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Abstract—As the digital data rapidly inflates to a world-wide
storage crisis, data deduplication is showing its increasingly
prominent function in data storage. Driven by the problems be-
hind the mainstream server-side deduplication schemes, recently
there has been a tendency of introducing peer-assisted methods
into the deduplication systems. However, this topic is still quite
vague at present and lacks thorough research.

In this paper, we conduct in-depth and quantitative investiga-
tion on the peer-assisted deduplication. Through measurements
we observe that the inter-peer duplication accounts for a large
proportion of the total duplication, and exhibits strong peer
locality. Then based on our observations, we propose PeerDedupe,
a novel peer-assisted sampling deduplication approach. Experi-
ments show that PeerDedupe can remove over 98% duplication
with each peer coordinating with no more than 5 other peers,
and it requires much less server RAM usage than the existing
works.

I. INTRODUCTION

As the digital data rapidly inflates to a world-wide storage
crisis, data deduplication has doubtlessly become one of the
hottest research topics in data storage [1], [2]. The storage ser-
vice providers like EMC, Symantec and HP have been adding
deduplication technologies to their products in order to save
storage capacity, operation cost and energy consumption. For
its fine granularity and resilience, chunk-level deduplication,
which splits a backup data stream into chunks of fixed or
variable length and then removes duplicate chunks meanwhile
or afterwards, has now become the mainstream deduplication
technique. Thus in this paper, we focus on the chunk-level
deduplication.

The current mainstream deduplication schemes are mainly
deployed at the server side (e.g., the Data Domain File System
[3] and HP’s Sparse Indexing [4]). Users send their full
backup data to the server, and then the duplicate chunks are
eliminated by the server. Though this server-side deduplication
scheme can easily remove duplicate chunks system widely,
it faces bundles of tough problems at scale, such as the
huge bandwidth consumption and the famous disk bottleneck
problem [3], [4]. The disk bottleneck problem means at scale,
it is impractical to keep a full index of system-wide chunk IDs
in memory, while traditional disk-based index is far too slow
because of frequent disk access.

As today’s numerous PCs are getting more and more
powerful, the peer-assisted deduplication scheme begins to
catch people’s eyes. For example in EMC’s Avamar system [5],
when a user wants to back up data, he first splits his data into

chunks and removes the ones that he has previously stored.
Then the IDs of the remaining chunks are sent to the server for
further global deduplication. Finally, the user only backs up the
globally new chunks. The above peer-assisted deduplication
approach significantly reduces the bandwidth consumption.
However, for performing global deduplication, the server still
faces the disk bottleneck problem, which usually requires the
server to be high-performance and thus expensive.

Generally, there has been a tendency of introducing peer-
assisted methods into the deduplication systems. However, this
topic is quite vague at present and lacks in-depth research. The
confusions may include: is the process of Avamar’s further
global deduplication (also called the inter-peer deduplica-
tion) necessary, or does a peer already achieve good enough
deduplication quality by just removing the chunks that he
previously backed up (called the intra-peer deduplication)? If
the inter-peer deduplication is necessary, how can we effec-
tively eliminate the inter-peer duplication without requiring an
expensive high-performance server?

On the above-mentioned problems, we conduct in-depth
investigation by measuring three different types of real-world
traces. We gain two important observations: 1) the inter-peer
duplication accounts for a nonnegligible (in fact large) pro-
portion of the total duplication; 2) the inter-peer duplication
exhibits strong peer locality (i.e., most of a peer’s duplicate
data is actually covered by only a small number of other
peers), which can be well fit by the Weibull distribution. In
fact, the strong peer locality results from the phenomenon that
a peer usually interacts with only a limited number of others
in reality, while the duplicate data is just generated in the
interactions. For example, an engineer’s source code is often
shared with other members participating in the same project;
a researcher’s duplicate data can be largely covered by only
a few members in the same academic community; most of
a user’s emails are exchanged among a limited number of
people.

Motivated by these observations, we propose PeerDedupe,
a novel peer-assisted sampling deduplication approach. Distin-
guishing from EMC’s Avamar, in PeerDedupe, a peer sends
the IDs of his locally new chunks to only a small number
of the most valuable helpers (MVHs) for further inter-peer
deduplication. For the key problem of selecting MVHs, we
model it as the maximum coverage problem, which is in fact
NP-hard. Although the classical greedy algorithm [6] provides
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Fig. 1. The proportion of inter-peer duplication in total duplication.
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Fig. 2. The cumulative distribution of the inter-peer duplication at other
peers.

an approximation solution with a polynomial time complexity,
it is still too slow for our practical use, making the MVH
selection process a bottleneck. Thus we design a fast and
effective probabilistic estimation algorithm, which relies on
the MinHash sampling method [7] to estimate the similarity
of two sets. We develop a rule of setting sampling size for the
MinHash method, which achieves a target estimation accuracy
with the smallest possible sampling size. Experiments on one
large-scale synthetic data set and two real-world traces show
that PeerDedupe can remove over 98% inter-peer duplication
with each peer coordinating with no more than 5 MVHs.
Besides, PeerDedupe requires much less server RAM usage
than the existing works.

