p wants to update the object, it sends an

update request directly to the root using the IP routing. The root’s IP address

is obtained through the subscription or the ancestor cache. If the root crashed,

p submits the update to the new root through the overlay routing. Updates are

serialized at the root by their arrival times. The specific policy for resolving

conflicts is application dependent. The message overhead of an update is constant

for the direct submission to the root.

111

6.2 Analytical Model for Sliding Window Setting

The frequent node churn in P2P systems forbids us to use any complicated

optimization techniques that require several hours of computation at workstations (e.g.,

[232]) or every node information in the system (e.g., [235]). BCoM adjusts the sliding

window size to the dynamic P2P systems relying on limited information.

This section analyzes the setting of the sliding window size ki for object i,

where the update propagation to all replica nodes is modeled by a queuing system. We

first analyze the queueing behavior of the dissemination tree dDTi when it begins to

discard an update. We then calculate the update discard probability and the expected

latency for a replica node to receive an update. Finally, we set ki to minimize the update

discard rate given a consistency bound while ensuring the expected delay is no worse

than the baseline by a small given threshold.

6.2.1 Queueing Model

Assuming the total number of replica nodes is N , the node degree is d, and

there are L (L = O(logdN)) layers of internal nodes with an update buffer of size ki

(i.e., each node in layer 0 . . . L− 1 has a sliding window ki). The leaf nodes are in layer

L and do not have any buffer. The update arrivals are modeled by a Poisson process

with an average arrival rate λi (simply as λ), since each update is issued by a replica

node independently and identically at random. The latency of receiving an update from

the parent and an acknowledgment from the child is denoted as the service time for an

update propagation. The service time for one layer to its adjacent layer below is the

longest parent-child service time in these two layers. µl denotes the service time for

update propagation from layer l to layer (l + 1). For example, µ0 is the longest service

112

time from the root to its child, µL−1 is the longest service time from a layer (L − 1)

node to its child (i.e., a leaf node). The update propagation delay is assumed to be

exponentially distributed. The update propagation in dDTi is modeled as a queuing

process as shown in Figure 6.3 (a): updates arrive at the root with an average rate λ,

then go to the layer 0 node’s buffer of size ki. The service time for propagating from

layer 0 to layer 1 is µ0. After that, the updates go to a layer 1 node’s buffer of size

ki with service time µ1 for propagating to a layer 2 node. The propagations end when

updates are received by a leaf node in layer L.

Figure 6.3: Queuing Model of Update Propagation.

An update may only be discarded by the root when its buffer is overflowed.

This happens when the root is waiting for an R ACK from its slowest child in layer 1,

who is waiting for an R ACK from its slowest child in layer 2. The waiting cascades

until a bottleneck node of dDTi is reached, say in the layer l, 0 ≤ l ≤ L. The nodes

in layers l + 1 . . . L (if l < L) do not receive any update even when their buffers are

not full. All the nodes in the path from the root to the bottleneck node have buffer

overflow. The nodes along the path are denoted as p0, p1 . . . pl, where p0 is the root

and pl is the bottleneck node. After the bottleneck node pl has a space in its buffer

and sends an R ACK to its parent, the R ACK is then propagated to the root p0 such

that the root can purge the update from its buffer and accept a new one. The update

113

propagation from p0 → p1, p1 → p2, . . . pl−1 → pl is in parallel and the service time µl−1

between pl and pl−1 should be the longest along this path (i.e., µl−1 > µj , 0 ≤ j < l−1).

Therefore, the queuing model of the update discard is transformed to a queue with an

effective buffer of size l ∗ ki for dDTi, and the service time is µl−1, as shown in Figure

6.3 (b).

This queuing model explains that given a ki, the effective buffer size l ∗ ki is

determined by l, which is the layer of the bottleneck node. The larger the effective

buffer size, the lower the discard probability. When the bottleneck node is a leaf node

(l = L), buffer resources of dDTi are fully used with an effective buffer size L ∗ ki.

This inspires the Tree Node Migration techniques presented in Section 6.1.4, which

moves down bottleneck nodes to the leaf layer. The discard probability of an update

is computed based on the queuing model of dDTi after being optimized by tree node

migrations as shown in Figure 6.3 (c). The queue becomes an M/M/1/ queue with a

buffer size L ∗ ki, an arrival rate λ and a service time µL−1.

6.2.2 Availability and Latency Computation

Define the update request intensity as ρ.

ρ =
λ

µL−1

(6.1)

Define the probability of n updates in the queue as πn. Based on the queueing theory

for M/M/1 finite queue [33], πn is represented as Equation 6.2.

πn = ρ
n
π0 (6.2)

The discard probability is πL∗ki , which indicates the buffer overflow. From ΣL∗ki
n=0 πn = 1,

we get π0 =
1−ρ

1−ρL∗ki
. And the discard probability is computed in Equation 6.3.

πL∗ki
=

1− ρ

1− ρL∗ki
ρ
L∗ki (6.3)

114

The expected number of packets in the queue E[NL∗ki] is calculated in Equation

6.4.

E[NL∗ki
] =

∑

0≤n≤L∗ki

n ∗ πn (6.4)

Plug in the Equation 6.2 for πn, the final form of E[NL∗ki] is given in Equation 6.5.

E[NL∗ki
] =

(L ∗ ki + 1)ρL∗ki+1

(ρL∗ki+1 − 1)
+

ρ

(1− ρ)
(6.5)

The expected delay E[TL∗ki] is calculated by Little’s law in Equation 6.6, where

E[NL∗ki] is the expected number of packets in the queue and λ(1− πL∗ki) is the arrival

rate of the accepted updates.

E[TL∗ki
] =

E[NL∗ki
]

λ(1− πL∗ki
)

(6.6)

6.2.3 Window Size Setting

The effectiveness of a consistency protocol is measured by three attributes:

consistency strictness, object availability, and latency for receiving an update. The three

are in subtle tension towards each other. Given the update arrival rate and the service

time, increasing the window size ki lowers the discard probability, while prolongs the

expected latency and weakens the consistency strictness. πL∗ki is the discard probability.

The expected latency E[TL∗ki] indicates the average delay for an update to be received

by a replica node. The consistency strictness is measured by the number of updates a

replica node has not yet received, which is at most L ∗ ki in dDTi.

BCoM sets the window size to minimize the update discard rate under the con-

straints that the number of not-yet-received updates is bounded to Km and the latency

for receiving an update is no worse than the sequential consistency for a small bound

Ts as calculated in Equation 6.7. E[TL∗k] is the expected latency with a window size k

and E[TL] is the expected latency when applying sequential consistency to dDTi, which

115

serves as the baseline for bounding the latency performance. The latency threshold Ts

and the consistency strictness threshold Km are set according to application require-

ments. In our simulation, empirically setting Ts to 1.3 achieves good results as shown

in Figure 6.9 and Figure 6.11, the discard probability is improved from almost 100% to

5% at the cost of latency increases less than one third most of the time. Km is set to

60 for a network of 1000 nodes.

ki = argmin πL∗k s.t.
E[TL∗k]

E[TL]
≤ Ts, L ∗ k ≤ Km (6.7)

6.3 Performance Evaluation

In this section, we extend the P2PSim tool [12] to simulate BCoM with hetero-

geneous node capacities and transmission latencies. While BCoM can be applied to any

type of structured P2P systems, we choose Tapestry[238] as a representative network for

simulations. We evaluate the efficiency of BCoM with comparison to SCOPE[55], which

is the most relevant work and a widely studied consistency technique in structured P2P

systems.

6.3.1 Simulation Setting

We simulate a network of 1000 nodes because anything larger cannot be ex-

ecuted stably in P2PSim. The number of objects ranges from 102 to 104. The object

popularity follows a Zipf’s distribution, and the update arrivals are generated by a Pois-

son process with different average arrival rates. By default, each node issues 200 updates

during a simulation cycle, which is 7.2 ∗ 106 time slots. We simulate the situation where

frequent updates may overload the servers, which motivates the use of P2P systems.

Given that transmitting one update uses only 10 to 100 time slots, the number of time

116

slots covered in a simulation cycle (i.e., 7.2∗106) is large enough to generate sustainable

results. The data points in our figures are the average values of 20 trials.

The heterogeneity of node capacities follows a Pareto distribution [136]. We

set the shape parameter a = 1 and scale parameter b = 900 to get 900 different node

capacities. Network topology is simulated by two transit-stub topologies generated by

GT ITM [73] to model dense and sparse networks: (1) ts1k-small (dense) - 2 transit

domains each with 4 transit nodes, 4 stub domains attached to each transit node, and

31 nodes in each stub domain. (2) ts1k-large (sparse) - 30 transit domains each with 4

transit nodes, 4 stub domains attached to each transit node, and 2 nodes in each stub

domain.

The node degree is set to 5 based on the average Gnutella node degree, which

is 3 to 5. To have a fair comparison, we also set the vector degree of each SCOPE

node to 5. The update discard rate (the ratio of the number of discarded updates to the

total number of updates), and the update dissemination latency (the average delay for

a replica node to receive an update) are used to measure the performance.

6.3.2 Efficiency of the Window Size

This simulation examines the efficiency of applying sliding window update pro-

tocol. The curves in Figure 6.4 and Figure 6.5 show that by increasing the window size

from 1 to 20, the discard rate is dropped from 80% to around 5%, and the latency

is increased only by 20%. The results confirm that BCoM significantly improves the

object availability with slightly increased latency compared to applying the sequential

consistency.

Impacts of the Window Size on the Extent of Inconsistency: This

117

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

D
is

c
a
rd

 r
a
te

Window size

dense
sparse

Figure 6.4: The impact of window size on discard rate.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 2 4 6 8 10 12 14 16 18 20

L
a
te

n
c
y

Window size

dense
sparse

Figure 6.5: The impact of window size on latency.

simulation examines the extent of inconsistency among all replicas of an object by vary-

ing the window size. Figure 6.6 shows the results, where the inconsistency extent is

defined as the average number of updates a replica falls behind the latest version at the

root. Since the upper bound of inconsistency in BCoM is the window size multiplied

by the tree height of a dDT, we use the average to show the real situation instead of

the theoretical upper bound. As expected, the inconsistency extent grows larger as the

window size increases, however, it grows much slower than the upper bound. When the

window size is 20 and the tree height is around 4 to 6, the upper bound is around 80

to 120. But the average inconsistency extent is only 11, much smaller than the upper

118

bound. Given the total number of replica nodes is 1000, such inconsistency is quite

acceptable when the update discard rate is dropped to only 5% as shown in Figure 6.4.

 3

 4

 5

 6

 7

 8

 9

 10

 11

 2 4 6 8 10 12 14 16 18 20

In
c
o

n
s
is

te
n

c
y

Window size

dense
sparse

Figure 6.6: The impact of window size on inconsistency degree.

Accuracy of the Analytical Model: This simulation examines the accuracy

of the analytical model for window size setting presented in Section 6.2. We compare the

latency estimated by Equation 6.6 with the simulation latency results as shown in Figure

6.5. We also show the error rate of latency estimation in Figure 6.7, which is the ratio

of the difference between the estimation and the simulation results over the simulation

results. The discrepancy is mainly caused by the node churn because node leavings

and rejoinings introduce extra delay and change parts of the tree structure. However,

the error rates are less than 25% with different window sizes. Such small error rates

indicate that our analytical model has captured the queueing behavior of the update

dissemination in BCoM, which is the dominant factor to the system performance.

Storage Overhead: This simulation shows the storage overhead for buffering

updates. The upper bound of storage overhead at a replica is the update packet size

multiplied by the window size (i.e., the maximum buffer size). Figure 6.8 presents the

119

 0

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14 16 18 20

E
rr

o
r

o
f

la
te

n
c
y
 e

s
ti

m
a
ti

o
n

 (
%

)

Window size

dense
sparse

Figure 6.7: The impact of window size on latency estimation.

average buffer occupancy of all replicas to show the storage overhead in the real situation

instead of the theoretical upper bound. The average buffer occupancy decreases as the

window size increases, when the window size is 20 the average buffer occupancy is only

10%. Thus, most replicas have small storage overhead. This is because the window

size is determined by the bottleneck service time (i.e., the slowest replica’s service time)

to reduce the update discard rate, other replicas only have a small number of udpates

buffered even when the window size is large.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

A
v
g

 b
u

ff
e
r

o
c
c
u

p
a
n

c
y

Window size

dense
sparse

Figure 6.8: The impact of window size on storage overhead.

120

6.3.3 Scalability of BCoM

This simulation verifies the scalability of BCoM with comparison to SCOPE[55]

by varying the number of replica nodes and the update rate of each object. The results

in Figure 6.9 and Figure 6.10 show that the discard rate of BCoM is maintained to

less than 10% as the number of replicas per object increases from 10 to 1000 and the

number of updates issued per node increases from 1 to 200. On the other hand, applying

the sequential consistency makes the discard rate of SCOPE almost 100%, except for

a very small number of replica nodes (i.e., 10 replicas per object) or an extremely

low update rate (i.e., 1 update per node). An update cannot be accepted by SCOPE

until the previous update is received by every replica node. The prohibitively long

synchronization for the sequential consistency makes SCOPE discard most updates.

