
PeerShark: Detecting Peer-to-Peer Botnets
by Tracking Conversations

Pratik Narang, Subhajit Ray, Chittaranjan Hota
Department of Computer Science & Information Systems

Birla Institute of Technology and Science-Pilani, Hyderabad Campus

Hyderabad, A.P., India

Email: {p2011414, f2010452, hota}@hyderabad.bits-pilani.ac.in

Venkat Venkatakrishnan
Department of Computer Science

University of Illinois at Chicago

Chicago, IL 60607

Email: venkat@cs.uic.edu

Abstract—The decentralized nature of Peer-to-Peer (P2P) bot-
nets makes them difficult to detect. Their distributed nature also
exhibits resilience against take-down attempts. Moreover, smarter
bots are stealthy in their communication patterns, and elude
the standard discovery techniques which look for anomalous
network or communication behavior. In this paper, we propose
PeerShark, a novel methodology to detect P2P botnet traffic and
differentiate it from benign P2P traffic in a network. Instead of
the traditional 5-tuple ‘flow-based’ detection approach, we use
a 2-tuple ‘conversation-based’ approach which is port-oblivious,
protocol-oblivious and does not require Deep Packet Inspection.
PeerShark could also classify different P2P applications with an
accuracy of more than 95%.

I. INTRODUCTION

The past decade saw immense rise of the peer-to-peer
computing paradigm. In the beginning of the 21st Century,
the P2P architecture attracted a lot of attention of developers
and end-users alike, with the share of P2P over the Internet
in different continents being reported to be in the range
of 45% to 70% [1]. As more and more users got access
to powerful processors, large storage spaces and increasing
bandwidths, P2P networks presented a great opportunity to
share and mobilize resources. However recent reports [2] show
that the share of popular P2P applications over the Internet has
declined to a mere 10%. The P2P paradigm has been plagued
with the issues of privacy, security and piracy to name a few,
and the last decade has seen a lot of research focus in these
areas [3], [4], [5].

Peer-to-Peer overlay networks are distributed systems con-
sisting of interconnected nodes which self-organize into net-
work topologies. They are built with specific purposes of
sharing resources such as content, CPU cycles, storage and
bandwidth, and have the ability to accommodate a transient
population of nodes while maintaining acceptable connec-
tivity and performance, without requiring the intermediation
or support of a global centralized server or authority [6].
The construction of P2P networks is on the top of IP layer,
typically with a decentralized protocol allowing ‘peers’ to
share resources. The runaway success of P2P applications is
primarily attributed to the ease of resource sharing provided by
them- be it in the form of music, videos, files (BitTorrent [7]),
sharing of computing resources (SETI @ home [8]). Apart
from these, P2P paradigm has also been widely deployed for
IPTV (LiveStation [9]) and Voice-over-IP (Skype [10]) based
services.

As P2P networks are inherently modeled without any
centralized server, they lack a single point-of-failure [11].
This resilience offered by P2P networks has also attracted the
attention of adversaries in the form of bot-masters (a.k.a. bot-
herders). A ‘bot’ is a computer program which enables the
operator to remotely control the infected system where it is
installed. A network of such compromised end-hosts under
the remote command of a master (i.e., the bot-master) is called
a ‘Botnet’ [12]. The ability to remotely command such bots
coupled with the sheer size of botnets (numbering to tens of
thousands of bots) gives the bot-masters immense power to
perform nefarious activities like spamming, Bitcoin mining,
click-fraud scam, Distributed Denial of Service (DDoS) attacks
etc. on a massive scale, and in turn generate millions of dollars
per year in revenue for the bot-master[13].

Traditional botnets were known to use IRC (Internet Relay
Chat), which implied a centralized architecture for their ‘Com-
mand & Control’ (C & C) operations. Detecting the centralized
C & C server meant bringing down the entire botnet. Bot-
masters have utilized the resilience offered by P2P networks to
build botnets wherein bots communicate, pass on commands
and update other bots in a P2P fashion [14]. Just as a P2P
network is resilient to break-down if a few peers leave the
network, P2P botnets have proven to be highly resilient even
if a certain number of bots are identified and taken-down [15],
[16].

A P2P bot’s life cycle consists of the following stages:

• Infection stage, during which the bot spreads (this
might happen through drive-by downloads, a mali-
cious software being installed by the end-user, infected
USB sticks, etc.).

• Rally stage, where the bot connects with a peer list in
order to join the P2P network.

• Waiting stage, where the bot waits for the bot-master’s
command (and does not exhibit much activity other-
wise).

• Execution stage, in which it actually carries out a
command, such as a Denial of Service (DoS) attack,
generate spam emails, etc.

To evade detection by Intrusion Detection Systems (IDSs)
and Firewalls, botnets tend to keep their communication
patterns (with the bot-master or other bots) quite stealthy.

2014 IEEE Security and Privacy Workshops

© 2014, Pratik Narang. Under license to IEEE.

DOI 10.1109/SPW.2014.25

108

2014 IEEE Security and Privacy Workshops

© 2014, Pratik Narang. Under license to IEEE.

DOI 10.1109/SPW.2014.25

108

2014 IEEE Security and Privacy Workshops

© 2014, Pratik Narang. Under license to IEEE.