The rest of this paper is organized as follows. Section
II shows our measurement observations and explains the
PeerDedupe work schema. Section III describes the detailed
techniques for MVH selection. Section IV shows our experi-
mental results. Section V reviews the related work. Finally we
conclude this paper and point out the future work in Section
VI.

II. MEASUREMENT OBSERVATIONS AND PEERDEDUPE

APPROACH

A. Measurement Observations

We conducted in-depth measurements, concerning the ben-
efits of the inter-peer deduplication and the degrees of peer
locality in the real world, which provide the primary support
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Fig. 3. The least number of required MVHs k∗ to achieve different inter-
peer deduplication qualities u for the Weibull distribution F (x; λ, α) where
α = 0.4 and λ varies.

for our PeerDedupe approach. We report our measurement
results on three different types of traces 1. The first one is a
snapshot of 176 users’ backup data of AmazingStore [8], [9],
a real peer-to-peer storage system deployed by us, which rep-
resents a general backup circumstance. The second one, called
Workgroup, is the backup data of a group of 19 researchers,
which represents a small-scale academic group. The third one,
called Mailgroup, is the email data of 113 users in our research
institution, which represents the exchange community. For the
three traces, users’ data was split into variable-length chunks
using Rabin fingerprint [10], ranging from 1KB to 128KB
with 8KB on average. Section IV.A describes the detailed
characteristics of Workgroup and Mailgroup.

The inter-peer duplication is calculated as follows: for each
peer, we first remove his locally duplicate chunks. After that,
if a peer’s chunk still occurs at other peers, it is identified as an
inter-peer duplicate chunk. Fig. 1 depicts the proportion of the
inter-peer duplication in total duplication. We see that the inter-
peer duplication constitutes a large proportion for all the three
traces, which indicates that only the intra-peer deduplication
is far from enough. A storage system will benefit much more
if the inter-peer deduplication is introduced.

We further take a look at the distribution of the inter-peer
duplication among peers. For each peer, we first accurately
identify the inter-peer duplication globally by brute force, and
then the classical greedy algorithm [6] is used to measure the
ratio of its inter-peer duplication covered by other peers 2. Fig.
2 shows the cumulative distribution at the first 8 helpers. We
notice that:

1) The distribution of the inter-peer duplication presents a
strong peer locality. For the measured three traces, two
helpers are sufficient to cover more than 96% inter-peer
duplication.

2) The Weibull distribution F (x;λ, α) = 1 − e−(x/λ)α

can
well fit the cumulative distribution of the inter-peer du-

1The three traces are now available at http://en.amazingstore.org/xyj/.
2In fact, the problem of precisely measuring the cumulative distribution is

NP-hard. The classical greedy algorithm we used shows a tight lower bound
of this NP-hard problem and is now widely adopted by others. For the detail,
refer to Section III.A.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE P2P 2010 proceedings.



plication. The (λ, α) pairs for AmazingStore, Workgroup
and Mailgroup are (0.0531, 0.4676), (0.0247, 0.3312) and
(0.1872, 0.5009). We also examined other distributions,
including the exponential and Pareto distributions. None
of them play as well as the Weibull distribution.

The Weibull distribution F (x;λ, α) is determined by the
parameter pair (λ, α), which we define as the peer local-
ity indicator. λ > 0 is the scale parameter. A smaller λ
shows higher skewness in the duplication distribution and thus
stronger peer locality. α > 0 is the shape parameter. When
α = 1, the Weibull distribution is actually the exponential
distribution. For the measured three traces, we find α < 1,
which indicates a heavier tail than the exponential distribution.
Besides, the α values for the three traces do not differ much,
which means the shapes of their Weibull distributions are
similar and the peer locality is mainly determined by the scale
parameter λ.

With the inter-peer duplication following Weibull distribu-
tion F (x;λ, α) = 1 − e−(x/λ)α

, the least number of required
helpers k∗ to achieve the inter-peer deduplication quality u
(i.e., removing u ratio of the inter-peer duplication) is

k∗ =
⌈
F−1(u;λ, α)

⌉
=
⌈
λ (− ln (1 − u))

1
α

⌉
(1)

Fixing α = 0.4 (a roughly intermediate value for the
measured three traces), we calculate k∗ under different λ
values to achieve a given inter-peer deduplication quality u. As
Fig. 3 shows, more helpers will be needed for high inter-peer
duplication quality requirement (large u) and poor peer locality
(large λ). For a specific Weibull distribution F (x; 0.1, 0.4),
5 helpers can cover more than 99% inter-peer duplication.
Note that F (x; 0.1, 0.4) presents an intermediate peer locality
(intermediate λ and α values) among our three measured traces
as Fig. 1 shows. We will use F (x; 0.1, 0.4) as an example in
our following analysis and experiments.

In summary, we observe that 1) the inter-peer duplication
accounts for a large proportion of the total duplication, and 2)
for the strong peer locality, a peer can detect most of his inter-
peer duplication at only a few MVHs. So, the key problem is
how to select MVHs. Before going into the details of MVH
selection (in Section III), we first describe the work schema
of our proposed PeerDedupe, which is based on the above
measurement observations.