We intentionally relax the consistency requirement for SCOPE when calculat-

ing their discard rate, latency and overhead results by not requiring their new join-

ing/rejoining nodes to be synchronized. This relaxation gives better results to SCOPE

for all three metrics. Without this relaxation, SCOPE’s discard rate is even worse, which

is not useful for comparison. Thus, the results of BCoM include content transfer delay

for all joining/rejoining nodes while the results of SCOPE exclude the synchronization

delay for all joining/rejoining nodes. This is an important reason why BCoM has slightly

longer dissemination latency than that of SCOPE when the number of replica nodes is

large as shown in Figure 6.11 or the updates are frequent as shown in Figure 6.12.

Another critical reason why SCOPE has slightly better latency and overhead is

that it discards a large portion of updates. The measurements of latency and overhead

only count accepted updates. With such high discard rate, SCOPE takes advantage of

121

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

D
is

c
a
rd

 r
a
te

Number of replicas

BCoM-dense
BCoM-sparse

SCOPE-dense
SCOPE-sparse

Figure 6.9: The impact of replica number on discard rate.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180 200

D
is

c
a
rd

 r
a
te

Updates issued by each node per simulation cycle

BCoM-dense
BCoM-sparse

SCOPE-dense
SCOPE-sparse

Figure 6.10: The impact of update pattern on discard rate.

accepting much fewer updates than BCoM when measuring latency and overhead.

6.3.4 The Overhead of BCoM

This simulation compares the overhead of BCoM with that of SCOPE as shown

in Figure 6.13. The consistency maintenance overhead of each object consists of three

parts: subscription overhead, update overhead, and crash/migration overhead. We use

the label ”migrate” to indicate the migration and crash recovery overhead in BCoM.

BCoM keeps the overhead at the same level as that in SCOPE because the ancestor

122

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 100 200 300 400 500 600 700 800 900 1000

L
a
te

n
c
y

Number of replicas

BCoM-dense
BCoM-sparse

SCOPE-dense
SCOPE-sparse

Figure 6.11: The impact of replica number on latency.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 20 40 60 80 100 120 140 160 180 200

L
a
te

n
c
y

Updates issued by each node per simulation cycle

BCoM-dense
BCoM-sparse

SCOPE-dense
SCOPE-sparse

Figure 6.12: The impact of update pattern on latency.

cache maintenance and the node migration mostly piggyback on update dissemination.

subsectionFault Tolerance of BCoM This simulation examines BCoM’s robust-

ness against node failures by varying the node mean life time. The node life time is

the ratio of the average number of slots a node stays online at one time to the total

number of slots in a simulation cycle. The smaller the life time is, the more frequently

the nodes join and leave. The results of SCOPE are not presented because their discard

rate is nearly 100% in the presence of nodes joining and leaving. Figure 6.14, Figure

123

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

50 100
200

300
400

500
600

700
800

900
1000

O
v

e
rh

e
a

d

Number of replicas

BCoM overhead in sparse network

Update
Subscribe

Migrate

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

50 100
200

300
400

500
600

700
800

900
1000

O
v

e
rh

e
a

d

Number of replicas

SCOPE Overhead in sparse network

Update
Subscribe

Crash

(a) (b)

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

50 100
200

300
400

500
600

700
800

900
1000

O
v

e
rh

e
a

d

Number of replicas

BCoM Overhead in dense network

Update
Subscribe

Migrate

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

50 100
200

300
400

500
600

700
800

900
1000

O
v

e
rh

e
a

d

Number of replicas

SCOPE Overhead in dense network

Update
Subscribe

Crash

(c) (d)

Figure 6.13: Overhead comparison between BCoM and SCOPE

6.15, and Figure 6.16 show the impacts of various churn rates on the dDT tree height,

the update discard rate, and the update dissemination latency. The results demonstrate

that BCoM is robust against the node churn. Figure 6.14 shows that the tree height is

ranging from 4 to 6, which means our dDT is nearly complete as a 5-ary tree of 1000

nodes has tree height more than 4. The discrepancy caused by node churn on the tree

height is less than 2, which helps BCoM maintain consistent discard rate and latency.

Buffering some earlier updates in each intermediate node masks the delay for nodes to

rejoin/join the tree and keeps the discard rate low under the node churn as shown in

Figure 6.15. The efficient dDT construction and the use of ancestor cache reduce the

delay for node joining/rejoining and prevent the degradation of update dissemination

as shown in Figure 6.16. Note that the latency goes down sharply when node life time

is small. The reason is that a node clears its buffer when it goes offline. Therefore, with

an extremely short life time, a node’s buffer is always near empty so that the queueing

delay in this case is also extremely short.

124

 0

 1

 2

 3

 4

 5

 6

 7

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
re

e
 h

e
ig

h
t

Life mean

dense
sparse

Figure 6.14: The impact of churn rate on tree height

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

D
is

c
a
rd

 r
a
te

Life mean

dense
sparse

Figure 6.15: The impact of churn rate on discard rate

6.4 Case Study

In this section, we evaluate the performance of BCoM using a large-scale social

networking application FriendFeed [49]. FriendFeed is a real-time feed aggregator that

consolidates the updates from social media and social networking websites. It is created

in 2007 and acquired by Facebook in 2009. Existing solutions to implement social

networking is using dedicated servers, which are notoriously difficult to scale. Social

network applications are incessantly evolving as more new users join with more frequent

social interactions. Servers’ capacities should continuously keep up for the growing

125

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

L
a
te

n
c
y

Life mean

dense
sparse

Figure 6.16: The impact of churn rate on latency

demand. Twitter engineers have famously described re-architecting Twitters servers

multiple times to keep up with rapid increases in throughput as the system became

more popular [3]. We believe that the P2P approach is the direction for the future

social network applications with better scalability. Moreover, the P2P implementation

is economic-friendly, which is particularly appealing to start-ups as we envision new

social network applications are emerging.

6.4.1 Trace Data and Experimental Setup

Friendfeed users share posts on his/her blog with a list of subscribers, who

can comment directly under the original blog post. BCoM is applied to FriendFeed for

maintaining consistency between a FriendFeed user and all his/her subscribers. Each

user’s blog is modeled as an object in BCoM. Either a post or a comment is an update

about the object, and a subscriber to a FriendFeed user is a replica node of the object

(i.e., the user’s blog).

Workload Model. We use the real trace data in [49] to generate the work-

load of subscriptions and updates. The trace includes 671840 FriendFeed users, and is

collected from Aug 1, 2010 to Sep 30, 2010. Table 6.1 gives the summary of the trace

126

Table 6.1: Summary of FriendFeed Traces

Total nodes 671,840

Time duration 2 months

Total updates 16,200,549

Average replica nodes per object 41.40

Average updates per second 3.07

Average update packet size 354.91 bytes

data.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

%
 o

f
o

b
je

c
ts

of replica nodes

Figure 6.17: CDF of the number of replica nodes per object

We examine the main features of the trace data in Figures 6.17, 6.18, 6.19.

Figure 6.17 shows the cumulative distribution function (CDF) of the number of replica

nodes per object. The object popularity is highly skewed. More than 90% of objects have

replica nodes less than 100, yet around 1% of objects have replica nodes more than 800.

The maximum number of replica nodes per object reaches 113923. Figure 6.18 shows

the CDF of the number of updates per object. The update distribution is also highly

skewed. More than 90% of the objects have updates less than 50, while, around 2% of

objects have updates more than 200. Figure 6.19 shows the total number of updates

generated in the system, where we can see the udpate generation is unpredictable with

127

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

%
 o

f
o

b
je

c
ts

of updates

Figure 6.18: CDF of the number of updates per object

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 200 400 600 800 1000 1200 1400

#
 o

f
u

p
d

a
te

s
 c

re
a
te

d
 p

e
r

h
o

u
r

Time (hour)

Figure 6.19: The total number of updates in the system per hour

frequent bursts. These trace analysis results show that the workload of update delivery

and consistency maintenance is highly skewed among objects and constantly changing

over time. One of the goals of BCoM is to provide balanced consistency maintenance

for such workload patterns through our sliding window update protocol.

6.4.2 Network Model

. In our experiments, each peer is an individual machine in a simulated network,

representing a general Internet user experience. To measure the update dissemination

latency, we adopt the widely used statistics of the user bandwidth capacity collected

128

at U.S. Broadband report [2]. The upload capacity of peers is shown in Figure 7.6,

which is in a range from 256 Kb/s to 10 Mb/s. To simulate wide geographic areas

where peers come from, the inter-peer round-trip time (RTT) is simulated by drawing n

(n = 671840 in our experiments) nodes from the real data set [127] which represents a

wide area interactive application. The mean, median, and standard deviation of inter-

player RTT of this data set are 81 ms, 64 ms, and 63 ms. Vivaldi 3D coordination system

[61] is used to extrapolate the RTT values among pairs of nodes who did not probe each

other in the data set. We use a two-state Gilbert model [83], which models the packet

loss property of Internet paths, setting loss rate to 1% and mean loss burst time to 100

ms. The churn probability is set to 20% according to churn studies in [188]. The update

dissemination tree structure in BCoM is configured the same as in our simulation in

Section 7.4.

0 %

20 %

40 %

60 %

80 %

100 %

10
0

10
1

10
2

10
3

10
4

C
D

F
 %

 o
f

m
a
c
h

in
e
s

Upload capacity (Kb/s)

Figure 6.20: CDF of peers upload capacity

Performance Metrics. We use the update discard rate, update dissemination

latency, and buffer occupancy to measure the performance of BCoM. These metrics are

defined in our simulation Section 7.4.

129

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0 200 400 600 800 1000 1200 1400

D
is

c
a
rd

 r
a
te

Time (hour)

Figure 6.21: The update discard rate

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000 1200 1400

L
a
te

n
c
y

Time (hour)

Figure 6.22: The average update dissemination latency (in millisecond)

6.4.3 Performance Results

. Figure 6.21 shows the update discard rate in BCoM. Most of the time BCoM

has zero discard rate except two short periods around 200th hour and 600th hour, where

BCoM has non-zero discard rates due to update bursts as shown in Figure 6.19. Even

though the maximum update discard rate is less than 0.04%, which is negligible in such

a large network of more than 6.7 ∗ 105 nodes. Figure 6.22 shows the average update

dissemination latency in BCoM, which is kept between 400 and 500 milliseconds. Such

fast and stable update delivery confirms the efficiency of the sliding window update

protocol with the two enhancements in BCoM. Figure 6.23 shows the average buffer

130

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

B
u

ff
e
r

o
c
c
u

p
a
n

c
y

Time (hour)

Figure 6.23: The average buffer occupancy

occupancy in BCoM. The buffer size (i.e., window size) is adjusted around 1 to 20 for

different objects and dynamic update workloads as shown in figures 6.17, 6.18, 6.19.

The buffer size is set for accomodating the slowest node in an update dissemination

tree, while most of the nodes have buffer occupancy less than 10% so that the buffer

overhead introduced is quite small. All these results demonstrate the applicability and

efficiency of BCoM in large-scale social network applications.

131

Chapter 7

Real-Time P2P Consistency

Maintenance

7.1 Real-Time P2P Application Background

In most MMOGs, each player plays a role in a virtual world. Each player is

represented in the game by an avatar. A game includes both immutable and mutable

objects. Immutable objects (e.g., landscape) are downloaded by game client software.

Mutable objects are updated by either players (e.g., avatars, food, tools) or automated

algorithms (e.g., NPCs). Every mutable object is represented by its state. For example,

an avatar’s state may include its position, health, possessions; a tool’s state may include

its position, shape or content. An NPC’s state is similar to an avatar’s. The only

difference is that each NPC is associated with an automated algorithm for execution.

The consistency maintenance updates the game states of all mutable objects correctly

for every player. From here on, we use the term “object” to mean a mutable object.

Client-server systems use the primary copy consistency model for maintaining

game state. The server maintains a primary copy of every object in the game and

132

periodically sends updates to players. A game is implemented as a discrete event loop.

Each loop iteration is called a “frame.” The server broadcasts an update to every player

by the end of each frame. The update broadcast includes updates from all mutable

objects.

P2P systems follow the primary copy consistency model in client-server sys-

tems. Each object has a primary copy where all updates are serialized and sent out.

However, all primary copies that were originally maintained by servers are transferred to

different players, who are responsible for serializing and delivering updates every frame.

Using bandwidth and computation resources from players relieves the reliance on game

servers, which thus only do external support, such as authentication. The challenge is

how to fully take advantage of the limited resources from a large number of unreliable

players to achieve better scalability and robustness compared to a handful of resource

abundant and dedicated servers. This challenge motivates the design of PPAct system.

