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Abstract

Humans have a fundamental ability that is to learn others’ experience for their own use, while humanoid robots don’t have. 

Several attempts have been made for specific situations in evolution and study of developmental robots. However, such 

attempts have provided limitations, e.g. others’ experience learning get overlooked. The present article proposes peers’ 

experience learning method, which first reviewed the evolution and development of developmental robots as some typical 

studies revealed, moving from humanlike to developmental. These terms are then reconsidered from humanoid robots’ 

viewpoint, particularly with the developmental principles: the verification principle and the embodiment principle. Next, 

a conceptual model of peers’ experience learning is proposed based on the principles, and the simulation results show that 

robots can “copy” peers’ experience to cognize and develop automatically. Finally, a general discussion and proposals for 

addressing future issues are given.
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1 Introduction

Peers’ experience learning (PEL) helps humans to realize 

the contexts that they never heard before, which is impor-

tant for humans’ mental development. It is also regarded 

as an essential requirement of future intelligent robots. To 

humanoid robots, PEL has been recently addressed in brief 

studies from the perspective of mental development [1], and 

several attempts have been made to address specific con-

text of PEL (e.g. [2, 3]). Designers expect to manifest PEL 

behaviors towards humans, and to immigrate the mechanism 

to humanoid robots. Many efforts have been made in aiming 

at constructing a more diligent and more humanlike robot.

Elman et al. [4] attempted to define “development” to 

better clarify an approach while designing developmental 

robots (DR). However, their definitions are not precise and 

do not seem to be supported by simulations and experimental 

results. Thus Weng [5] gave an implemented developmental 

algorithm based on image analysis. They further proposed 

a developmental modeling [6] for agents, making develop-

mental robots be able to learn internally via interaction with 

people.

Before long, a number of designs and applications inte-

grating with developmental algorithms increased dramati-

cally to make DR be closely to real scientific practice [7]. 

Major remarkable ones include Anticipating Rewards Robot 

proposed by Blanchard and Canamero [8], the developmen-

tal framework by Meng and Lee [9] SS-RICS by Kelley [10] 

and LOC based on ACT-R by Zelazo [11], etc. They incor-

porated many useful concepts that are necessary for human 

intelligence, providing diverse ways to give an impetus to 

DR according to brain mechanisms and biobehavioral stud-

ies. However, humanlike interactive learning is still a com-

plex problem.

The importance of interactive learning is discussed by 

Asada [3], who together with his team have constructed a 

conceptual model based on an infant robot, providing more 

authentic experience sharing experiments [5, 12, 13]. Their 

work mainly focus on how can humans affective develop-

mental processes by synthetic or constructive approaches, 

but PEL gets overlooked, especially transplanting and veri-

fying peers’ experience based on self-other distinction.
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Figure 1 shows a schematic depiction of evolution and 

development in the context of DR thus far. The horizontal 

axis is the time and the vertical axis indicates the “develop-

mental level”, this begins with a trajectory from cognitive 

and humanlike robots, via self-developmental robots, and 

ending with interactive and developmental robots. Figure 1 

shows, accordingly, that research progresses over time.

Based on views from Stoytchev [14], there are two basic 

principles of DR that are verification principle and embodi-

ment principle. So PEL is expected to be achieved through 

interacting with other experienced robots to engraft peers’ 

experience, furthermore, to verify the experience knowledge 

based on its own embodiment for being self-serving. Asada 

et al. [15] have advocated that the key technologies of DR 

are interaction and development. However, such work has 

not been adequately precise from bio-behavioral and brain-

science perspective.

The present paper proposes a DR based on PEL, in order 

to better understand experience sharing processes through 

synthetic and constructive approaches, especially regard-

ing transplanting peers’ experience as own experience 

knowledge.

The rest of the article is organized as follows. Section 2 

introduces PEL from humans’ perspective. Section 3 pro-

vides a conceptual model of DR based on PEL. And the 

simulation results are presented in Sect. 4. Finally, the con-

clusions and future developments are discussed.

2  Peers’ Experience Learning of Humans

Humans have a fundamental function that is to learn from 

others, which means they share the experience though 

everyone is unique. Suppose that one need to go across a 

labyrinthine environment and there are many narrow paths. 