B. PeerDedupe Approach

Fig. 4 depicts the work schema of PeerDedupe. The initiator,
who starts a backup operation, first performs intra-peer dedu-
plication by removing the chunks that he previously backed
up (see step 1). After step 1, a set of his locally new chunks is
got, which we call local increments. Then the initiator sends
a sample of the local increments’ IDs to the server, asking
for a fixed number of MVHs (see step 2). For each peer, the
server keeps an index of only a small number of sampling
chunks in memory, based on which the server selects MVHs
for the initiator (see step 3). After knowing the MVHs (see step
4), the initiator sends the IDs of his full local increments to
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7. new chunks
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Fig. 4. PeerDedupe work schema. Before the deduplication starts, the initiator
already gets the chunk IDs by chunking and hashing.

each of them for the inter-peer deduplication (see step 5). On
receiving the deduplication results (the knowledge of which
chunks have been previously stored and their access addresses)
from the MVHs (see step 6), the initiator sends the really
“new” chunks3 to the remote secondary storage (see step 7).

In PeerDedupe, each peer maintains an index of his stored
chunks locally (the server will also maintain on disk a copy
of the index in case the peer’s local index is damaged or
lost), and thus the deduplication is actually searching chunk
IDs in the index. The process of intra-peer deduplication is
straightforward and can easily remove all the locally duplicate
chunks. We now describe the MVH selection, the key problem
in the inter-peer deduplication.

III. MVH SELECTION TECHNIQUES

In this section, we describe our techniques of selecting
MVHs for the inter-peer deduplication. We first model the
process of MVH selection. Then we propose our fast proba-
bilistic estimation algorithm for MVH selection which relies
on sampling technique to estimate two sets’ similarity. Finally
we discuss on the sampling method and size in detail.

A. Modeling the MVH Selection

Assume there are n peers in the system. Let C0 be the
chunk set that the initiator wants to deduplicate in the inter-
peer deduplication process and let Ci (1 ≤ i ≤ n − 1) be
the chunk set that the i-th peer maintains locally. Given a
fixed number k (1 ≤ k ≤ n − 1) and a collection of sets
C = {C1, C2, . . . , Cn−1}, the objective of the MVH selection
is to find a subset C ′ ⊆ C, such that |C ′| = k and the number
of covered chunks ∣∣∣∣∣C0 ∩

( ⋃
Ci∈C′

Ci

)∣∣∣∣∣
is maximized.

3Some of the transferred chunks may still already exist in the system. They
are those not covered by the selected MVHs.
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Let Xi = C0 ∩ Ci and X = {X1,X2, . . . , Xn−1}. The
objective is equivalent to

maximize

∣∣∣∣∣ ⋃
Xi∈X′

Xi

∣∣∣∣∣
subject to X ′ ⊆ X

|X ′| = k

which is the maximum coverage problem (MCP), a NP-hard
problem [6]. The classical greedy algorithm which selects
k sets by iteratively picking out the set that covers the
maximum number of currently uncovered elements has a tight
(1− 1

e )-approximation lower bound [6], [11]. But for the costly
operations on the original large sets (mainly the intersection
and union operations on large sets, and the frequent disk
accesses due to the disk bottleneck problem [3], [4]), it is
still too slow for practical use, making the MVH selection
process a bottleneck.

B. Our Probabilistic Estimation Algorithm

We develop the classical greedy algorithm, which is de-
terministic, into a probabilistic estimation algorithm to speed
up the MVH selection process. Our probabilistic estimation
algorithm relies on sampling technique to firstly estimate the
similarities between the initiator’s chunk set and other peers’
chunk sets, and then MVHs are selected from the “similar”
peers. For the definition of similarity, we adopt the classical
definition which is given by [12]: the similarity of sets A and
B, r(A,B), is |A∩B|

|A∪B| .
Given n peers P = {P1, P2, . . . , Pn} with their samples

S = {S1, S2, . . . , Sn} and the sample of the initiator’s chunks
to be deduplicated S0, our method of selecting k (k is a system
configured value) MVHs is performed in k rounds. In each
round, we choose the peer Pi from P whose sample Si is
most similar to S0. Then we update P with P − {Pi} and
S0 with S0 − Si. The process continues until k MVHs are
all found. If more than one peers have the highest estimated
similarity with the initiator in one round, we randomly pick
one as the MVH.

Obviously, by generating a small number of sampling
chunks on the original large chunk set, we dramatically
speed up the MVH selection. We now discuss our sampling
method and the rule of setting sampling size, which enable
us to achieve desirable estimation accuracy compared to the
classical greedy algorithm.

C. Sampling Method

There are varieties of sampling methods [13], but few
of them are fit for our deduplication circumstance. In our
deduplication circumstance, backup data is split into very fine
granularity, so the number of chunks each peer stores is huge.
However, the number of the sampling chunks should be small
enough to reduce the server RAM usage and make the process
of MVH selection run fast. Therefore, an ideal sampling
method should have strong ability of detecting shared chunks
in small-size sampling sets.
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Fig. 5. Broder’s MinHash to unbiasedly estimate the similarity of A and B.