7.2 Rendezvous Enabled Range Query Processing and Sub-

scription

In this section, we first give an overview of how a player obtains its view in

PPAct. Then, we present the region partitioning scheme, and the update forwarding

scheme. Finally, we present how to map regions to region hosts and objects to object

holders.

7.2.1 Overview

We apply AOI filtering to reduce bandwidth consumption due to sending up-

dates. AOI filtering takes advantage of spatial locality of player interests. Thus, each

133

player gets a confined view in the game, which is an area centered at its avatar’s current

position with radius R, instead of the entire game map.

The latency bound for acquiring a view is stringent. For example, FPS games

require that players’ views should be synchronized every 150 ms [35]. This requires a

player to receive updates about all objects in its view within every 150 ms. When a

player is moving, its view changes accordingly. Hence, the latency bound for receiving

an update covers two steps: view look-up and update delivery.

We separate the roles of view discovery from object consistency maintenance by

assigning region hosts and object holders. A region host tracks both objects in a region

and players whose views include the region. An object holder maintains the primary copy

of an object and sends updates about the object to subscriber players. Players subscribe

to all objects within their views for receiving updates. The subscription is performed by

sending lookup requests to the region host, because dynamic movements of objects make

it difficult for individual players to track all updates. After determining his subscribed

regions, a player discovers those region-hosts through contact. In PPAct, region hosts are

organized into a two-dimensional DHT overlay based on regions’ horizontal and vertical

positions. Thus, players are provided with two-hop lookup for frequent continuous

movements and logarithmic lookup for the seldom random movements.

To assist region-hosts in tracking objects, object holders register objects with

region hosts of their current regions. Once an object moves out of a region’s boundary,

the holder unregisters from the previous region-host and registers with the new one. No

real-time information, such as object’s exact location, is involved in the registration.

There is no need to update information at the region-host once an object is registered.

Therefore, maintenance overhead of registration is low.

134

Figure 7.1: The procedure for getting a view

In summary, there are three steps for a player to get a view as shown in Figure

7.1.

1. Lookup. A player’s view is computed based on its avatar’s current position, and

a lookup query is sent to the region host of each view region that has not yet been

subscribed. An unsubscription message is sent to each region that has gone out of

view but previously subscribed.

2. Subscription. Every region-host maintains a subscription list, recording players

who subscribed to this region in the last frame. An unsubscription list is main-

tained similarly. The two lists are sent to each object-holder who has registered

with this region.

3. Update delivery. After receiving the two lists, each object-holder sends out

updates to all subscribers in every frame.

7.2.2 Region Partitioning

The map of a game is partitioned into a set of disjoint regions. A region can

be any shape defined by a center point and a radius. We choose circle regions with

uniform radius r. Figure 7.2(a) shows an example of region partitioning. The dotted

circle represents a player’s view where the center is its avatar’s position. A player’s

view consists of seven adjacent regions. In this way, each view region can be flexibly

135

subscribed when the player is moving and its view is changing.

Region size is an important factor to the efficiency and overhead of subscription,

as the subscription is performed in unit of a region. If a region is so large that it covers

the entire view, it is hard to accurately define the view. A range query from each player

to look up view regions is transformed to a set of exact match queries, each of which

locates a view region. Thus, large regions are too rough to approximate the range query.

Figure 7.2 (b) shows a region partitioning where three regions cover a player’s view. It is

possible that some objects are inside the three regions but outside of the player’s view.

They will be unnecessarily included in the player’s range query which wastes network

resources. On the other hand, if a region is so small that a view consists of dozens of

regions, the excessive overhead of query processing and object registration hand-off will

degrade performance.

Figure 7.2: Examples of region partitioning

Vague Region Boundary. We apply vague boundaries between neighboring

regions to reduce hand-off overhead when objects are frequently moving back and forth

across boundaries. The shaded area in Figure 7.2 (a) shows the intersections of neigh-

boring regions. The shaded area is called the “vague boundary” since there is no clear

borderline between neighboring regions. An object-holder switches registration only

when the object enters a new region and moves out of the shaded area. Objects in the

shaded area delay switching registrations to avoid unnecessary hand-offs. Such delayed

136

switchings do not negatively affect the results of range queries. The objects, which are

excluded from the query results because of vague boundaries, reside at the border of the

player’s view. They are less visible than other closer objects that are returned in the

results anyway. Hence, the player will not notice the difference.

7.2.3 Update Forwarding and Burst Handling

Limited uplink bandwidth and heterogeneous object popularity give rise to

the AOI “hot spot” problem [36, 116], where some object-holders are overloaded by an

excessive number of subscribers. Other object-holders with surplus uplink bandwidth

may only have a handful of subscribers or perhaps none at all.

In PPAct, we balance workload by making subscribers contribute their spare

bandwidth to forwarding updates to other subscribers. The procedure of update for-

warding is described as follows:

First, each subscriber attaches a forwarding quota to its lookup query for each

of its view region. A subscriber’s forwarding quota is equal to its available bandwidth

divided by the size of an update, where the available bandwidth is the total bandwidth

subtracted by the bandwidth reserved for serving as a region host if it is. The forwarding

quota indicates how many recipients a subscriber can forward to under the one hop delay

constraint. A frame in FPS is no more than 150 ms and in RPG may be up to 180 ms

[30]. Within a frame, at most three steps – subscribing, update delivering, and update

forwarding should be completed. Thus, on average each step can use 1/3rd of the time,

and one hop delay is set to be 50 ms to satisfy both categories. The measurement

statistics of P2P online games in [21] confirm the feasibility of this setting, where more

than 80% one hop delay is less than or equal to 50 ms.

Second, after a region host collects the forwarding quota from all subscribers

137

of the region, it evenly distributes the forwarding quota to every object holder in this

region. Thus, the subscription list that a region host sends to each object holder in the

region includes all subscribers and their forwarding quota dedicated to the object.

Finally, after obtaining the subscription list, an object holder selects a subset

of subscribers as forwarders. It then sends update to each forwarder with a forward

list according to each forwarder’s quota. The number of forwarders is the maximum

number of recipients the object holder can send to under the one hop delay constraint.

Subscribers with larger forwarding quota are preferred when selecting forwarders.

Each region host evenly distributes the forwarding quota among object holders

because all objects in a region are subscribed as a whole and each object holder needs

the same amount of bandwidth for sending updates.

When more peers subscribe to a region, more forwarding quota is contributed

to sending updates about the region. Therefore, with the forwarding scheme, the amount

of bandwidth contribution is proportional to the demand for sending updates. Moreover,

our forwarding scheme avoids sending updates to non-subscribers. We only use one-hop

forwarding due to the extended delay and unreliability of multi-hop forwarding.

Temporary update bursts may congest region-hosts or object-holders. PPAct

provides a differentiated subscription service to adjust bandwidth consumption when

needed. Differentiation is applied to the frequency of receiving updates and the number

of objects to be subscribed. Specifically, when a region-host finds that updates cannot

be delivered to all subscribers on time, it halves the update delivery by dividing the

subscribers into two groups and sends updates to each group every two frames. Such

tuning is only applied as a temporary solution and the normal subscription is resumed

immediately after bursts.

138

7.2.4 Mapping Regions to Region Hosts

We select peers (i.e., players) to be candidate region hosts by using the scheme

presented in Section 7.3.2. Such candidate region hosts form a DHT, called candidate

host DHT. Each candidate host in the DHT has an ID, called candidate ID. Each region

also has an ID, called region ID. We use its x and y coordinates as its region ID to

preserve the locality of neighboring regions in the 2D-DHT.

When a region (x, y) needs a host, a candidate host is selected from the can-

didate host DHT by hashing the region ID (x, y) into a candidate ID. The candidate

host then becomes the host of the region (x, y) and uses the region ID (x, y) to join the

2D-DHT. If this newly selected host still has spare bandwidth satisfying the threshold

requirement defined in Section 7.3.2, it stays in the candidate host DHT. Otherwise, it

leaves the candidate host DHT.

A failed region host is replaced by a candidate host instead of using the DHT

failure handling in 2D-DHT to prevent a host from maintaining multiple neighboring

regions. Hot regions are always clustered together and can easily overload a host if they

share the same host. With new hosts selected from the candidate host DHT through

hashing, it is less possible for neighboring regions to share the same host.

The maintenance overhead of the candidate host DHT is low because only

stable nodes join it, and no extra communication or computation is needed.

7.2.5 Mapping Objects to Object Holders

Each object has an object ID, and each object holder has a holder ID. All

object holders form an object holder DHT. Each object has a primary copy, which is

maintained by its object holder. Avatars and NPCs are treated differently. The object

139

Table 7.1: A summary of region hosts and object holders

Region hosts Object holders

Major Track objects and Maintain object consistency
Functions players in a region. and send updates.

Workload Threshold selection, Subscribers help
Balance region assignment. forward updates.

Failure Replaced by a new host Follow the DHT
Handling from the candidate host DHT. failure handling.

holder of an avatar is its player since it is mostly accessed by its player. The object

holder of an NPC is selected from the object holder DHT by hashing the object ID.

When an avatar’s holder (i.e., its player) fails, we do nothing because the avatar is gone.

When an NPC’s holder fails, a new holder is selected according to the DHT failure

handling in the object holder DHT.

Maintenance overhead of the object holder DHT is low because only stable

peers join and no extra communication or computation is needed. Using the object

holder DHT to store object information takes advantage of DHT data replication and

failure handling to ensure availability of NPCs.

We use an uptime threshold to select reliable peers as object holders, which

form the object holder DHT. We use the update forwarding scheme (as described in

Section 7.2.3) to prevent a holder from being overloaded by sending updates about the

objects it holds.

7.2.6 Summary of Region Hosts and Object Holders

Table 7.1 summarizes the features of region hosts and object holders.

Figure 7.3 shows the procedure for selecting players to be region hosts or object

holders. We first assign each player as the object holder of its avatar. Then, we examine

each player using the region host selection scheme presented in Section 7.3. If it has

140

passed the selection threshold, it becomes a region host. Whether it is a region-host

or not, a player becomes an object holder of NPC when it is identified as stable and

has spare bandwidth. We use an uptime threshold to identify a stable player. If the

uptime of a player is above the threshold, the player is identified to be stable; otherwise,

it is unstable. The threshold for object holders is set to rule out the short-live unstable

players. If a player leaves the DHT only a short time after joining, failure recovery

overhead will outweigh its service. In simulation, we set the threshold for object holders

to 10 minutes based on the churn studies in [188, 87].

Figure 7.3: The procedure of selecting a region host and an object holder

7.3 Region-host Organization and Selection

In this section, we introduce how to organize regions into a 2-D DHT and how

to route lookup queries. We then analytically model the region host selection with both

reliability and capability threshold requirements.

7.3.1 Region Host DHT

Regions are organized into a multi-dimensional DHT that we use to process

real-time lookup queries, where the number of dimensions in the DHT equals to the

number of dimensions in the query attribute. As PPAct works on two-dimensional

141

geographic queries, we organize regions into a two-dimensional DHT (2D-DHT) with

two groups of DHTs, Gx and Gy. Gx is the group of DHTs built on x-axis, and Gy is

the group of DHTs built on y-axis. Each DHT in Gx(/Gy) is built on a set of regions

that share the same y(/x) coordinates. A region (x0, y0) is included in two DHTs, one

DHTx ∈ Gx with y = y0 and the other DHTy ∈ Gy with x = x0. Therefore, each

region-host has two routing tables: one is built for x-axis (DHTx) and the other is for

y-axis (DHTy).

Our 2D-DHT design provides fast lookups for players. This is because a region

host has leaf sets of DHTx and DHTy including all its neighboring regions along either

axis. In addition, the movements of players and objects in a game are mostly continuous.

Thus, relying on the last-time contacted region host, a lookup takes 2-hops for moving

vertically or horizontally and 3-hops for moving diagonally. The worst-case logarithmic-

hop lookup is only performed for rare non-continuous movement.

Graphically, DHTx is built on a row of regions with the same y coordinate as

the owner’s region and DHTy is built on a column of regions similarly. As shown in

Figure 7.4, routing from a source region A to a destination region B follows a horizontal

route in DHTx of A to a region C with yC = yA and xC = xB, then a vertical route in

DHTy of C to B.

The routing principles in 2D-DHT are the same as in the original DHT. We

choose a representative DHT overlay – Pastry [170] as the routing substrate in PPAct.

Pastry is widely used, for example, PAST [171] and SCRIBE [46] are built on top

of Pastry. The routing in a 2D-DHT consists of two continuous routes, one from a

DHTx ∈ Gx and the other from a DHTy ∈ Gy. An example is shown in Figure 7.5,

routing from the source region at (350, 479) to the destination region at (813, 648). Given

142

Figure 7.4: Routing from region host A to region host B

a total of N ∗M regions, a DHTx ∈ Gx is built on N region and a DHTy ∈ Gy is built on

M regions. In the worst case, a route to any region takes log(N)+log(M) = log(N ∗M)

hops. The total number of hops is the same as original DHT routing, independent of

the number of dimensions.