And he needs to ask his peers, who have experienced the 

environment before, for more information. His peers may 

tell him watch out the narrow paths because it is difficult to 

get passed. So he needs to make a comparison between him 

and his peers, to ensure the successful pass. And the own 

experience will be learnt when he get passed. It’s a hypo-

thetical scenario, but similar ones are happening with far too 

much regularity in PEL of humans. PEL between humans is 

a necessary means of everyday social communication and it 

paves the way for the development of humans [16].

In the mammalian brain, feedback connections in the 

brain play important roles in PEL [17]. Hideyuki et al. [18] 

points out that PEL obtained through social interaction with 

a variety of individuals uniquely modulate activity of brain 

network. Moreover, they found that there are two mental 

dimensions in brain when one interacting with others (see 

in Fig. 2): one represented “mind-holderness (the red in 

Fig. 2)” in which human borrow from the experiences of 

others by interacting, while the other dimension represented 

“mind-readerness (the blue in Fig. 2)” in which human use 

others’ experiences for reference.

As a result, human first “read” peers’ experience, then 

justify the reasonability and verify the feasibility by itself, 

finally “hold” the justified and verified experience into their 

own use [19]. So the “mind-readness” part and the “mind-

holdness” part are important to humans’ PEL, then a PEL 

mechanism of human can be derived based on the studies of 

brain science [20], which is shown in Fig. 3. In Fig. 3, the 

black flow represents the PEL processes: (1) Learn. Human 

must have a way to learn peers’ experience. (2) Sense. 

Human use eyes or hands, to see or to touch, so as to sense 

the environment [21]. (3) Preprocess. The information of 

obstacles is mass and unclassified, so the sensed information 

should be classified and preprocessed. (4) Think. Humans 

use brain to think whether to take the peers’ experience or 

not so as to generate action strategies, and to develop its 

brain. (5) Pre-act. The action strategies are generated after 

thinking, but they cannot be decoded and acted by limbs, 

so they should be clarified so as to transform the strategies 

to body language. (6) Act. The limbs follow the commands 

from brain to execute action commands.

Fig. 1  Schematic depiction of DR’ research progress over time

Fig. 2  fMRI results of mind-holderness and mind-readnerness 

(adopted from [18]). (Color figure online)
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3  A Brain-Like PEL Model for Developmental 
Robots

3.1  Conceptual Architecture for DR

We adhere to the developmental principles as outlined by 

Stoytchev [14] to meet the requirements of DR. The rel-

evant points are as follows:

(a) The verification principle: EDR can learn from and 

maintain peers’ experience knowledge only to the 

extent that it can verify that knowledge (tried-and-true 

knowledge) itself.

(b) The embodiment principle: a robot is always about the 

same from birth, but they are distinguishing and self-

specifying from each other. So the DR should have the 

ability to remodify peers’ experience on the basis of its 

own embodiment parameters.

Based on the two principles and the PEL mechanism of 

humans, the DR architecture can be obtained as is shown 

in Fig. 4, where the PEL of DR is described as the black 

flow: (1) Learn. To DR, it transplants peers’ experience 

via uniform protocol between each other. (2) Sense. The 

DR use sensors onboard to sense environment around. (3) 

Preprocessor. To preprocess the mass and unclassified 

information. (4) Brain. This part purposes on thinking the 

proper action strategies, and reserving the strategies to 

develop DR itself. (5) Pre-act. The action strategies cannot 

be decoded and acted by robots, so it should be clarified so 

as to be transformed to commands. (6) Act. The DR follow 

the commands to act in environment.

3.2  Peers’ Experience Learning

PEL is conducted at discrete time instances ( t = 0, 1, 2… ) 

through following definitions:

De�nition 1 A robot agent M may have several sensors 

(including exteroceptive and interoceptive sensors that sense 

stimuli from external and internal environment, see, e.g., 

Weng [22]) and effectors, whose sensory and control sig-

nal at time t  is collectively denoted by S(t) and C(t) . M ’s 

embodiment is denoted by E (it’s not time-varying) and 

peers’ experience denoted by P(t).