Simple random sampling (SRS), which chooses a few
elements from a given set uniformly at random, is a straightfor-
ward sampling method and was used in Pastiche [14] to detect
highly similar peers (in term of their common data). However,
with a small sampling size, SRS often misses shared elements
leading to underestimation of sets’ similarity. Consider two
identical sets A and B, each with n elements. From each set
we independently pick out only one element using SRS. Now
we have two sample sets S(A) and S(B). We can see that
though the similarity of set A and B, r(A,B), is in fact 1,
SRS’s estimation is only r(S(A), S(B)) = 1

n .
Broder proposed MinHash sampling [7], which has now

been widely used in detecting similar objects [15], [16], [17]
in large data repository. Fig. 5 shows a simplified example of
estimating the similarity of set A and B with MinHash. First,
every element is assigned with an ID, which meets the min-
wise independent permutation requirement [18]. Then from
each set, the smallest s elements (in the lexicographic order
of their IDs) are picked out as the sample, where s is constant.
Define MINs(W ) as the set of the smallest s chunks in set
W . Let S(A) = MINs(A) and S(B) = MINs(B), then it is
concluded that the value

|S(A) ∩ S(B)|
|S(A) ∪ S(B)|

is an unbiased estimation of the similarity of A and B [7].
For the strong ability of detecting shared elements, we

adopt MinHash in PeerDedupe to generate the same number
of sampling chunks for each peer. We now describe the
key process of setting sampling size for MinHash in our
deduplication circumstance.

D. Sampling Size

Generally, the larger the sampling size is, the more accurate
the similarity estimation will be, but the more overhead the
server pays. Thus, the sampling size should balance the
estimation accuracy with the server overhead. Our rule of
setting sampling size is to make MinHash achieve the target
estimation accuracy with the smallest possible sampling size.

Assume each peer gets k (system configured) MVHs for
the inter-peer deduplication. Let F (k) be the ratio of the
inter-peer duplication that is covered by the first k MVHs
selected by the classical greedy algorithm . Let G(k; r, s) be
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the ratio of the inter-peer duplication that is covered by the
k MVHs selected by our probabilistic estimation algorithm,
cover. Thereinto, r is the inter-peer redundancy degree (the
ratio of a peer’s chunks which also occur at other peers), and
s is the number of sampling chunks for each peer. We define
the estimation accuracy μ as the ratio of G(k; r, s) to F (k)
rather the maximum coverage ratio, because 1) solving the
maximum coverage ratio is NP-hard (see Section III.A), 2) the
classical greedy algorithm shows a tight lower bound of this
NP-hard problem and is now widely adopted by others, and
3) our probabilistic estimation algorithm is in fact developed
from the classical greedy algorithm (see Section III.B).

Because of the error of the similarity estimation, usually
G(k; r, s) ≤ F (k) (the equality holds when the error of
the estimation is small enough to have no impact on MVH
selection result). Thus, the objective is formulated to find the
smallest value s∗ which satisfies G(k; r, s∗) ≥ μF (k) for a
target estimation accuracy μ (0 < μ < 1).

We define a selected MVH or a MVH selection is valid iff at
least one shared chunk is detected in a round of the similarity
estimation. Otherwise, it is defined as an invalid MVH or an
invalid MVH selection. The invalid MVH has an estimated
similarity of 0 with the initiator and is selected randomly from
the rest of the available peers. When the number of peers in
the system is large, the expected duplication coverage of the
invalid MVH is small enough to be ignored.

Let f(i) = F (i) − F (i − 1) i ≤ k be the deduplication
contribution of the i-th MVH (i.e., the duplicate chunks
covered by the i-th MVH minus those covered by the first
i− 1 MVHs), selected by the classical greedy algorithm, and
p(i; r, s) be the probability of that MVH being valid in our
estimation with r inter-peer redundancy degree and s sampling
chunks for each peer. Usually, if the i-th MVH is valid, it
will be selected as a helper in our probabilistic estimation
algorithm. This claim is practically reasonable for the high
skewness of the duplication distribution as shown in the three
real-world traces (see Fig. 2). So,

G(k; r, s) ≥
k∑

i=1

f(i)p(i; r, s) (2)

Theorem 1. Given an initiator and a peer, each has N unique
chunks among which n chunks are in common. Select s chunks
from each one using MinHash. The probability of finding at

least one shared chunk is p(s) ≥
(
1 −

(
1 − n

N

)s)2

.

Proof: Consider two chunk sets A and B where |A| =
|B| = N and |A∩B| = n. Using MinHash, we denote the sets
of their smallest s chunks (in the lexicographic order of their
IDs) as S(A) and S(B). Note that if both S(A) and S(B)
contain at least one shared chunk of A and B, that chunk is
guaranteed to be the same one 4. Let S′(A) = S(A)∩(A∩B),
S′(B) = S(B) ∩ (A ∩ B). Thus the probability of detecting

4This is unlike randomly selecting s chunks, in which even if both two
sample sets contain a shared chunk of their original sets, it may not be the
same one.

at least one shared chunk in S(A) and S(B) is

p(s) = P (S(A) ∩ S(B) �= ∅)
= P (S′(A) �= ∅) · P (S′(B) �= ∅)

Thereinto,

P (S′(A) �= ∅) = 1 − P (S′(A) = ∅) = 1 − Cs
N−n

Cs
N

= 1 − (N − n)!
s!(N − n − s)!