Figure 7.5: An example of PPAct routing

143

7.3.2 Analysis of Region-host selections

A sufficient level of DHT performance is ensured by maintaining overlay con-

nectivity. This requires that each DHT node should periodically probe other nodes,

perform content replication, and execute failure recovery when necessary. Reliable DHT

nodes reduce maintenance overhead. If a region host only serves a short time before

leaving, failure recovery overhead outweighs its service contribution. In addition, a re-

gion host should have enough bandwidth to send subscription lists to object holders on

time.

We propose a distributed scheme to select the most stable peers with adequate

bandwidth to be region hosts. We focus on selecting peers as candidate region hosts,

which form a candidate host DHT (called R-DHT). These candidate region hosts (i.e., R-

DHT nodes) are mapped to regions through hashing and join the 2D-DHT as described

in Section 7.2.4.

To estimate the number of qualified region hosts, we first analyze the distri-

bution of peers’ reliability and capability. Then, we set an appropriate threshold for

selection.

We consider a system with n players in steady-state. Each node switches

between two states: ON when the node gets online during its uptime and OFF when

the node goes offline during its downtime. A node’s uptime is the time interval between

joining and leaving. Its downtime is the time interval from departure to re-joining. U(·)

is the cumulative distribution function (CDF) of the node uptime, and ū is the average

uptime. D(·) is the CDF of the node downtime, and d̄ is the average downtime. A node’s

availability a is measured by the probability that a node is in the ON state, a = ū
ū+d̄

.

The expected number of nodes in the ON state is an.

144

We first examine nodes with expected uptime above T . The information about

the node uptime can be obtained either by sampling or by prediction techniques [149,

148]. Let n′ be the number of nodes above the threshold T and in their uptime, n′ ≤ n.

ρ = n′

an
represents the ratio of such nodes, 0 < ρ ≤ 1. U ′(·), D′(·), ū′, d̄′ and a′ represent

the counterpart attributes of the nodes with expected uptime above T as U(·), D(·), ū, d̄

and a of all nodes, respectively. Our analysis assumes a node maintains log(n′) overlay

connections which is the same as with the general DHT.

Measurement results [175, 130] demonstrate that node uptime is well modeled

by a long-tailed distribution. We adopt a shifted Pareto distribution to depict the

independence of node uptime as [214]. The probability density function (PDF) of node

uptime u(t) is shown in Equation 7.1, where α > 1, β > 0.

u(t) =
α

β
(1 +

t

β
)−(α+1) (7.1)

And the CDF of the node uptime U(t) is shown in Equation 7.2, where α >

1, β > 0.

U(t) = 1− (1 +
t

β
)−α (7.2)

The smaller value of α means a stabler system with longer node uptime. The

PDF of selected R-DHT node uptime u′(t) is derived in Equation 7.3.

u′(t) =

0 t < T

u(t)∫∞

t=T
u(t)dt

= (1 + T
β
)αu(t) t ≥ T

(7.3)

And the CDF of the selected R-DHT node uptime U ′(t) is derived in Equation

7.4.

145

U ′(t) =

0 t < T

U(t)−U(T)∫∞

t=T
u(t)dt

= (1 + T
β
)α(U(t)− U(T)) t ≥ T

(7.4)

The stability of the selected R-DHT nodes is measured by their average uptime

ū′ derived in Equation 7.5.

ū′ =

∫ ∞

t=T

t · u′(t)dt =
β + αT

α− 1
(7.5)

The higher the threshold T , the better the system stability ū′. This system stability

determines the frequency of maintenance probing and thus the expected overhead.

To calculate the ratio of selected R-DHT nodes over all nodes, we compute

the values of n′ and ρ as a function of the selection threshold T . According to Little’s

Law, the average number of nodes in a stable system equals their average arrival rate

multiplied by their average uptime in the system. Applying to all nodes in the ON state,

we get an = λū, where λ is the average arrival rates of nodes to the ON state. Applying

Little’s Law to the selected R-DHT nodes in the ON State, we get n′ = λ(1− U(T))ū′.

Substituting the variables an, n′, U(T) and using ū =
∫∞
t=0 t·u(t)dt =

β
α−1 , the percentage

of selected R-DHT nodes ρ is derived in Equation 7.6, which estimates how many players

are qualified for the threshold T .

ρ =
n′

an
= (1 +

T

β
)−α(1 +

α

β
T) (7.6)

Next, we examine nodes with bandwidth capacity above a threshold B. The

bandwidth consumption of a region-host comes from three aspects: R-DHT maintenance

workload B1, bandwidth reserved as the object-holder of its avatar B2, and bandwidth

reserved as a region-host B3. B = B1+B2+B3. PPAct sets probe frequency to be once

per average R-DHT node uptime, so that B1 = 1
ū′ log(n

′)pm, where pm is maintenance

146

packet size, and log(n′) is the number of overlay connections a R-DHT node maintains.

B2 changes with the number of subscribers to the object, and B3 changes with the

number of objects in the region. According to the traffic analysis in Figure 7.14, B2 and

B3 are empirically set to be 500Kb and 1Mb to satisfy basic demand. Update forwarding

and burst handling help deal with the dynamic workloads.

The ratio of nodes qualified for the bandwidth capacity threshold B is denoted

as µ. We analyze µ with capacity threshold B in the same way as we analyze ρ with the

reliability threshold T . The heterogeneous P2P node capacity is modeled by a bounded

Pareto distribution with lower bound L and upper bound H, representing the diverse

bandwidth from dial-up modem connections to cable connections. The PDF of the node

capacity f(x) is shown in Equation 7.7, where a node capacity is between upper and

lower bounds L ≤ x ≤ H, and the shape parameter is γ (γ > 0).

f(x) =
γLγx−γ−1

1− (L
H
)γ

(7.7)

The CDF of the node capacity F (x) is shown in Equation 7.8.

F (x) =
1− Lγx−γ

1− (L
H
)γ

(7.8)

Given there are total n nodes with bounded distribution from L to H, the num-

ber of nodes ranging from threshold B to H is (F (H)−F (B))n. Hence, the percentage

µ of nodes selected with capacity threshold B is in Equation 7.9.

µ =
(F (H)− F (B))n

n
=

(L
B
)γ − (L

H
)γ

1− (L
H
)γ

(7.9)

Finally, the number of R-DHT nodes qualified for both thresholds is n · ρ · µ.

Given the total N regions, PPAct sets the reliability threshold T ∗ as in Equation 7.10 to

147

get the best reliability constrained by that the total region-host bandwidth reservation

from all selected nodes is sufficient to serve all regions. The average bandwidth capacity

of the selected nodes is given by b̄′ =
∫ H

x=B
x · f(x)dx.

T ∗ = arg maxT s.t. nρµ(b̄′ −B1 −B2) ≥ N ∗B3 (7.10)

7.4 Performance Evaluation

7.4.1 Experimental Methodology

We developed a simulator to evaluate the efficiency of PPAct in FPS games

and RPGs.

Game Settings. Two game workload generators are developed: one for FPS

games and the other for RPGs. Game traffic characteristics are based on trace data

of Counter Strike [51] for FPS games and ShenZhou Online games [54] for RPGs, as

summarized in Table.7.2. The actions of the players and their movements in FPS games

are based on the networked game mobility model [193], which simulates the real FPS

player behaviors. Those in RPGs are extracted from the trace ShenZhou Online games

in [54], including both player-to-player and player-to-object interactions. The map sim-

ulated for FPS games takes an average peer 5 ∗ 103s to walk from one end to the other,

and that for RPGs takes an average of 5 ∗ 104s. The map is partitioned into 10 ∗ 10

regions in FPS games and 100 ∗ 100 regions in RPGs by default. These default values

were selected after careful evaluation of the impact of region size on performance, given

in Section 7.4.2.

Network Model. Each player is on an individual machine in a simulated

network, representing a general Internet player experience. We adopt the widely used

148

Table 7.2: A summary of game traces

Trace Counter Strike Shenzhou Online

Date Apr 11 2002 Aug 29 2004

Start Time 08:55 15:00

Period 7 d, 6 h, 1 m 20 h

Established Connections 16030 112369

Total Packets 500 M 1356 M

Mean Payload Size 32 bytes 32 bytes

Mean Packet Size 87 bytes 84 bytes

statistics of the player bandwidth capacity collected at U.S. Broadband report [2]. The

upload capacity of game players is shown in Figure 7.6, which is well approximated

by a Pareto distribution with a range from 256 Kb/s to 10 Mb/s. We simulate wide

geographic areas where players come from. The inter-player round-trip time (RTT) in

an n-player game is simulated by drawing n nodes from the Xbox 360 player data set

[127] that is spread over the Western United States. The mean, median, and standard

deviation of inter-player RTT of this data set are 81 ms, 64 ms, and 63 ms. Vivaldi 3D

coordination system [61] is used to extrapolate the RTT values between pairs of players

who did not probe each other in the data set. We use a two-state Gilbert model [83],

which models packet loss property of Internet paths, setting loss rate to 1% and mean

loss burst time to 100 ms.

Performance metric. We mainly use three metrics to measure performance

of PPAct in maintaining consistency for real-time games. The successful action rate is

the ratio of the number of actions completed over the total number of actions issued by

players. An action refers to an update that a player issued on an object. An action is

completed when the update is successfully received by the object holder on time. The

successful subscription rate is the ratio of the number of subscriptions received by object

holders over the total number of subscriptions requested by players. A subscription refers

149

0 %

20 %

40 %

60 %

80 %

100 %

10
0

10
1

10
2

10
3

10
4

C
D

F
 %

 o
f

m
a
c
h

in
e
s

Upload capacity (Kb/s)

Figure 7.6: CDF of peers’ upload capacities

to completion of step 1 and step 2 in Figure 7.1. A player requests a subscription to

each object in its view. The successful update rate is the ratio of the number of updates

received by subscribers over the total number of updates sent out by object holders. An

update refers to the completion of step 3 in Figure 7.1. We use 150-ms deadline for FPS

games and 180-ms for RPGs according to [30]. Each result shown in the figures is the

average of 50 rounds of simulations, and each round executes 5 ∗ 103s.

7.4.2 Evaluation Results

Scalability for FPS Games. We evaluate PPAct for FPS games compared

to Donnybrook [35], which is a seminal work on P2P managed FPS games. The success-

ful rates of actions, updates and subscriptions are shown in Figures 7.7, 7.8, 7.9. PPAct

outperforms Donnybrook in all three metrics. An important reason is that Donnybrook

requires every player to broadcast a guidance message to every other player each sec-

ond. Getting rid of the broadcast overhead, PPAct saves more bandwidth for delivering

updates, actions and subscriptions. Since the broadcast overhead grows exponentially

when the number of players increases, PPAct has more advantages over Donnybrook

when the system becomes larger.

150

Comparing results in Figures 7.7, 7.8, 7.9, the successful subscription rate is

the lowest of the three. This is because every time a subscription is sent to a different

region host, while actions and updates are sent to the same object holders or subscribers

until a subscription is changed. Thus, completing a subscription incurs an extra lookup

delay over completing an action or an update. The subscription performance is still

acceptable because of the constant hop lookup supported by both PPAct and Don-

nybrook. A Donnybrook subscription takes one hop because the broadcast lets every

node know all others. Most PPAct subscriptions take 2 or 3 hops as shown in Figure

7.10. Since players move continuously most of the times, a new region is adjacent to

the previously subscribed one. Such a subscription takes 2 hops in 2D-DHT. The 3 or

4 hops are caused by node churn, for another hop is taken to contact the new host.

PPAct achieves higher successful subscription rates than Donnybrook under node churn

because of overwhelming broadcast overhead in Donnybrook.

To maintain high success rates of actions and updates, we choose a larger

subscription area than the player’s view. As a result, when a player moves, most of the

new view regions intersect with previously subscribed regions. This masks subscription

delay.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

100
200

300
400

500
600

700
800

900
1,000

1,100

1,200

1,300

1,400

1,500

%
 a

ct
io

n
s

o
n

 t
im

e

of nodes

DonnyBrook
PPAct

Figure 7.7: Successful action rates in FPS games. Error bars show 95% confidence
intervals.

151

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

100
200

300
400

500
600

700
800

900
1,000

1,100

1,200

1,300

1,400

1,500

%
 u

p
d

at
es

 o
n

 t
im

e
of nodes

DonnyBrook
PPAct

Figure 7.8: Successful update rates in FPS games. Error bars show 95% confidence
intervals.

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

100
200

300
400

500
600

700
800

900
1,000

1,100

1,200

1,300

1,400

1,500

%
 s

u
b

sc
ri

p
ti

o
n

s
o

n
 t

im
e

of nodes

DonnyBrook
PPAct

Figure 7.9: Successful subscription rates in FPS games. Error bars show 95% confidence
intervals.

Scalability for RPGs. Since Donnybrook does not support NPCs in RPGs,

we compare with SimMud [116], a pioneering work on P2P managed RPGs. Both PPAct

and SimMud use region partitioning techniques and DHT routing. By default, the num-

ber of NPCs is 104. Figures 7.11, 7.12, 7.13 show that PPAct achieves significantly better

results than SimMud by all three metrics. This is because every SimMud region host

must be the object holder for all objects in that region, which may be overloaded easily.

