
978-1-4244-5605-5/09/$26.00 c©2009 IEEE

Peer-to-Peer Support for Low-Latency
Massively Multiplayer Online Games in the Cloud

Richard Süselbeck, Gregor Schiele and Christian Becker
Universität Mannheim, Germany

{ richard.sueselbeck | gregor.schiele | christian.becker }@uni-mannheim.de

Abstract—Cloud gaming has recently been proposed as an
alternative to traditional video game distribution. With this
approach, the entire game is stored, run and rendered on a
remote server. Player input is forwarded to the server via the
Internet and the game’s output is returned as a video stream.
This adds network delay, which can negatively impact the
gameplay. The delay is acceptable as long as the user is located
geographically close to the cloud servers. However, for Massively
Multiplayer Online Games (MMOGs), this delay is added on
top of the existing delay between MMOG client and server. As
MMOGs are highly delay-sensitive, this can significantly degrade
their playability. To deal with this issue, we propose to use peer-
to-peer techniques to distribute the MMOG server functionality
and place it at the cloud server centers. This allows us to reduce
the additional delay introduced by running the MMOG clients
in the cloud.

I. INTRODUCTION

Cloud gaming has recently been proposed as an alternative
to traditional video game platforms. In this type of cloud
computing, the player’s input is forwarded to a remote server,
where the game is stored, run and rendered. The rendered
images are streamed to the user as a video over a broadband
internet connection. This means the player no longer needs to
own powerful, up-to-date gaming hardware such as a video
game console or high-end PC to play current games. Even
the most hardware-demanding games can be played using
hardware just powerful enough to decode the video stream.
Such hardware can be a specialized ”micro-console” or a
standard home PC, where games can be accessed in the cloud
via a special client or even the web browser. In addition, this
provides an alternative distribution channel for games, which
is not based on physical media or software downloads.

While this approach has several advantages, it also intro-
duces network delay between a player’s controller input and
the game’s response. As video games are highly interactive
systems, the player must therefore be located geographically
close to the server that runs the game. OnLive [2], one of
several companies currently preparing a cloud gaming serving
for launch, have stated that that a good gameplay experience
requires the client to be located within 1000 miles of the server
where the game is run and rendered [1]. If the player is located
too far away, the network delay becomes too large and the
gameplay experience suffers or the game becomes unplayable.
As a consequence, a cloud gaming service needs a number of
geographically distributed server centers in order to keep delay
acceptable for all players.

When running an MMOG in the cloud, the delay introduced
by running the client on a remote server is added to the
delay generated by communicating with the MMOG server. A
player’s actions not only have to be sent to the cloud server,
but then need to be forwarded to the MMOG server and then
a second cloud server before they can be sent to another
player. This makes it difficult to achieve acceptable delays
for MMOGs, which are highly delay-sensitive applications.

We propose to utilize the peer-to-peer-based MMOG mid-
dleware prototype developed by the peers@play project in
order to distribute the MMOG server functionality across
several server centers. The peers@play project [3] is a cooper-
ative project of the Universities of Mannheim, Duisburg-Essen
and Hannover to develop protocols and algorithms for peer-
to-peer-based massively multi-user virtual environments and
games. By using peer-to-peer techniques, it becomes possible
to co-locate the MMOG servers with the cloud servers. This
allows us to reduce the additional delay introduced by running
the MMOG clients in the cloud.

II. OUR APPROACH

Currently, any MMOG that is run in the cloud is incurring
a delay penalty. After a player initiates a game event, e.g., an
attack on another player, it takes four hops for the associated
update to reach the other player. This situation is depicted in
Figure 1. First, the player’s input is sent to the server center
that runs the MMOG client. Then, the update is sent to the
MMOG server. After processing the update, the MMOG server
sends the resulting update to the server centers which run
the clients of those players to whom the update is relevant.
Finally, the servers running these clients process the update,
generate the resulting video and stream it to the players.
Without running the MMOG in the cloud, an update reaches
an another player after only two hops, so this increases the
delay experienced by the player.