· s!(N − s)!
N !

= 1 − (N − n)(N − n − 1) · · · (N − n − s + 1)
N(N − 1) · · · (N − s + 1)

≥ 1 −
(
1 − n

N

)s

Equally, P (S′(B) �= ∅) ≥ 1 −
(
1 − n

N

)s

. Therefore,

p(s) ≥
(
1 −

(
1 − n

N

)s)2
5 (3)

For simplicity, assume each peer has an equal size of chunk
set. From Equation 2 and Equation 3, we easily get

G(k; r, s) ≥
k∑

i=1

f(i) (1 − (1 − rf(i))s)2

Let Ĝ(k; r, s) =
∑k

i=1 f(i) (1 − (1 − rf(i))s)2, where
f(i) = F (i)−F (i−1). Thus a conservative setting of sampling
size ŝ∗ is

ŝ∗ = arg min
s∈N

ε(μ, k, r, s)

where

ε(μ, k, r, s) > 0

ε(μ, k, r, s) = Ĝ(k; r, s) − μF (k) (4)

ŝ∗ can be easily calculated with the bisection method in
logarithmic time. We see that with fixed number of MVHs k
and the specific cumulative distribution of the inter-peer dupli-
cation F (x), ŝ∗ increases with the target estimation accuracy
μ and decreases with the inter-peer redundancy degree r.

When applying our rule of setting sampling size, the number
of MVHs k is system configured, and the duplication dis-
tribution F (x) and the redundancy degree r can be roughly
estimated from users’ previous backups. Let k = 5 and
F (x) follow Weibull distribution with (λ, α) = (0.1, 0.4), i.e.,
F (x) = 1 − e−(x/0.1)0.4

. To achieve a given target estimation
accuracy μ, we plot the value of ŝ∗ with varying redundancy
degree r. As Fig. 6 shows, less sampling chunks are needed
when the inter-peer redundancy degree gets higher or the target
estimation accuracy gets lower. For the redundancy degree
of 0.5, 300 sampling chunks can achieve 99% estimation
accuracy and 50 sampling chunks can achieve 95% estimation
accuracy.

5Himabindu et al. [19] got a similar result of the detection probability, but
their assumptions and formula deduction are different from ours.
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IV. PERFORMANCE EVALUATION

A. Experiment Setup

We used one large-scale synthetic data set and two real-
world traces, to verify the feasibility and effectiveness of
PeerDedupe. The first data set, called Simugroup, is a collec-
tion of generated backup data of 100, 000 peers. Each peer
possesses 8GB locally unique data, which is split into on
average 8KB chunks, and thus has 1M data chunks. In total,
Simugroup contains about 800TB user data, which can well
simulate a large or medium-sized data center at present. The
cumulative distribution of the inter-peer duplication follows
Weibull distribution and we chose a reasonable peer locality
(λ, α) = (0.1, 0.4) for the Weibull distribution (see Section
II.A). Three scenarios of different inter-peer redundancy de-
grees, r = 0.1, 0.5, 0.9, are examined for Simugroup.

The two real-world traces are called Workgroup and Mail-
group 6, whose key statistics are given in Table I. Workgroup
consists of full backups of 19 researchers’ PCs, lasting 4
weeks. Since machines are only powered up during work days,
altogether there are 380 full backups in this 2.51TB data set.
On average, each peer backed up 6.77GB data every day with
85.86MB local increments (new to himself) and 49.95MB
global increments (new to the whole system). Mailgroup
consists of full backups of 113 email users’ inboxes, lasting 38
days. Altogether there are 4294 full backups in this 569.81GB
data set. On average, each peer backed up 135.88MB email
data every day with 0.90MB local increments and 0.35MB
global increments.

The inter-peer redundancy degrees of Workgroup and Mail-
group differ significantly: 24.5% and 67.0%. Our experiments
will show that using MinHash and our rule of setting sam-
pling size, we can achieve desirable inter-peer deduplication
quality with PeerDedupe for both traces. The experiments
on Workgroup and Mailgroup started with an empty archive,
took peers’ 〈chunk ID, chunk length〉 pairs as input and

6Workgroup and Mailgroup present relatively poorer peer locality than
AmazingStore, and thus are more challenging for PeerDedupe.

7Backup files were split into variable-length chunks using Rabin fingerprint
[10], ranging from 1KB to 128KB with 8KB on average. In our trace, the
average chunk size is slightly smaller because there are many small files.

TABLE I
KEY STATISTICS OF WORKGROUP AND MAILGROUP TRACES

Workgroup Mailgroup
No. of users 19 113
time span (day) 20 38
data set size (TB) 2.51 0.57
avg. daily backup per user (GB) 6.77 0.14
avg. chunk size (KB)7 6.45 7.29
daily local increments per user
(MB)

85.86 0.90

daily global increments per user
(MB)

49.95 0.35

deduplicated them in the order of their respective backup time.
We chose SHA-1 to compute a chunk’s ID.