PPAct separates the workload of region hosts from object holders to avoid overloading.

In addition, PPAct selects reliable and capable players to be region hosts as modeled in

Section 7.3.2, while SimMud randomly selects players to be region hosts. As a result,

the 2D-DHT in PPAct is more robust and efficient than the DHT in SimMud. As shown

in Figure 7.13, SimMud incurs a longer subscription delay than PPAct. This is because

SimMud organizes all players into one DHT, and a subscription takes logarithmic hops.

PPAct supports RPGs with both successful action rate and update rate above

152

Figure 7.10: Subscription hop counts in PPAct

98% up to 104 players. To our knowledge, it is the first one to support P2P managed

online games with tens of thousands players.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

 %
 a

c
ti

o
n
s

o
n
 t

im
e

 # of nodes

PPAct
SimMud

Figure 7.11: Successful action rates in RPGs. Error bars show 95% confidence intervals.

 0.50

 0.55

 0.60

 0.65

 0.70

 0.75

 0.80

 0.85

 0.90

 0.95

 1.00

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

%
 u

p
d
at

es
 o

n
 t

im
e

of nodes

PPAct
SimMud

Figure 7.12: Successful update rates in RPGs. Error bars show 95% confidence intervals.

Impacts of population density. Comparing the results in Figure 7.8 and

Figure 7.12, the scalability of PPAct is ten times more in RPGs than in FPS games. This

is because the density of players in a region is one tenth in RPGs than in FPS games,

but the region size is the same in both. The map in RPGs is 100 times larger than that

153

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000
%

 s
u
b
sc

ri
p
ti

o
n
s

o
n
 t

im
e

of nodes

PPAct
SimMud

Figure 7.13: Successful subscription rates in RPGs. Error bars show 95% confidence
intervals.

Figure 7.14: PPAct traffic analysis

in FPS games and the number of regions in RPGs is also 100 times more than that of

FPS games. When the player population grows 10 times with game map increasing 100

times, the population density becomes 1/10. The reduced population density results in

reduced update delivery overhead, which dominates overall traffic in PPAct as shown

in Figure 7.14. Increased scalability in PPAct is also a result of our dynamic workload

balance scheme. When serving the same 1000 players, the performance of SimMud in

RPGs as shown in Figure 7.12 is still lower than that of PPAct in FPS games as shown

in Figure 7.8, because SimMud does not handle the AOI “hot spot” problem. Thus,

addressing clustered workload of hot regions is critical to scalability.

Impacts of region size. Generally, there are trade-offs in using large regions

or small regions. Large regions speed up lookup and reduce query processing overhead,

as fewer regions cover the same view and fewer region hosts are queried. However, large

regions reduce granularity and accuracy of range query processing. Oversized regions

154

either waste resources for processing extra areas or provide insufficient views. Oversized

regions also increase workload imbalance, since hot areas are covered by a fewer number

of regions. To the contrary, small regions lower the workload of each region for better

workload balance. A host may choose to take charge of several small regions that are

unlikely to have simultaneous workload crowds. Whereas, small regions incur higher

lookup overhead and object hand-off overhead (i.e., the overhead incurred by switching

registration among regions when an object moves) because objects move across regions

more frequently.

We evaluate the impact of region size by partitioning the RPG map into 40∗40,

50 ∗ 50, and so on up to 300 ∗ 300 regions. The results are shown in Figures 7.15, 7.16,

7.17. Subscription rate in Figure 7.17 improves when the number of regions increases

from 40 ∗ 40 to 100 ∗ 100, and degrades with further increases. The improvement comes

from the decreased population density with smaller region size, while further reducing

region size imposes excessive subscription overhead when players move. However, the

degradation is only reflected in successful subscription rate. The successful action rate

and update rate are maintained high as in Figures 7.15, 7.16. Since subscription overhead

in PPAct is only a minor part of overall traffic as shown in Figure 7.14, we choose the

size of 100 ∗ 100 regions as the default region size in our simulations.

Impacts of object number. We evaluate the impact of number of mutable

objects by increasing the number of NPCs from 104 to 105 in RPGs with 104 players.

The results in Figures 7.18, 7.19, 7.20 show that the performance of PPAct degrades only

slightly while increasing the number of NPCs. This is because update delivery overhead

is mainly affected by the number of receivers for each update not the number of mutable

155

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

40*40

50*50

60*60

70*70

80*80

90*90

100*100

150*150

200*200

250*250

300*300

%
 a

c
ti

o
n

s
 o

n
 t

im
e

of regions

Figure 7.15: Successful action rates in RPGs with various scales of regions. Error bars
show 95% confidence intervals.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

40*40

50*50

60*60

70*70

80*80

90*90

100*100

150*150

200*200

250*250

300*300

%
 u

p
d

a
te

s
 o

n
 t

im
e

of regions

Figure 7.16: Successful update rates in RPGs with various scales of regions. Error bars
show 95% confidence intervals.

objects. The number of receivers per each update is reflected by the population density.

Therefore, even with an increased number of NPCs the overall traffic is in the same

order when the population density is kept the same.

Impacts of Churn. According to churn studies in different P2P applications

[188], we model the inter arrival time of players by a Weibull distribution with shape

parameter k = 0.6. We vary the scale parameter to simulate the average leave rate

ranging from 10% to 50%. Results under different churn rates do not have presentable

differences, so we do not show them separately. All our results are measured under an

156

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

40*40

50*50

60*60

70*70

80*80

90*90

100*100

150*150

200*200

250*250

300*300

%
 s

u
b

s
c
ri

p
ti

o
n

s
 o

n
 t

im
e

of regions

Figure 7.17: Successful subscription rates in RPGs with various scales of regions. Error
bars show 95% confidence intervals.

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

%
 a

c
ti

o
n

s
 o

n
 t

im
e

of objects

Figure 7.18: Successful action rates in RPGs with various scales of objects. Error bars
show 95% confidence intervals.

average leave rate of 25%. PPAct performs robustly against node churn because we

select reliable players as region hosts. We also observe that short lives of other players

do not have noticeable negative effect on overall performance.

157

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

%
 u

p
d

a
te

s
 o

n
 t

im
e

of objects

Figure 7.19: Successful update rates in RPGs with various scales of objects. Error bars
show 95% confidence intervals.

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

%
 s

u
b

s
c
ri

p
ti

o
n

s
 o

n
 t

im
e

of objects

Figure 7.20: Successful subscription rates in RPGs with various scales of objects. Error
bars show 95% confidence intervals.

158

Chapter 8

Conclusions

8.1 Contributions

This dissertation makes contributions in the area of P2P support for large-

scale user-interacvtive applications. Two key design issues are identified and addressed

to improve the scalability and performance of P2P interactive applications. The first

issue is how to incentivize users to contribute resources and prohibit free-riders so that

a P2P system can function reliably by aggregating resources from a large number of

unreliable users. And the second issue is how to provide consistency maintenance for

user-interactive applications with different requirements and constraints. In particular,

this dissertation makes the following contributions:

I. Satisfying the incentive demands for locating services in P2P systems.

Locating service providers for a requested service is one of the fundamental requirement

shared by all types of P2P applications. Due to the selfish nature of P2P users and

lack of central authorities, peers are not motivated to advertise their services to others

or to forward other peers’ queries for searching service providers. This dissertation

159

presented the first time incentive-aware search protocol BuSIS to efficiently locate service

providers. BuSIS provides differentiated search service to peers through associating each

query with a customized TTL, which is determined by a pre-paid credit budget. In

this way, peers who contribute more in helping other peers locating service providers

will earn more credits and afford higher budget for their queries to get better search

qualities. BuSIS also smoothes search traffic bursts because each peer needs to wait to

earn enough credits before issuing a query. Extensive emulations have been conducted

at large scale network scenarios to compare performance of BuSIS with flooding and

random walk searches with and without selfish user behaviors. The experimental results

show that BuSIS always has the lowest search overhead without sacrificing the hit rate.

When serving selfish users, flooding and random walk performance degrade dramatically,

while BuSIS gracefully keeps the hit rate only with 20% overhead of flooding and 25%

of random walk.

II. Meeting the incentive demands for providing services in P2P systems.

The selfish nature and lack of central authorities also make peers unwilling to contribute

in providing services to other peers. However, P2P systems rely on the coordination of

a large number of peers to contribute their services to the P2P community so that

their tasks can get completed through the service from the community. This reciprocity

principle is the key for P2P systems to function well. This dissertation proposed an

indirect reciprocity scheme, called FairTrade, in which peers issue personal currencies to

trade services in a P2P system. Personal currency enables indirect reciprocity without

relying on any central banks or authorities. It wins extra robustness over global currency

as well as much improved trading flexibility and efficiency over direct reciprocity schemes.

The acceptance degree of a personal currency depends on the issuer’s service capability

160

and reliance. Peer credit limit is introduced to represent the amount of personal currency

that will be accepted by other peers. Every peer as a creditor applies a Bayesian

network model to setting peer credit limit for a trading partner peer as a creditee. The

Bayesian network model learns the creditee’s capability and reliability and anticipates

the associated profits and risks for credit setting. Using simulations on a file-sharing

P2P system, we demonstrate that FairTrade achieves 100% success rate of download

requests without malicious peers, and maintains over 90% success rate even with 50%

malicious nodes. The system warms up quickly and does not assume any altruistic

service or other kind of help. On average, the system traffic stabilizes before peers

issue their second download requests. All these good performances are achieved with

extremely low trading overhead, which takes up less than 1% of the total traffic.

III. Addressing the practical issues in providing incentives in P2P systems.

Incentive protocols use reciprocity to enforce contribution. Indirect reciprocity schemes

are more efficient than direct reciprocity schemes for P2P systems with large popu-

lation size and high churn rate. However, they lack scalability due to either central

banks/brokers or high communication/storage overhead. Besides, they are often vul-

nerable to malicious attacks. This dissertation proposed an indirect reciprocity scheme,

called CoBank, which achieves distributed design, low overhead and strong robustness

at the same time. CoBank supports global currency based trading without requiring

any special infrastructure to mint currency or manage accounts. CoBank employs a

cooperative banking strategy, where the management of user accounts and transactions

is done through the cooperation of peers. To ensure account security, each user account

is decomposed into several parts stored at different nodes – account holders and each

transaction is performed at a third-party peer – transaction arbitrator. Replication

161

of account data and transaction arbitrator is used to enhance the system robustness.

CoBank is scalable because the communication overhead grows logarithmically with the

network size and the storage overhead at each node is a constant. It is also resistant to

the three types of attacks mentioned above. In addition, CoBank provides incentives for

peers to take part in our cooperative banking. The simulation results show that CoBank

has an order magnitude lower storage overhead than PledgeRoute [125], as well as much

lower communication overhead and latency. Moreover, CoBank maintains more than

90% transaction success rate with 10% of malicious nodes while PlegeRoute has around

65% success rate.

IV. Overcoming the obstacles to maintain consistency for a wide range of

P2P applications. A fundamental challenge of efficiently maintain data consistency

for P2P systems is to satisfy various application requirements with different resource

constraints. This dissertation presented a framework for balanced consistency main-

tenance (BCoM) in P2P systems with heterogeneous node capabilities and changing

workload patterns. Replica nodes of each object are organized into a tree structure

for disseminating updates, and a sliding window update protocol is developed for con-

sistency maintenance. An analytical model is presented to optimize the window size

according to the dynamic network conditions, workload patterns and resource limits.

In this way, BCoM balances the consistency strictness, object availability for updates,

and update propagation performance for various application requirements. On top of

the dissemination tree, two enhancements are proposed: (1) a fast recovery scheme to

strengthen the robustness against node and link failures, and (2) a node migration policy

to remove and prevent bottlenecks allowing more efficient update delivery. Simulations

are conducted using P2PSim to evaluate BCoM in comparison to SCOPE [55]. The

162

experimental results demonstrate that BCoM outperforms SCOPE with lower discard

rates. BCoM achieves a discard rate as low as 5% in most cases while SCOPE has

almost 100% discard rate.

V. Handling the real-time consistency maintenance for P2P applications.

An increasing number of P2P applications require real-time consistency maintenance to

provide high-quality user-interactive services. A core challenge is propagating updates

within stringent time constraints by only using the uplink bandwidth from individual

users instead of relying on dedicated servers. This dissertation presented a P2P system

called PPAct to provide consistency maintenance for real-time large-scale interactive

applications. Massive multi-player online games are used as example applications to

illustrate PPAct, but the design can be directly applied to other interactive applica-

tions. PPAct adopts the Area-of-Interest (AOI) filtering method, which is proposed in

prior works [36, 116] to reduce bandwidth consumption of update delivery. However,

PPAct solves AOI’s critical problems of bandwidth shortage in hot regions by dynami-

cally balancing the workload of each region in a distributed way. PPAct separates the

roles of view discovery from consistency maintenance by assigning players as “region

hosts” and “object holders”. Region hosts are in charge of tracking objects and players

within a particular region, and object holders are in charge of sending updates about a

particular object to interested players. Lookup queries for view discovery are processed

by region hosts, while consistency maintenance of objects are taken by object holders.