De�nition 2 M has a “brain” denoted by B(t) , and the time-

varying state-update function ft updates B(t) at each time t 

based on: (1) sensory input S(t) , (2) control output C(t) , (3) 

peers’ experience knowledge P(t) , (4) Embodiment param-

eters E and (5) current “brain” B(t):

De�nition 3 Control signal C(t + 1) is generated by the 

action generation function gt based on B(t + 1):

As can be seen, DR not only matches the habit of human 

cognition and behavior (that is thinking before acting), 

but also implies a robot agent M cannot have two separate 

phases for learning and performing (that is learning while 

performing).

As a PEL example, consider the case that a robot has 

to go through a labyrinthine environment. And finally he 

succeeds, with large amounts of information. Definitely not 

all of the information should be transplanted and be bore in 

mind, all the robots need is the necessary information, i.e., 

as least as possible. So we introduce “nodes knowledge” to 

express peers’ experience.

De�nition 4 Nodes knowledge: the labyrinthine environ-

ment is modeled as three kinds of nodes. (1) turning nodes 

N
t
 : N

t
 is the crossings where the robot has to follow a cir-

cular arc trajectory. (2) straight nodes N
s
 : N

s
 is the straight 

ways. (3) key nodes N
k
 : N

k
 is where the robot has to arrive 

or pass by, i.e., target nodes.

So peers’ experience is represented as P =

(

N
t
, N

s
, N

k
, E

)

 . 

To the one who receives peers’ experience, it is not a time-

varying knowledge, however, he will develop it to his 

own knowledge as time goes by. So we revise P to P(t) in 

(1)B(t + 1) = ft(S(t), C(t), P(t), E, B(t))

(2)C(t + 1) = gt(B(t + 1))

Fig. 3  A PEL mechanism of human

Environment

Peers
experience

Preprocessor Brain Pre-act

Act

Fig. 4  The DR learning mechanism
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consideration of development over time. As shown in Fig. 5, 

the three kinds of nodes knowledge and embodiment com-

prise peers’ experience.

3.3  Brain

The DR aims not simply at transplanting peers’ experience 

but, more challengingly, at building a paradigm that pro-

vides a new understanding of how we design a humanoid 

robot that interacts with and learns from others, to enrich 

its brain.

Roughly speaking, the brain of DR is consisted of two 

phases so as to produce own experience: from social devel-

opment to individual development. More specifically, from 

justify peers’ experience is proper or not to verify peers’ 

experience is feasible or not.

3.4  PEL Justi�cation

Unacquainted with the environment getting from peers, 

people may hold the question “if I was in his situation, 

what would I do?” So justify peers’ experience on the 

basis of individual characteristics. What is called “mental 

rehearsal [23, 24] ” in terms of psychology (Fig. 6).

PEL justification is a mental rehearsal of peers’ experi-

ence, which divides P(t) to feasible nodes Pfr(t) and infea-

sible nodes P
ir
(t) : P(t) = Pfr(t) + Pir(t).

3.5  PEL Veri�cation

In PEL justification, the peers’ experience knowledge is bound 

to mental rehearsal, anyway, “knowledge starts with practice”. 

Peers’ experience must be verified in real environment without 

being given any other information.

Let us consider the “brain” state of robot is denoted by a 

state vector B(t) , a random process as Eq. (1) implied, which 

are closely related to Markov decision processes (MDP) [25]. 

Taking the uncertainty in states into account, the state-update 

function ft can be:

and the action generation function gt:

where p(∙) denotes the probability. Though both peers’ 

experience and the verified information can be obtained by 

“brain”, but only the verified information can be entered to 

the action generation function gt.

(3)p

(
B(t + 1) = B

�|
S(t), C(t), P(t), E, B(t) = B

)

(4)p
(

C(t + 1) = C|B(t + 1) = B
�
)

Fig. 5  Schematic illustration of peers’ experience knowledge

Fig. 6  PEE justification (The nodes of green background are feasible 

and the red infeasible, because the red regions are too small for the 

Robot 2 to pass.)
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3.6  Brain

The DR needs to form its own “brain” to memorize high 

dimensional experience as well as peers’ experience.One 

may tell others his own experience as well as the experience 

heard from others, so as to provide more information. Our 

proposed “brain” is constructed of the global states:

where P
pe

 and P
oe

 are peers’ experience and own experience, 

E
pe

 and E
oe

 are peers’ embodiment and own embodiment.