B. Metrics

1) Deduplication quality, measured by the percentage of du-
plicate chunks removed, is our most concerned property.
We evaluate the effectiveness of the MinHash sampling
method and the rule of setting sampling size, and the
overall performance of the duplication elimination.

2) Server RAM reduction shows how much RAM that the
server can save. The mainstream deduplication methods
relies on the server to perform global deduplication. How-
ever, they need too much server RAM to hold chunk IDs,
which is their performance bottleneck.

3) Peer-side overheads include peer RAM usage, CPU time
and communication cost. They are critical for PeerD-
edupe’s practicality.

C. Deduplication Quality

1) Simulation Results: For simugroup, we let each peer
coordinate with 5 MVHs, making it possible to eliminate 99%
inter-peer duplication (see Fig. 2 shows). Fig. 7 depicts the
achieved inter-peer deduplication quality and the number of
valid MVHs by applying our probabilistic estimation algo-
rithm. As can be seen, with a larger sampling ratio or a higher
redundancy degree, MinHash is more likely to identify shared
chunks, and thus our probabilistic estimation algorithm gets
more valid MVHs and removes more inter-peer duplication.
With a sampling ratio of 0.02%, 95.1% inter-peer duplication
could be removed for 0.1 redundancy degree, and more than
98% inter-peer duplication could be removed for 0.5 (or
higher) redundancy degree.

Fig. 8 shows the effectiveness of our rule of setting sampling
size with 5 MVHs. For the 3 inter-peer redundancy degrees
and 2 target estimation accuracies (altogether 3 × 2 = 6
cases), Fig. 8(b) shows the theoretical sampling sizes using
Equation 4. Then we perform the inter-peer deduplication
using MinHash with the corresponding sampling size. As Fig.
8(a) shows, all the achieved deduplication qualities slightly
exceed the targets, which verifies the correctness and goodness
of our rule of setting sampling size.

2) Trace-driven Results: To eliminate the duplication for
Workgroup and Mailgroup, we should first fix their sampling
sizes. As Fig. 2 shows, 4 MVHs could cover 99% inter-peer

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE P2P 2010 proceedings.



10
−4

10
−3

 75%

 80%

 85%

 90%

 95%

100%

Sampling Ratio

In
te

r−
pe

er
 D

ed
up

lic
at

io
n 

Q
ua

lit
y

 

 

r=0.1
r=0.5
r=0.9

(a) The achieved inter-peer deduplication as the sampling ratio
varies.
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(b) The number of valid MVHs as the sampling ratio varies.

Fig. 7. The performance of our probabilistic estimation algorithm. 3 scenarios of different inter-peer redundancy degrees are examined. The X axis is
logarithmic scale.
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(a) The achieved deduplication qualities in comparison with the
targets.
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(b) The theoretical sampling size ŝ∗ for the different dedupli-
cation cases.

Fig. 8. The effectiveness of our rule of setting sampling size. The dashed line refers to the deduplication quality under the target estimation accuracy μ. The
up one is for μ = 99% and the low one is for μ = 95%.

duplication. We target to achieve 99% estimation accuracy
with 4 MVHs, i.e., eliminating 98% (≈ 99% × 99%) inter-
peer duplication. The inter-peer redundancy degree r and the
duplication distribution F (x;λ, α) can be estimated with the
knowledge of users’ previous backups. Using Equation 4, the
theoretical sampling size is 518 for Workgroup (a sampling
ratio of 0.05%) and 162 for Mailgroup (a sampling ratio of
0.8%).

Fig. 9 tracks the storage consumption of the intra-only
deduplication (i.e., traditional client-side deduplication which
only perform the intra-peer deduplication) and PeerDedupe
(with 4 MVHs). For comparison, we also draw the perfect
deduplication curve (all duplicate chunks are removed system
widely). For Workgroup, after 20 days, perfect deduplication
used 104.47GB storage space, while the intra-only dedu-
plication used 120.61GB (introducing 15.45% extra storage
space) and PeerDedupe used 104.62GB (only introducing
0.14% extra storage space). For Mailgroup, the benefit of
performing the inter-peer deduplication with PeerDedupe is
more prominent. After 38 days, perfect deduplication used
6.61GB storage space, while the intra-only deduplication

used 15.88GB (introducing 140.24% extra storage space) and
PeerDedupe used 6.78GB (only introducing 2.6% extra storage
space). We see that for both data sets, PeerDedupe achieves
near-perfect deduplication quality. Note there are two outlier
points on the 19th day for Workgroup and the 4th day for
Mailgroup. The former is because of an update operation of
SVN source code and the latter is because of a dissemination
of a large email.

We take a closer look at PeerDedupe’s key process of
performing the inter-peer deduplication. As Fig. 10 shows,
PeerDedupe removes 99.1% inter-peer duplication with 4
MVHs for Workgroup and 98.1% with 4 MVHs for Mailgroup,
both of which meet our expectation (> 98%). Therefore,
PeerDedupe can achieve a desirable high deduplication quality
with each peer coordinating with only a few other peers.