This separation distributes the workload and simplifies the lookup procedure and up-

date delivery. Another key idea in the paper is that peers contribute spare bandwidth

in a fully distributed way to forwarding updates about objects they are interested in.

Thus popular objects for which demands are higher will have more peers forwarding

163

updates for them. PPAct also presents how to select region hosts and object holders

with capability and reliability considerations. A P2P network simulator is developed to

evaluate PPAct on two major types of online games: role playing games (RPGs) and

first person shooter (FPS) games. The results demonstrate PPAct successfully supports

10000 players in RPGs and 1500 players in FPS games, outperforms SimMud [116] in

RPGs and Donnybrook [35] in FPS games by 40% and 30% higher successful update

rates respectively.

8.2 Future Directions

Incentive models for multiple co-exist P2P applications. In this dissertation,

all incentive models, including search and trading models, are focused on single P2P

applications, where the resources or services each user contribute is the same type. To

further encourage user participation and contribution, an incentive model for multiple

co-exist P2P applications are desired. With such incentive model, there are multiple

types of resources a user could contribute in order to get his/her requested services. Since

users have more flexibility and can choose their less desirable resources in exchange of

more scarce resources, P2P applications can attract more users and have large scalability.

The challenge is how to accurately estimate the exchange rate among different types of

resources based on changing workload and dynamic user behaviors.

Consistency maintenance for mobile P2P applications. In this dissertation, all

consistency maintenance models assume wired network communication. With more and

more advanced wireless technology, wireless P2P applications are increasingly popular

and important. Wireless P2P applications provide real-time communication in a more

convenient way, where wired network may not be available. For example, mobile P2P

164

evacuation systems can take advantage of users’ mobile devices in the emergency area

to collect live traffic in that area and identify shortest path in real-time. Such mobile

applications impose new challenges in consistency maintenance, such as more limited

energy resources and communication interference.

165

Bibliography

[1] Bit torrent. http://www.bittorrent.com/.

[2] Broadband report. http://www.dslreports.com.

[3] E. weaver. improving running components at twitter.
http://blog.evanweaver.com/2009/03/13/qcon-presentation/.

[4] emule peer-to-peer file sharing client. http://www.emule-project.net/.

[5] Face book. http://www.facebook.com/.

[6] Files tube. http://www.filestube.com/.

[7] Fips 180-1, secure hash standard. NIST, US Department of Commerce, Washing-
ton D.C., April 1995.

[8] Gnutella. http://www.rfc-gnutella.sourceforge.net/.

[9] Kazaa peer-to-peer file sharing client. http://www.kazaa.com/.

[10] My space. http://www.myspace.com/.

[11] Napster. http://www.napster.com/.

[12] P2PSim. http://pdos.csail.mit.edu/p2psim/.

[13] Ringtonia. http://www.ringtonia.com/.

[14] Roadcasting. http://www.roadcasting.org/.

[15] Scalable network technologies, inc. http://www.scalable-networks.com/.

[16] Title-trader, swap your stuff. http://www.titletrader.com/.

[17] XboxLIVE. http://www.xbox.com/en-US/live.

[18] Wireless LAN medium access control (MAC) and physical layer (PHY) specifica-
tions, 1999.

[19] E. Adar and B. Huberman. Free riding on gnutella. FirstMonday, 5(10), 2000.

[20] N. Adly, M. Nagi, and J. Bacon. A hierarchical asynchronous replication protocol
for large scale systems. In IEEE Workshop on Advances in Parellel and Distributed
Systems, 1993.

166

[21] S. Agarwal and J. R. Lorch. Matchmaking for online games and other latency-
sensitive P2P systems. In ACM SIGCOMM, 2009.

[22] P. Albitz and C. Liu. DNS and BIND, 4th Ed. O’Reilly Associates, Sebastopol,
CA, USA, 2001.

[23] C. Anderson. The Long Tail: Why the future of business is selling less of more.
New York: Hyperion, 2006.

[24] T. Anderson, Y. Breitbart, H. F. Korth, and A. Wool. Replication, consistency
and practicality: are these mutually exclusive. In ACM SIGMOD, 1998.

[25] Martin Angerer, Juergen Huber, Martin Shubik, and Shyam Sunder. An economy
with personal currency: theory and experimental evidence. Technical Report 1622,
Cowles Foundation, Yale University, 2007.

[26] Panayotis Antoniadis, Costas Courcoubetis, and Robin Mason. Comparing
economic incentives in peer-to-peer networks. COMPUTER NETWORKS,
46(1):1640–1650, 2004.

[27] C. Aperjis, M. J. Freedman, and R. Johari. Peer-assisted content distribution with
prices. In ACM CoNEXT, 2008.

[28] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud computing.
Communications of the ACM, 53, 2010.

[29] J. Aspnes and G. Shah. Skip graphs. ACM Trans. Algorithms, 3, 2007.

[30] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and M. Claypool.
The effects of loss and latency on user performance in unreal tournament 2003. In
NetGames, 2004.

[31] K. P. Berman and T. A. Joseph. Reliable communication in the presence of failures.
ACM Transactions on Computer Systems, 5(1):47–76, 1987.

[32] P. A. Bernstein and N. Goodman. The failure and recovery problem for replciated
database. In PODC, 1983.

[33] D. P. Bertsekas and R. G. Gallager. Data Networks. Englewood Cliffs, NJ:
Prentice-Hall, 1986.

[34] A. Bharambe, M. Agrawal, and S. Seshan. Mercury: supporting scalable multi-
attribute range queries. In ACM SIGCOMM, 2004.

[35] A. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda, J. Pang, S. Seshan, and
X. Zhuang. Donnybrook: Enabling large-scale, high-speed, peer-to-peer games. In
ACM SIGCOMM, 2008.

[36] A. Bharambe, J. Pang, and S. Seshan. Colyseus: A distributed architecture for
online multiplayer games. In NSDI, 2006.

[37] Nabhendra Bisnik and Alhussein Abouzeid. Modeling and analysis of random
walk search algorithms in P2P networks. In Second International Workshop on
Hot Topics in Peer-to-Peer Systems, 2005.

167

[38] Matt Blaze. Key management in an encrypting file system. In USENIX, 1994.

[39] B. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422–426, 1970.

[40] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz. The
harvest information discovery and access system. In Int’l WWW Conf., 1995.

[41] L. Breslau, P. Cao, G. Phillips L. Fan, and S. Shenker. Web caching and zipf-like
distributions: evidence and implications. In IEEE INFOCOM, 1999.

[42] Eric A. Brewer. Towards robust distributed systems. In ACM PODC, 2000.

[43] S. Buchegger, D. Schioberg, L. H. Vu, and A. Datta. Peerson: P2p social net-
working early experiences and insights. In EuroSys, 2009.

[44] Levente Buttyan and Jean-Pierre Hubaux. Nuglets: a virtual currency to stim-
ulate cooperation in self-organized mobile ad hoc networks. Technical Report
DSC/2001/001, Swiss Federal Institute of Technology - Lausanne, Lausanne,
Switzerland, 2001.

[45] P. Cao and C. Liu. Maintaining strong cache consistency in the world wide web.
In IEEE ICDCS, 1997.

[46] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. Scribe: A large scale and
decentralized application level multicast infrastructure. IEEE J-SAC, 20(8):1489–
1499, 2002.

[47] U. V. Catalyurek, E. G. Boman, K. D. Devine, D. Bozdag, R. Heaphy, and L. A.
Riesen. Hypergraph-based dynamic load balancing for adaptive scientific compu-
tations. In IEEE IPDPS, 2007.

[48] V. Cate. Alex – a global file system. In USENIX File Systems Workshop, 1992.

[49] Fabio Celli, F. Marta L. Di Lascio, Matteo Magnani, Barbara Pacelli, and Luca
Rossi. Social network data and practices: the case of friendfeed. In International
Conference on Social Computing, Behavioral Modeling and Prediction, 2010.

[50] R. Chakravorty, S. Agarwal, S. Banerjee, and I. Pratt. Mob: a mobile bazaar for
wide-area wireless services. In ACM MobiCom, 2005.

[51] Wu chang Feng, Francis Chang, Wu chi Feng, and Jonathan Walpole. A traffic
characterization of popular on-line games. IEEE/ACM TON, 13(3), 2005.

[52] A. Chankhunthod, P. Danzig, C. Neerdaels, M. F. Schwartz, and K. J. Worrell.
A hierarchical internet object cache. In USENIX Annual Technical Conference,
1996.

[53] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S. Shenker, and
J. Hellerstein. A case study in buliding layered dht applications. In ACM SIG-
COMM, 2005.

[54] K. T. Chen, P. Huang, and C. L. Lei. Game traffic analysis: an mmorpg perspec-
tive. Computer Networks, 51(3), 2006.

168

[55] X. Chen, S. Ren, H. Wang, and X. Zhang. Scope: scalable consistency maintenance
in structured P2P systems. In IEEE INFOCOM, 2005.

[56] S. Y. Cheung, M. H. Ammar, and M. Ahamad. The grid protocol: a high perfor-
mance scheme for maintainingreplicated data. IEEE Transaction on Knowledge
and Data Engineering, 4(6):582–592, 1992.

[57] M. J. Chin, S. Harvey, S. Jha, and P. V. Coveney. Scientific grid computing: the
first generation. Computing in Science and Engineering, 7, 2005.

[58] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong. Freenet: A distributed anony-
mous information storage and retrieval system. In DIAU, 2000.

[59] E. Cohen, B. Krishnamurthy, and J. Rexford. Improving end-to-end performance
of the web using server volumes and proxy filters. In ACM SIGCOMM, 1998.

[60] Richard Cole, Yevgeniy Dodis, and Tim Roughgarden. Pricing networks with
selfish routing.

[61] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized network
cooridante system. In ACM SIGCOMM, 2004.

[62] F. Dabek, M. F. Kaashoek, Karger D, R. Morris, and I. Stoica. Wide area coop-
erative storage with CFS. In USENIX Security Symp., 2000.

[63] A. Datta, M. Hauswirth, and K. Aberer. Updates in highly unreliable, replicated
peer-to-peer systems. In IEEE ICDCS, 2003.

[64] A. Datta, I. Soica, and M. Franklin. Lagover: latency gradated overlays. In IEEE
ICDCS, 2007.

[65] A. J. Demers, D. H. Greene, C. Hauser, W. Irish, and J. Larson. Epidemic algo-
rithms for replicated database maintenance. In PODC, 1997.

[66] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P. Shenoy. Adap-
tive push-pull: disseminating dynamic web data. In Int’l WWW Conf., 2001.

[67] D. J. Dietterich. Dec data distributor: For data replication and data warehousing.
In ACM SIGMOD, 1994.

[68] J. Dilley. The effect of consistency on cache response time. IEEE Transactions on
Networking, 14(3):24–28, 2000.

[69] J. R. Douceur. The sybil attack. In IEEE IPTPS, 2002.

[70] Debojyoti Dutta, Ashish Goel, Ramesh Govindan, and Hui Zhang. The design of
a distributed rating scheme for peer-to-peer systems. In Workshop on Economics
of Peer-to-Peer Systems, 2003.

[71] V. Duvvuri, P. Shenoy, and R. Tewari. Adaptive leases: a strong consistency
mechanism for the world wide web. In IEEE INFOCOM, 2000.

[72] C. Eikemeier and U. Lechner. Introducing domain specific ad-hoc collaboration:
the Peer-to-Peer tool iknow. In WETICE, pages 107–112, 2003.

169

[73] K.L. Calvert E.W. Zegura and S. Bhattacharjee. How to model an internetwork.
In IEEE INFOCOM, 1996.

[74] B. Fan, D. M. Chiu, and J. C. Lui. The delicate tradeoffs in bittorrent-like file
sharing protocol design. In IEEE ICNP, 2006.

[75] L. Fan, P. Cao, J. Almeida, and A.Z. Broder. Summary cache: a scalable wide-area
web cache sharing protocol. IEEE/ACM TON, 8(3):281–293, 2000.

[76] Daneil Figueiredo, Jonathan Shapiro, and Don Towsley. Incentives to promote
availability in peer-to-peer anonymity systems. In IEEE ICNP, 2005.

[77] I. Foster and C. Kesselman. The Grid: blueprint for a new computing infrastruc-
ture. Morgan Kaufmann Publishers, 1999.

[78] P. Ganesan, M. Bawa, and H. G. Molina. Online balancing of range-partition data
with applications to peer-to-peer systems. In VLDB, 2004.

[79] P. Ganesan, B. Yang, and H. Garcia-Molina. One torus to rule them all: Multidi-
mensional queries in P2P systems. In WebDB, 2004.