However, experience accumulation over time induces a 

severe problem: “data disaster”. Because peers’ experience 

spreads from one to another, causing the P
oe

 and E
oe

 added 

to P
pe

 and E
pe

 each time. The brain at k-th transplanting is:

As we can see, the “brain” may encounter data disaster 

when k has big gaps to its initial value. Inspired by a new 

hierarchical statistical modeling method [26], the “brain” 

dimension is reduced by using incremental hierarchical dis-

criminating regression (IHDR) tree [27] as Fig. 7 shows, 

which brings together similar features to generate feature 

clusters so as to improve the convergence performance.

So the different peers’ experience can be combined to 

reduce data in brain:

4  Experiments and Discussion

4.1  Embodiment for DR

Actions cannot be performed in the absence of embodiment, 

robots must have some ways to affect the world, i.e., it must 

have a body [28–30]. Damasio [31] holds the view that “the 

brain is the body’s captive audience”. In other words, all the 

(5)B =
(

P
pe

, E
pe

, P
oe

, E
oe

)

=
(

(PE)
pe

, (PE)
oe

)

(6)B =

(

(PE)
1

pe
, (PE)

2

pe
,… , (PE)

k

pe
, (PE)oe

)

(7)B
�
=

(

k

∪
i=1

P
i
pe

,
k

∪
i=1

E
i
pe

, Poe, Eoe

)

commands must be applicable to the properties of its own 

body. Robots are created uniquely, they may have different 

properties even if with the same morphological structure 

(e.g., velocity and acceleration).

In a robot agent M , the state E of embodiment is repre-

sen ted  d i s t r ibu ted ly  by  d i f fe ren t  s t a tes  e
i
 : 

E=
(

e1, e2, e3,… , e
n

)

 . Take a differentia-drive mobile robot 

into consideration (see in Fig. 4), so the embodiment can be 

described as: E=
(

v
l

min
, v

l

max, v
r

min
, v

r

max, r

)

 , where vl and 

v
r are the left and the right velocities of the two wheels, and 

r is the radius (assuming the robot is a circle). The speed of 

two wheels control robot motion: when they are equal, 

straight-line motion is attained, while for different speeds 

the trajectory follows a circular arc.

4.2  PEL Algorithm Based on DR

The PEL approach is implemented and tested on eight chal-

lenging scenarios, which are classified into two categories 

(see in Table 1). In addition, simulations in the last two 

scenarios have been repeated for different environment to 

verify the effectiveness of proposed algorithm. For each case 

the state of “brain” obtained is measured as indicator of the 

development of the PEL algorithm performance.

Robot trajectories are shown in Fig. 8 for the 2-ascend-

ing scenario and 2-descending scenario. Later positions are 

drawn on top of earlier. By comparing the two scenarios, it 

appears that DR can transplant peers’ experience for their 

own use, furthermore, once a robot encounters justified 

peers’ experience, trajectories are obtained without any path 

planning algorithm.

The trajectories of the robots in the 3-ascending scenario 

and 3-descending scenario are shown in Figs. 9 and 10. Take 

the state of “brain” (see Figs. 9b, 10b, the brain is defined 

and quantified by the amounts of the trajectory nodes) into 

consideration, the two scenarios are quite opposite: the 

“brain” of 3-ascending scenario increases over time while 

Fig. 7  Dimension reduction

Table 1  Two categories of six scenarios

Categories Scenarios PEL flow sequence

Two robots 2-ascending Small to big

2-descending Big to small

Three robots 3-ascending Small to middle, then middle to 

big

3-descending Big to middle, then middle to 

small

3-small-descending Small to big, then big to middle

3-big-ascending Big to small, then small to middle

3-mid-ascending Middle to small, then small to big

3-mid-descending Middle to big, then big to small
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3-descending scenario stay the same. It is because we intro-

duce IHDR algorithm which, as a result, effectively reduces 

the “brain” dimension, so the robustness has been improved. 