D. Server RAM Reduction

We set the sampling ratios for the Simugroup to achieve
more than 98% inter-peer deduplication quality with 5 MVHs.
They are 0.1%, 0.02% and 0.005% for the redundancy degrees
of 0.1, 0.5 and 0.9. The server RAM reduction factor for
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Fig. 9. Deduplication quality on a day to day basis. For Workgroup and Mailgroup traces.
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Fig. 11. The the server RAM reduction factors for Simugroup, Workgroup
and Mailgroup.

Simugroup is calculated as follows.
Assume there are n peers in the system, each peer backs up

b local unique chunks, and the inter-peer redundancy degree
is r. With a sampling ratio of σ, PeerDedupe only needs to
index nbσ chunks at the server side. The number of global
unique chunks is denoted as D, having nb(1− r) ≤ D ≤ nb.
Thus, the server RAM reduction factor is τ = D

nbσ , having
1−r
σ ≤ τ ≤ 1

σ .
Fig. 11 shows the theoretically conservative server RAM

reduction factor for Simugroup and the real reduction factors

for Workgroup and Mailgroup. As can be seen, For Simugroup
and Workgroup, we can achieve the reduction factor of about
1000 (or more). The reduction factor for Mailgroup is much
less than that for Simugroup and Workgroup. That is because
peers in Mailgroup back up much less data. Recall that the
setting of the sampling size is not related to a peer’s backup
size (see Equation 4). Therefore, the more data peers back up,
the lower the sampling ratio is and the higher the server RAM
reduction factor we can achieve.

E. Peer-side Overheads

The peer-side overheads are critical for PeerDedupe’s prac-
ticality. In this part we evaluate the overheads according to
three aspects: RAM usage, CPU time and communication cost.
We consider a typical scenario where a peer has 8GB backup
data with 100MB local increments every day (a peer who has
a smaller size of backup data or local increments will have
smaller overheads). The data is split into chunks of 8KB length
on average using Rabin fingerprint.

In total, each peer has no more than 1M locally unique
chunks. We choose SHA-1 to compute a chunk’s ID (20
bytes per ID). Therefore, keeping 1M SHA-1 hash codes only
consumes 20MB memory, which is affordable for most of
today’s PCs.

The CPU time overhead for PeerDedupe includes chunking,
hashing and searching chunk IDs in the memory-based index.
For the first time, it may take a while because the peer has to
perform chunking and hashing for all of his backup data. For
his following backups, chunking and hashing are only for the
local increments. We evaluated the CPU time overhead on our
desk-top (Windows XP operating system, Intel(R) Pentium(R)
D CPU 4 2.80GHz 2.79GHz and 1.00GB RAM), where the
Red-Black tree (implemented in java.util.TreeMap) is used
to index the chunks. The result shows that the CPU time
overhead for a peer’s incremental backup is only 34.2 seconds
(16.1 seconds for chunking, 2.2 seconds for hashing and 15.9
seconds for chunk ID searching) which is a very light burden
for the peer.

Besides deduplicating his own chunks, a peer also serves as
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Fig. 12. Deduplication quality of DDFS, Sparse Indexing, Extreme Binning
and PeerDedupe. For Workgroup trace.

the MVH to help other peers deduplicate chunks. However, as
his received chunk IDs are of the initiator’s local increments
whose size is very small compared to a peer’s full backup size,
this part of chunk ID searching time can be ignored.

In PeerDedupe, the initiator and the selected MVHs ne-
gotiate to eliminate the inter-peer duplication by sending
chunk IDs, which introduces extra bandwidth consumption
and probably increases the backup time. However, because of
the negotiation, most of the inter-peer duplication is removed,
which saves the bandwidth and decreases the backup time on
the other hand. It is obvious that this communication cost is
too small compared to the brought benefit, because the cost is
measured on chunk ID (20 bytes per ID) while the benefit is
measured on chunk content (about 8 kilobytes per chunk).

F. Comparisons with Existing Works

In this part, we compare PeerDedupe with three recent
data deduplication methods, DDFS [3], Sparse Indexing [4]
and Extreme Binning [20], all of which perform chunk-level
deduplication. DDFS achieves perfect deduplication by elimi-
nating all the duplicate chunks. It keeps an in-memory bloom
filter of the chunk IDs and a small cache. Sparse Indexing
groups chunks into larger segments and keeps in-memory a
low ratio (e.g., 1/64) of sampling chunk IDs for each segment.
Incoming segments are deduplicated against a limited number
of the most similar segments. Extreme Binning chooses one
representative chunk for each file and groups similar files
(having the same presentative chunk) into one index entry.
For an incoming file, it is only deduplicated against its similar
files (i.e., the ones having the same representative chunk).

We first compare PeerDedupe with the three works accord-
ing to the deduplication quality. As in Fig. 12, PeerDedupe
behaves almost as well as DDFS (perfect deduplication), while
Sparse Indexing and Extreme Binning leave more deduplica-
tion in the system.

PeerDedupe also uses much less server RAM than the
three works. Consider a digital repository with 100TB disk
storage and 8KB chunk length, DDFS uses 12.5GB RAM and
Sparse Indexing uses 3.9GB RAM [4], achieving the server
RAM reduction factor of 20 and 64 respectively. The RAM

usage of Extreme Binning depends on specific characteristics
of the backups (e.g., the number of chunks per file and the
similarity of files). Take Workgroup as the case study. There
are 376,626 unique files indexed by 354,790 entries (40 bytes
per entry [20]). Thus the server RAM reduction factor for
Extreme Binning is 23. Having been discussed in Section IV.D,
PeerDedupe achieves the server RAM reduction factor of 1624
(the highest) for Workgroup trace.