[80] J. Gao and P. Steenkiste. An adaptive protocol for efficient support of range
queries in dht-based systems. In IEEE ICNP, 2004.

[81] Antonio Garcia-Martinez and Michal Feldman. Gnushare: enforcing sharing in
gnutella-style peer-to-peer networks. Technical report, Unervisity of California,
Berkeley, CA, 2002.

[82] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman, 1979.

[83] E. N. Gilbert. Capacity of a burst-noise channel. The Bell System Technical
Journal, 39, 1960.

[84] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. In ACM PODC, 2002.

[85] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in peer-to-peer networks.
In IEEE INFOCOM, 2004.

[86] C. Gkantsidis, M. Mihail, and A. Saberi. Hybrid search schemes for unstructured
peer-to-peer networks. In IEEE INFOCOM, 2005.

[87] P. B. Godfrey, S. Shenker, and I. Stoica. Minimizing churn in distributed systems.
In ACM SIGCOMM, 2006.

[88] R. A. Golding. Weak consistency group communication and membership. PhD
thesis, UC Santa Cruz, 1992.

[89] P. Golle, K. L. Brown, and I. Mironov. Incentives for sharing in Peer-to-Peer
networks. In ACM EC, 2001.

[90] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Keleher. Adaptive repli-
cation in peer-to-peer systems. In IEEE ICDCS, 2004.

170

[91] J. Grey, P. Helland, P. O’Neil, and D. Shasha. The dangerous of replciation and
a solution. In ACM SIGMOD, 1996.

[92] R. Guerraoui, D. Kostic, R. R. Levy, and V. Quema. A high throughput atomic
storage algorithm. In IEEE ICDCS, 2007.

[93] K.P. Gummadi, R.J. Dunn, S. Saroiu, S. Gribble, H.M. Levy, and J. Zahorjan.
Measurement, analysis, and modeling of a peer-to-peer file-sharing workload. In
ACM SOSP, 2003.

[94] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. King: Estimat-
ing latency between arbitrary internet end hosts. In ACM SIGCOMM Internet
Measurement Workshop (IMW ’02).

[95] A. Gupta and L. Ying. On algorithms for finding maximum matchings in bipartite
graphs. Technical Report 21576(97320), IBM T. J. Watson Research Center,
Yorktown Heights, NY, 1999.

[96] R. J. Guy, G. J. Popek, and T. W. Page. Consistency algorithms for optimistic
replication. In IEEE ICNP, 1993.

[97] M. Ham and G. Agha. Ara: A robust audit to prevent free-riding in P2P networks.
In IEEE P2P, 2005.

[98] G. Hardin. The tragedy of the commons. Science, 162, 1968.

[99] M. P. Herlihy and J. M. Wing. Linearlizability: A correctness condition for con-
current objects. ACM Trans Programm. Lang. Syst., 12(3):463–492, 1990.

[100] R. Hill and R. Dunbar. Social network size in humans. Human Nature, 14(1):53–
72, 2002.

[101] Y. Hu, L. N. Bhuyan, and M. Feng. Maintaining data consistency in structured
P2P systems. IEEE Transactions on Parallel and Distributed Systems, 2012.

[102] Y. Hu, L. N. Bhuyan, and M. Feng. P2P consistency support for large scale
interactive applications. Computer Networks, 56, 2012.

[103] Y. Hu, L. N. Bhuyan, and M. Feng. P2P indirect reciprocity via personal currency.
Journal of Parallel and Distributed Computing, 72, 2012.

[104] Y. Hu, L. N. Bhuyan, and M. Feng. Cooperative banking assisted P2P incentive
design. In submission.

[105] Y. Hu, M. Feng, and L. N. Bhuyan. A balanced consistency maintenance protocol
for structured P2P systems. In IEEE INFOCOM mini conference, 2010.

[106] Y. Hu, M. Feng, L. N. Bhuyan, and V. Kalogeraki. Budget-based self-optimized
incentive search in unstructured P2P networks. In IEEE INFOCOM, 2009.

[107] H. Innoue, K. Kanchanasut, and S. Yamaguchi. An adaptive www cache mecha-
nism in the a13 network. In INET’97, 1997.

[108] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: a decentralized peer-to-peer web
cache. In ACM PODC, 2002.

171

[109] J. R. Jiang, C. T. King, and C. H. Liao. Murex: a mutable replica control schmeme
for structured peer-to-peer storage systems. Advances in Grid and Pervasive Com-
putings, 3947(3):93–102, 2006.

[110] J. Jung, A. W. Berger, and H. Balakrishnan. Modeling TTL-based internet caches.
In IEEE Infocom, 2003.

[111] P. Kalnis, W.S. Ng, B.C. Ooi, D. Papadias, and K-L Tan. An adaptive peer-to-peer
network for distributed caching of olap results. In ACM SIGMOD, 2002.

[112] Ar D. Kamvar, M. T. Schlosser, and H. Garcia-molina. Incentives for combatting
freeriding on P2P networks. In EURO-PAR, 2003.

[113] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The eigen-
trust algorithm for reputation management in P2P networks. In WWW, 2003.

[114] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. Consistent hashing and random trees: distributed caching protocols
for relieving hot spots on the world wide web. In ACM STOC, 1997.

[115] A. M. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel. The icecube ap-
proach to the reconciliation of divergent replicas. In ACM Symposium on Princi-
ples of Distributed Computing, 2001.

[116] B. Knutsson, W. Xu H. Lu, and B. Hopkins. Peer-to-peer support for massively
multiplayer games. In IEEE INFOCOM, 2004.

[117] N. Krishnakumar and A. Bernstein. Bounded ignorance: A technique for increas-
ing concurrency in a replicated system. ACM TODC, 19(4), 1994.

[118] B. Krishnamurthy and C. E. Wills. Study of piggyback cache validation for proxy
caches in the world wide web. In USENIX Symposium on Internet Technology and
Systems, 1997.

[119] B. Krishnamurthy and C. E. Wills. Piggyback server invalidation for proxy cache
coherence. In WWW 7 Conference, 1998.

[120] B. Krishnamurthy and C. E. Wills. Proxy cache coherency and replacement -
towards a more complete picutre. In ICDC99, 1999.

[121] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, and D. Geels.
Oceanstore: an architecture for global-scale persistent storage. In ACM ASPLOS-
IX, 2000.

[122] A. Kumar. Hierarchical quorum consensus: a new algorithm for managingrepli-
cated data. IEEE Transaction on Computers, 40(9):996–1004, 1991.

[123] K.W. Kwong and H.K. Tsang. A congestion-aware search protocol for hetero-
geneous peer-to-peer networks. The Journal of Supercomputing, 36(3):265–282,
2006.

[124] J. Lam, X. Liu, P. Shenoy, and K. Ramamritham. Consistency maintenance in
peer-to-peer file sharing networks. In IEEE WIAPP, 2003.

172

[125] R. Landa, D. Griffin, R. G. Clegg, E. Mykoniati, and M. Rio. A sybilproof indirect
reciprocity mechanism for Peer-to-Peer networks. In IEEE INFOCOM, 2009.

[126] Karl Reiner Lang and Roumen Vragov. A pricing mechanism for digital content
distribution over computer networks. J. Manage. Inf. Syst., 22, 2005.

[127] Y. Lee, S. Agarwal, C. Butcher, and J. Padhye. Measurement and estimation of
network qos among peer xbox 360 game players. In PAM, 2008.

[128] A. Legout, N. Liogkas, E. Kohler, and L. Zhang. Clustering and sharing incentives
in bittorrent systems. In ACM SIGMETRICS, 2007.

[129] F.T. Leighton. A graph coloring algorithm for large scheduling problems. Journal
of Research of the National Bureau of Standards, 84, 1979.

[130] D. Leonard, V. Rai, and D. Loguinov. On lifetime-based node failure and stochastic
resilience of decentralized peer-to-peer networks. In IEEE SIGMETRICS, 2005.

[131] Cuihong Li, Bin Yu, and Katia Sycara. An incentive mechanism for message
relaying in unstructured peer-to-peer systems. In IFAAMAS, 2007.

[132] D. Li and R. Li. Ensuring content and intention consistency in real-time group
editors. In IEEE ICDCS, 2004.

[133] M. Li and W.C. Lee. Identifying frequent items in P2P systems. In IEEE ICDCS,
2008.

[134] Mingmei Li, Eiji Kamioka, and Shigeki Yamada. Pricing to stimulate node coop-
eration in wireless ad hoc networks. IEICE TRANS. COMMUN., E90-B(7):1640–
1650, 2007.

[135] X. Li and J. Wu. Improve searching by reinforcement learning in unstructured
P2Ps. In ICDCSW, 2006.

[136] Z. Li, G. Xie, and Z. Li. Efficient and scalable consistency maintenance for het-
erogeneous peer-to-peer systems. IEEE TPDS, 19(12):1695–1708, 2008.

[137] N. Liebau, V. Darlagiannis, O. Heckmann, and R. Steinmetz. Asymmetic incen-
tives in Peer-to-Peer systems. In AMCIS, 2005.

[138] X. Liu, J. Lan, P. Shenoy, and K. Ramaritham. Consistency maintenance in
dynamic peer-to-peer overlay networks. Computer Networks, 50(6):859–876, 2006.

[139] Y. Liu, X. Liu, L. Xiao, L. Ni, and X. Zhang. Location-aware topology matching
in P2P systems. In IEEE INFOCOM, 2004.

[140] Z. Liu, H. Hu, Y. Liu, K. W. Ross, Y. Wang, and M. Mobius. P2P trading in
social networks: the value of staying connected. In IEEE INFOCOM, 2010.

[141] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shanker. Search and replication in unstruc-
tured peer-to-peer networks. In ACM International Conference on Supercomput-
ing, 2002.

[142] Richard T.B. Ma, Same C.M. Lee, John C.S Lui, and David K.Y. Yau. An
incentive mechanism for P2P networks. In IEEE ICDCS, 2004.

173

[143] Richard T.B. Ma, Same C.M. Lee, John C.S Lui, and David K.Y. Yau. In-
centive and service differentiation in P2P networks: a game theoretic approach.
IEEE/ACM Transaction on Networking, 14(5):978–991, 2006.

[144] E. P. Markatos and C. E. Chronaki. A top 10 approach for prefetching the web.
In INET’98, 1998.

[145] T. F. Martell and R. L. Fitts. A quadratic discriminant analysis of bank credit
card user characteristics. Journal of Economics and Business, 33, 1981.

[146] Sergio Marti, T.J. Giuli, Kevin Lai, and Mary Baker. Mitigating routing misbe-
havior in mobile ad hoc networks. In The 6th annual international conference on
Mobile computing and networking , 2000.

[147] D. S. Menasche, L. Massoulie, and D. Towsley. Reciprocity and barter in Peer-to-
Peer system. In IEEE INFOCOM, 2010.

[148] J. Mickens and B. Noble. Predicting node availability in peer-to-peer networks.
In SIGMETRICS POSTER, 2005.

[149] J. Mickens and B. Noble. Exploiting availability prediction in distributed systems.
In NSDI, 2006.

[150] D.S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard,
S. Rollines, , and Z. Xu. Peer-to-peer computing. Technical Report HPL-2002-
57(R.1), HP Laboratories Palo Alto, CA, 2003.

[151] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy: a read/write peer-
to-peer file system. ACM SIGOPS Operating Systems Review, 36(SI):31–44, 2002.

[152] G. Oster, P. Urso, P. Molli, and A. Imine. Data consistency for P2P collaborative
editing. In CSCW, 2006.

[153] V. N. Padmanabhan and J. C. Mogul. Using predictive prefetching to improve
world wide web latency. In ACM SIGCOMM, 1996.

[154] Jaeok Park and Mihaela van der Schaar. Pricing and incentives in peer-to-peer
networks. In IEEE INFOCOM, 2010.

[155] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers.
Flexible update propagation for weakly consistent replication. In ACM SOSP,
1997.

[156] M. Piatek, T. Anderson, and A. Krishnamurthy. A case for holistic incentive
design. In Workshop on Future Directions in Distributed Computing, 2007.

[157] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkataramani. Do
incentives build robustness in bittorrent? In NSDI, 2007.

[158] M. Piatek, A. Krishnamurthy, A. Venkataramani, R. Yang, D. Zhang, and A. Jaffe.
Contracts: Practical contribution incentives for p2p live streaming. In NSDI, 2010.

[159] G. Pierre, M. V. Steen, and A. S. Tanenbaum. Dynamically selecting optimal dis-
tribution strategies for web documents. IEEE Transaction on Computer, 51(6):1–
15, 2002.

174

[160] D. Pittman and C. G. Dickey. A measurement study of virtual populations in
massively multiplayer online games. In NetGames, 2007.

[161] C.G. Plaxton, R. Rajaraman, and A.W. Richa. Accessing nearby copies of repli-
cated objects in a distribute environment. In ACM SPAA, 1997.