However, if all players of an MMOG were running their
MMOG clients on the same cloud server center, the MMOG
server could be co-located with the cloud server. In this
case, the communication between the MMOG clients and the
MMOG server would be completely within the local network
of the server center, which results in minimal added delay.
This means the delay traditionally experienced between the
client and the MMOG server would be almost eliminated, with
only the input and streaming delay remaining. Unfortunately,
the geographic locations of an MMOG’s players are widely

distributed, sometimes across the entire world. This approach
is therefore not feasible.

Fig. 1. Client/Server-based MMOG in the Cloud

To enable the co-location of Cloud and MMOG servers,
while allowing multiple geographically distributed server cen-
ters, we propose to use techniques developed for peer-to-
peer-based MMOGs. These techniques allow us to distribute
the MMOG server’s functionality among several servers. The
servers can then be co-located with the cloud servers. Specif-
ically, we suggest to base the MMOG on the peer-to-peer
middleware that we are developing in the peers@play project.

In our approach, the combined cloud/MMOG server runs
both the game client and an instance of our peer-to-peer
middleware for each player that connects to it. As far as the
middleware is concerned, it is still running a fully distributed
peer-to-peer system, unaware that its peers are running on only
a few separate server centers, instead of the systems of the
individual users. Our prototype of the middleware supports this
without any modifications, as we have in fact run experiments
with a similar setup, where we ran a large number of peers
on our IBM BladeCenter (see [4] for details).

The update propagation scheme of our middleware sends
updates directly from one peer to another, i.e. with a single
hop in the peer-to-peer overlay [4]. If a peer does not have
sufficient bandwidth to send all updates itself, it uses a super-
peer to forward the update to its recipients. These updates thus
traverse two hops in the overlay. However when the peers are
run on the cloud server, they are not as bandwidth-constrained
as they would be when running on a user’s system. In fact,
we can assume that the server provides sufficient bandwidth to
propagate all events. Therefore this case should not occur and
when utilizing our update propagation system in the cloud,
we can propagate all updates directly between the peers. This
results in one hop in the overlay for each update.

The result can be seen in Figure 2. There are two possible

cases for each update. First, the update can affect a player
whose instance of the middleware is run on the same server
center as the player who originated the update. In this case,
the update can be sent from one local middleware instance
to another local instance. This means the update has two
traverse two hops over the internet, resulting in a total delay
comparable to the traditional non-cloud client/server model.
This case is shown as the dashed line in Figure 2.

In the second scenario, the update needs to be sent to a
player whose instance of the middleware is run on a another
server center. In this case, the update is sent to the appropriate
instance via the Internet. This results in a total of three hops
for the update. While this is still worse than the traditional
client/server-model, it is better than the four hops required for
propagation without using the peer-to-peer techniques. This is
shown as the solid line in Figure 2.

Fig. 2. Peer-to-Peer-based MMOG in the Cloud

III. CONCLUSIONS

In conclusion, our approach allows an MMOG developed
as a peer-to-peer-based system to be run in the cloud. This
reduces the delay penalty that would normally be associated
with cloud-based MMOGs. Our approach can reduce the
number of hops an update has to traverse from four to between
two and three. While our prototype supports this concept
without modifications, we are currently implementing several
optimizations in order to evaluate our concept.

REFERENCES

[1] Game developer’s conference 2009: Onlive press conference, March 2009.
[2] OnLive, Inc. http://www.onlive.com/.
[3] Peers@Play Project. http://www.peers-at-play.org/.
[4] R. Sueselbeck, G. Schiele, S. Seitz, and C. Becker. Adaptive update

propagation for low-latency massively multi-user virtual environments.
In Proceedings of the 18th IEEE International Conference on Computer
Communications and Networks (ICCCN), August 2009.