Higher server RAM reduction factor means lower cost of the
back-end server. Though 12.5GB RAM usage seems afford-
able for a corporation who provides deduplication appliance, it
will be a big cost when the data volume increases to petabyte
level [21]. Also, higher server RAM reduction factor means
that with an equal size of the server RAM, data is allowed to
be split into much finer grained chunks, so more identical data
can be removed. Bobbarjung et al. [22] and Policroniades et
al. [23] have performed extensive experiments on various data
sets, confirming the remarkable storage saving by changing the
expected chunk size from 8KB length to 4KB or 2KB length.

V. RELATED WORK

Chunking has been widely used to detect inner file redun-
dancy in deduplication system. Fixed-length chunking, as used
in Venti [24], splits files into equal size of chunks and removes
the duplicate copies. It is simple to implement but suffers from
the well known boundary-shift problem [25]: if one chunk
in a file changes (e.g., addition or deletion), its subsequent
fixed-length chunks will be all impacted, which dramatically
decreases the detection volume of the duplication.

c1 c3c2

bottom(f,k) r bottom(f,k)=r

Fig. 13. Variable-length chunking.

Variable-length chunking avoids the boundary-shift problem
by using the content-defined chunking algorithm (CDC) [26].
Fig. 13 depicts its basic mechanism. A sliding window of fixed
length (e.g., 48 bytes) moves, one byte every time, from the
beginning of a file to the end. At every position, a hash of the
sliding window, f, is computed using Rabin fingerprint [10].
If the lowest k bits of the hash match a predetermined value r
(i.e., bottom(f, k) = r), the offset is marked as an anchor. As
can be seen, anchors divide a file into variable-length chunks
which are generated according to the content, so any addition
or deletion of a chunk would at most affect the chunking result
of itself and its neighbors.

Recent server-side deduplication methods focus on over-
coming the throughput and scalability limitations by solving
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the disk bottleneck problem. The Data Domain File System
(DDFS) [3], Sparse Indexing [4] and Extreme Binning [20]
design compacted memory indexes which reduce the server
RAM usage and the disk access frequency to some extent. The
details have been given in Section IV.F. Debar [21] proposes a
two-phase deduplication scheme. In phase one, a user’s incom-
ing backup data is deduplicated against his historical backups
to perform preliminary filtering. The remaining chunks are
deduplicated through sequentially searching the disk index
in phase two, among which the chunk locality [3], [4] are
explored to reduce the disk access. As to the peer-assisted
deduplication method, a simple form has been introduced into
EMC’s Avamar system and Symantec’s NetBackup system,
but few in-depth researches on this topic have been done.

The idea of organizing peers in a system to cooperatively
work has been well researched in peer-to-peer systems [9],
[27], [14]. The key problem concerning the cooperation is the
partner (or called helper) selection. For FriendStore [27], a
peer stores the data at his friends in reality to improve the
data durability. For AmazingStore [9], a peer stores the data
at other peers with different online patterns to improve the data
availability. For Pastiche [14], a peer stores the data at his most
similar peers (in terms of the common data) to save the system
storage space. PeerDedupe is somewhat similar to Pastiche,
but their key processes of selecting helper peers are different
because of their different objectives. PeerDedupe is designed
for deduplication system, in which a peer deduplicates against
his most valuable helpers to maximize the duplication elimi-
nation. Note that the most valuable helpers in PeerDedupe are
different from the most similar peers in Pastiche (see Section
III.A).

VI. CONCLUSION AND FUTURE WORK

Through in-depth investigations on three different real-
world traces, we observe that the inter-peer duplication ac-
counts for a large proportion of the total duplication and
exhibits strong peer locality. Based on these observations, we
present PeerDedupe, a novel peer-assisted sampling dedupli-
cation approach. For the key problem of selecting MVHs, we
present a probabilistic estimation algorithm, which relies on
an effective sampling method and the corresponding rule of
setting sampling size. Experiments on one large-scale synthetic
data set and two real-world traces show that PeerDedupe
can remove over 98% inter-peer duplication with each peer
coordinating with no more than 5 MVHs. Compared to three
existing works, PeerDedupe uses much less server RAM.

In our future work, we would implement PeerDedupe into
AmazingStore [8], [9] system to further verify PeerDedupe’s
practicality and effectiveness. Issues, such as data consistency
and privacy protection, will be carefully treated. The data
consistency problem is: the inter-peer deduplication process
of PeerDedupe relies on the helpers’ historical backups, so if
a helper changes his backup statuses (e.g., delete a file) within
his initiator’s backup window, conflicts may occur (e.g., leave
out the file which is deleted by the status-changed helper).
The privacy protection problem is: the helper who has identical

data, let us say file A, with the initiator will know the initiator
also has file A, but the initiator may not want others to know
what kind of data he has.
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