[162] M. Probst, J. C. Park, R. Abraham, and S. K. Kasera. Socialswarm: Exploiting
distance in social networks for collaborative flash file distribution. In IEEE ICNP,
2010.

[163] Lili Qiu, Yang Richard Yang, Yin Zhang, and Scott Shenker. On selfish routing
in internet-like environments. In ACM SIGCOMM ’03.

[164] M. Rabinovich, N. H. Gehani, and A. Kononov. Efficient update propagation in
epidemic replicated databases. In EDBT, 1996.

[165] M. Rabinovich, I. Rabinovich, R. Rajaraman, and A. Aggarwal. A dynamic object
replication and migration protocol for an internet hosting service. In IEEE ICDCS,
1999.

[166] V. Ramasubramanian and E. G. Sirer. Beehive: exploiting power law query dis-
tribution for o(1) lookup performance in peer-to-peer overlays. In NSDI, 2004.

[167] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable
content-addressable network. In ACM SIGCOMM, 2001.

[168] M. Ripeanu, A. Iamnitchi, and I. Foster. Mapping the gnutella network: properties
of large scale peer-to-peer systems and implications for system design. In IEEE
Internet Computing, 2002.

[169] T. Roscoe. The planetlab platform. Peer-to-Peer Systems and Applications, 3483,
2005.

[170] A. Rowstron and P. Druschel. Pastry: scalable, distributed object location and
routing for large-scale peer-to-peer systems. In International Conference on Dis-
tributed Systems Platforms, 2001.

[171] A. Rowstron and P. Druschel. Storage management and caching in past, a large-
scale, persistent peer-to-peer storage utility. In ACM SOSP, 2001.

[172] S. Sahi and S. Yao. The noncooperative equilibria of a trading economy with
complete markets and consistent prices. Journal of Mathematical Economics, 18,
1989.

[173] Y. Saito and M. Shapiro. Optimistic replication. ACM Computing Surveys, 5(3):1–
44, 2005.

[174] S. Saroiu, P. Gummadi, and S. Gribble. A measurement study of peer-to-peer file
sharing systems. In Multimedia Computing and Networking, 2002.

[175] S. Saroiu, P. Gummadi, and S. Gribble. A measurement study of peer-to-peer file
sharing systems. In ACM MMCN, 2002.

175

[176] Nima Sarshar, P. Oscar Boykin, and Vwani P. Roychowdhury. Percolation search
in power law networks: making unstructred peer-to-peer networks scalable. In
IEEE Computer Socienty P2P, 2004.

[177] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, and
D. C. Steere. Coda: a highly available file system for a distributed workstation
environment. IEEE Transactions on Computers, 39(4):447–459, 1990.

[178] M.T. Schlosser, M. Sintek, S. Decker, and W. Nejdl. Hypercup - hypercubes,
ontologies, and efficient search on peer-to-peer networks. In AP2PC, 2002.

[179] S. Sen and J. Wang. Analyzing peer-to-peer traffic across large networks. In ACM
SIGCOMM Internet Measurement Workshop, 2002.

[180] S. Seuken, D. Charles, M. Chickering, and S. Puri. Market design analysis for a
P2P backup system. In ACM Conference on Electronic Commerce, pages 97–108,
2010.

[181] H. Shen and C.Z. Xu. Elastic routing table with provable performance for conges-
tion control in dht networks. In IEEE ICDCS, 2006.

[182] M. Sirivianos, J.H. Park, X.W. Yang, and S. Jarecki. Dandelion: Cooperative
content distribution with robust incentives. In USENIX, pages 157–170, 2007.

[183] S. Sorin. Strategic market games with exchange rates. Journal of Economic
Theory, 69, 1996.

[184] H. Spencer and D. Lawrence. Managing Usenet. O’Reilly Associates, Sebastopol,
CA, USA, 1998.

[185] K. Sripanidkulchai, B. M. Maggs, and H. Zhang. Effieicent content location using
interest-based locality in Peer-to-Peer systems. In IEEE INFOCOM, 2003.

[186] H. Stern, M. Eisley, and R. Labiaga. Managing NFS and NIS, 2nd Ed. O’Reilly
Associates, Sebastopol, CA, USA, 2001.

[187] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek, F. Dabek,
and H. Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for internet
applications. In ACM SIGCOMM’01, 2001.

[188] D. Stutzbach and R. Rejaie. Understanding churn in Peer-to-Peer networks. In
ACM IMC, 2006.

[189] A. J. Su, D. R. Choffnes, A. Kuzmanovic, and F. E. Bustamante. Drafting behind
akami travelocity based detouring. In Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, 2006.

[190] Swaminathan Sundaramurthy and Elizabeth M. Belding-Royer. The ad-mix pro-
tocol for encouraging participation in mobile ad hoc networks. In IEEE ICNP,
2003.

[191] S. Susarla and J. Carter. Flexible consistency for wide area peer replication. In
IEEE ICDCS, 2005.

176

[192] K. Tamilmani, V. Pai, and A. Mohr. Swift: A system with incentives for trading.
In P2P Econ, 2004.

[193] S. A. Tan, W. Lau, and A. Loh. Networked game mobility model for fist-person-
shooter games. In NetGames, 2005.

[194] X. Tang, J. Xu, and W. C. Lee. Analysis of TTL-based consistency in unstructured
peer-to-peer networks. IEEE TPDS, 19(12):1683–1694, 2008.

[195] Y. Tang, J. Xu, S. Zhou, and W. C. Lee. m-light: indexing multi-dimensional
data over dhts. In IEEE ICDCS, 2009.

[196] E. Tanin, A. Harwood, and H. Samet. Using a distributed quadtree index in
peer-to-peer networks. VLDB J., 16(2), 2007.

[197] Wesley W. Terpstra, Jussi Kangasharju, Chiristof Leng, and Alejandro P. Buch-
mann. Bubblestrom: resilient, probabilistic, and exhuastive peer-to-peer search.
In ACM SIGCOMM, 2007.

[198] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M. Theimer, and B. B.
Welch. Session gaurantees for weakly consistent replicated data. In ACM PDIS,
1994.

[199] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and
C. H. Hauser. Managing update conflicts in bayou, a weakly connected replicated
storage system. In ACM SOSP, 1995.

[200] S. Tewari and L. Kleinrock. Proportional replication in peer-to-peer networks. In
IEEE INFOCOM, 2006.

[201] S. A. Theotokis and D. Spinellis. A survey of peer-to-peer content distribution
technologies. ACM Computer Surveys, 36(4):335–371, 2004.

[202] Lyn C. Thomas. A survey of credit and behavioural scoring: forecasting financial
risk of lending to consumers. International Journal of Forecasting, 16, 2000.

[203] A. Thomasian. Two-phase locking performance and its thrashing behavior. ACM
Transactions on Database Systems, 18(4):578–625, 1993.

[204] Y. Tian, D. Wu, and K.W. Ng. Modeling, analysis and improvement ofr bittorrent-
like file sharing networks. In IEEE INFOCOM, 2006.

[205] F. J. Torres-Rojas, M. Ahamad, and M. Raynal. Timed consistency for shared
distributed objects. In ACM Symposium on Principles of Distributed Computing,
1999.

[206] G. Urdaneta, G. Pierre, and M. V. Steen. A decentralized wiki engine for collab-
orative wikipedia hosting. In WEBIST, 2007.

[207] Hal R. Varian. Microeconomic Analysis. W. W. Norton Company, New York,
U.S., 1992.

[208] M. Varvello, C. Diot, and E. Biersack. P2P second life: experimental validation
using Kad. In IEEE INFOCOM, 2009.

177

[209] Vijay V. Vazirani. Approximation Alogrithm (2nd ed.). Springer, Berlin, Germany,
2003.

[210] C. Vecchiola, S. Pandey, and R. Buyya. High-performance cloud computing: a
view of scientific applications. In I-SPAN, 2009.

[211] V. Vishnumurthy, S. Chandrakumar, and E.G. Sirer. Karma: A secure economic
framework for Peer-to-Peer resource sharing. In P2P Econ, 2003.

[212] M. Waldman, A. D. Rubin, and L. F. Cranor. Publius: A robust, tamper-evident,
censorship-resistant web-publishing systems. In USENIX Security Symp., 2000.

[213] C. Wang, L. Xiao, Y. Liu, and P. Zheng. Distributed caching and adaptive search
in multilayer P2P networks. In IEEE ICDCS’04.

[214] C. C. Wang and K. Harfoush. On the stability-scalability tradeoff of dht deploy-
ment. In IEEE INFOCOM, 2007.

[215] F. Wang, J. Liu, and Y. Xiong. Stable peers: existence, importance, and applica-
tion in peer-to-peer live video streaming. In IEEE INFOCOM, 2008.

[216] J. Wang. A survey of web caching schemes for the internet. ACM SIGCOMM
Computer Communication Review, 29(5):36–46, 1999.

[217] Wei Zhao Wang, Xiang-Yang Li, and Zheng Sun. Design differentaited service mul-
ticast with selfish agents. IEEE Selected Areas in Communications, 24(5):1061–
1073, 2006.

[218] Weihong Wang and Baochun Li. Market-based self-optimization for autonomic
service overlay networks. IEEE JOURNAL ON SELECTED AREAS IN COM-
MUNICATION, 23(12):2320–2332, 2005.

[219] Win Wang and Henning Schulzrinne. Pricing network resources for adaptive ap-
plications in a differentiated services network. In IEEE INFOCOM, 2001.

[220] Z. Wang, S. K. Das, M. Kumar, and H. Shen. An efficient update propagation
algorithm for P2P systems. Computer Communications, 30(5):1106–1115, 2007.

[221] Z. Wang, M. Kumar, S.K. Das, and H. Shen. File consistency maintenance through
virtual servers in P2P systems. In IEEE ISCC, 2006.

[222] H. Weatherspoon, B. G. Chun, C. W. So, and J. Wubiatowicz. Longterm data
maintenance in wide-area storage systems: a quantitative approach. Technical
Report CSD-05-1404, UC Berkeley, Berkeley, CA, USA, 2005.

[223] K. Wei, Y-F. Chen, A. J. Smith, and B. Vo. Whopay: A scalable and anonymous
payment system for Peer-to-Peer environments. In IEEE ICDCS, 2006.

[224] M. F. Wong and P. Marbach. Who are your firends? - a simple mechanism that
achieves perfect network formation. In IEEE INFOCOM Mini Conference, 2011.

[225] C. Wu, B. Li, and S. Zhao. Multi-channel live P2P streaming: refocusing on
servers. In IEEE INFOCOM, 2008.

178

[226] B. Yang and H. Garcia-Molina. Ppay: Micropayments for Peer-to-Peer systems.
In ACM CCS, 2003.

[227] J. H. Yang and Y. L. Chen. A social network based system for supporting in-
teractive collaboration in knowledge sharing over Peer-to-Peer network. IJHCS,
66:36–50, 2008.

[228] Q. Yang, G. Thangadurai, and L.N. Bhuyan. Design of an adaptive cache coher-
ence protocol for large scale multiprocessors. IEEE TPDS, 3(3):281–293, 1992.

[229] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. Sybilguard: defending
against sybil attack via social networks. In ACM SIGCOMM, 2006.

[230] H. Yu and A. Vahdat. Design and evaluation of a continuous consistency model
for replicated services. In OSDI, 2000.

[231] H. Yu and A. Vahdat. The costs and limits of availability for replicated services.
In ACM SOSP, 2001.

[232] H. Yu and A. Vahdat. The costs and limits of availability for replicated services.
ACM TOCS, 24(1):70–113, 2006.

[233] Manaf Zghaibeh and Kostas G. Anagnostakis. On the impact of P2P incentive
mechanism on user behavior.

[234] C. Zhang, A. Krishnamurthy, and R. Y. Wang. Brushwood: Distributed trees in
peer-to-peer systems. In IEEE IPTPS, 2005.

[235] C. Zhang and Z. Zhang. Trading replication consistency for performance and
availability: an adaptive approach. In IEEE ICDCS, 2003.

[236] Z. Zhang, S. Chen, and M. Yoon. March: A distributed incentive schemes for
Peer-to-Peer networks. In IEEE INFOCOM, 2007.

[237] B. Q. Zhao, C. S. Lui, , and D. M. Chiu. Analysis of adaptive incentive protocols
for P2P networks. In IEEE INFOCOM, 2009.

[238] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D. Kubiatowicz.
Tapestry: a resilient global-scale overlay for service deployment. IEEE J-SAC,
22(1):41–53, 2004.

[239] M. Zhao and R. J. Figueiredo. Application-tailored cache consistency for wide-area
file systems. In IEEE ICDCS, 2006.

[240] C. Zheng, G. Shen, S. Li, , and S. Shenker. Distributed segment tree: Support
of range query and cover query over dht. In Fifth International Workshop on
Peer-to-Peer Systems IPTPS, 2006.

[241] Sheng Zhong and Fan Wu. On designing collusion-resistent routing schemes for
non-cooperative wireless ad hoc networks. In ACM MobiCom, 2007.

179