It is also shown that this makes it easier to implement PEL 

and incrementally developing.

Fig. 8  The robots’ trajectories in 2-ascending/2-descending scenarios

Fig. 9  The robots’ trajectories in 3-ascending scenarios and develop-

mental brain
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The 3-small-descending and 3-big-ascending of Fig. 11, 

together with 3-mid-ascending and 3-mid-descending 

scenarios of Fig. 12 represent the out-of-order PEL flow 

sequence. For a more detailed comparison, simulations in 

Fig. 12 have been repeated for different environments, and 

Fig. 10  The robots’ trajectories in 3-descending scenarios and devel-

opmental brain

Fig. 11  The robots’ trajectories in 3-small-descending and 3-big-

ascending scenarios
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3 various values of the robot radius have been considered. 

Simulation results have shown that the robots can learn for 

its predecessors and turn PEL into its own knowledge, and 

then verify the knowledge in environment to develop its 

“brain”. Furthermore, though the brain of robot 2 and robot 

3 are almost the same (sees in Fig. 12b, they hold the same 

amounts of the trajectory nodes), but it turns out that the 

robot 1 follows robot 3, it is because we take safety fac-

tor into consideration, which means when a robot has two 

different peers’ experience but with same trajectory nodes 

amounts, it tends to the larger and safer one (Fig. 13).

4.3  Comparison with Other Algorithms

In order to validate the feasibility and effectiveness of PEL 

algorithm based on DR, particle swarm optimization (PSO) 

[32] and ant colony (AC) [33] are chosen to compare against 

it. All the simulations are conducted in Matlab 2012a envi-

ronment, Inter core-i5.

Suppose that before entering the labyrinth (the length and 

width are both 100 meters.), all environments are unknown, 

and the robot has to find a way out as fast as possible. The 

simulation results are shown in Fig. 14a and their time-con-

suming in Fig. 14b.

Figure 14a shows that PEL, PSO and AC all can get a safe 

path, however, their time-consuming are different from each 

other as inferred from Fig. 14b. Though there is data fluctua-

tion when sampling, the time-consuming stay stable within 

limits. The mean time-consuming of AC, PSO and PEL is 

0.148 s, 0.117 s and 0.072 s respectively, which shows that 

PEL algorithm exhibits better performance than PSO and 

AC. The PEL algorithm has the least time consumed, PSO 

get the second place and AC needs the most. It is because 

PSO and AC requires continuously re-plan trajectory when 

they encounter with complex environment.

Even if step into the same environment, PSO and AC 

needs to repeat the previous calculation for they cannot learn 

to develop themselves. And it cost more time in calculating, 

causing instability of robots (The more time consumed, the 

more instable robots have). But PEL algorithm can get a safe 

path directly and dispense with the repetitive calculating to 

similar environment by referring to peers’ experience.

5  Conclusions

In terms of humans, we have argued how DR can follow a 

developmental pathway similar to natural PEL. After review-

ing terminology in the context of biobehavioral perspective, 

a conceptual constructive model for acquiring peers’ experi-

ence as well as turning peers’ experience for own use has 

been proposed. Following are some concluding remarks.

Fig. 12  The robots’ trajectories in 3-mid-ascending and 3-mid-

descending scenarios



43International Journal of Social Robotics (2020) 12:35–45 

1 3

1. The “brain” of agent is closed once after the birth, which 

means B(t) cannot be altered directly by human pro-

grammers. Instead, it can only be updated through inter-

action with the outer environment according to Eq. (1).

2. The DR has also been proposed, and a conceptual con-

structive model for PEL has been devised in parallel 

with self-other cognitive development on the basis of 

peers’ experience justification and verification.

3. The proposed constructive model is expected to shed 

new insight on our understanding of PEL for DR, which 

can directly reflected in the design of “brain”.

Still, there are several issues in need of attention and 

further investigations, including practical studies and 

dynamic environment studies.
Fig. 13  The robots’ trajectories in 3-mid-ascending and 3-mid-

descending scenarios for another environment

Fig. 14  Comparison between PEL, PSO and AC
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