DOI 10.1109/SPW.2014.25

108



IDSs and Firewalls which rely on anomalous communication
patterns to detect malicious behavior of a host are not very
successful in detecting such botnets which are very stealthy
and ‘lie low’, since they generate little traffic and thus pass
under the radars of IDSs/Firewalls.

With the advent of the Internet of things, the possibility
of malware taking control of ‘smart’ appliances such as Tele-
vision, Air-conditioners, Refrigerators etc. will not be limited
to theory. In fact, there have been recent claims that a ‘smart’
refrigerator connected to the Internet was a part of a botnet and
involved in sending thousands of malicious emails [17]. As
the creators of botnets continue to adopt innovative means in
creating botnets, botnet detection continues to be a challenging
area of research.

In the next sections, we describe related work and our
approach, labeled PeerShark. Section IV describes the system
design of PeerShark. The implementation details of PeerShark
are discussed in Section V. Section VI presents the results of
evaluation of PeerShark with test datasets, and Section VII dis-
cusses possible methods by which bots may evade PeerShark.
Conclusion and Future work are described in Section VIII.

II. RELATED WORK

Most prior work has either focused on P2P traffic classifica-
tion from the perspective of a more general problem of Internet
traffic classification [18], [19], [20], or has given special
attention to detection of botnets (centralized or distributed) in
Internet traffic [21], [22], [23]. The detection of P2P botnet
traffic in the presence of benign P2P traffic has not received
much attention. Furthermore, the challenging context of correct
categorization of the exact P2P application- whether benign or
malicious- running on a host has received very little attention
in past works [24], [25].

Initial work on detection of P2P botnets involved signature-
based and port-based approaches [26], which were easily
defeated by bots which randomize their communication ports
or use encryption. Although several approaches have been
proposed to detect P2P botnets through the analysis of their
network behavior, most of them propose a binary classification
of P2P hosts (i.e., benign or malicious) [27], [22].

Some of the recent work has used supervised [24]
and unsupervised [28], [25] machine learning approaches
and other statistical measures [29], and have employed the
standard 5-tuple categorization of network flows. Packets were
classified as ‘flows’ based on the 5-tuple: <source IP,
source port, destination IP, destination
port, protocol>. Flows have bi-directional behavior,
and the direction of the flow is decided based on the direction
in which the first packet is seen. This traditional definition of
flows has been greatly employed and has seen huge success
in the problems of Internet traffic classification [30], and
even in the early days of P2P traffic classification [31]. But
since this definition relies on port number and protocol, latest
P2P applications as well advanced P2P bots which change
/ randomize their communication port(s) and operate over
TCP as well as UDP will not be well-identified by this
approach. Since such a behavior is characteristic of only the
latest variants of P2P applications (benign or malicious), it is
obvious that past research did not touch upon this aspect.

In response to this, a recent work [23] has used the
2-tuple ‘super-flows’(<source IP, destination IP>)
with a graph-clustering technique to detect P2P botnet traffic.
Although authors in [23] presented interesting insight and
obtained good accuracy in detecting the traffic of two P2P
botnets (Storm and Nugache), their work has several limi-
tations. A graph-clustering approach may not scale as the
network size grows. Further, their work evaluates the detection
of P2P botnets only with regular web traffic (which was not
analyzed for the presence or absence of regular P2P traffic).
This is a serious limitation because P2P botnet traffic (quite
obviously) exhibits many similarities to benign P2P traffic, and
distinguishing between hosts using regular P2P applications
and hosts infected by a P2P botnet would be of great relevance
to network administrators protecting their network. Moreover,
their approach is also limited to a binary classification.

III. OUR APPROACH AND CONTRIBUTIONS

In this work, we present PeerShark, a ‘conversation-based’
approach for P2P traffic which can differentiate P2P botnet
traffic from benign P2P traffic, and correctly categorize the
exact P2P application running on a host inside a network. It
aims to be a ‘P2P-aware’ assistant to network administrators
wanting to segregate P2P traffic and detect P2P botnets.

PeerShark does not assume the availability of any ‘seed’
information of bots through blacklist of IPs, and it does not
rely on Deep Packet Inspection (DPI) or signature-based mech-
anisms (which are rendered useless by botnets/applications
using encryption). It aims to detect the stealthy behavior of P2P
botnets, that is, when they lie dormant in their rally or waiting
stages (in order to pass under the radars IDSs which look
for anomalous communication patterns) or while they perform
malicious activities (spamming, password stealing, etc.) in a
manner which is not observable to a network administrator.
PeerShark focuses on observing the different ‘conversations’
which happen between the peers, which essentially capture the
idea of who is talking to whom. The conversations are extracted
from the information obtained from packet (TCP/UDP/IP)
headers. For all conversations, a set of features is extracted
which quantifies the inherent ‘P2P’ behavior of different
applications, such as- the duration of the conversation, the
inter-arrival time of packets, the amount of data exchanged, etc.
Further, supervised machine learning algorithms and network
traces of P2P applications & botnets are used to build models
which can correctly categorize different P2P applications.

PeerShark adopts a conversation-based approach instead
of the traditional flow-based approaches whose demerits have
been explained in the previous section. ‘Conversation-based’
approaches for detection of P2P botnet traffic were first seen
in [32]. However, the approach of authors in [32] used ‘thirty
second conversations’ for detection of P2P botnets. Such an
approach cannot be applied to botnets which are stealthy and
low-lying. Further, their work does not involve categorization
of different P2P applications, and is focused towards creating
a ‘Decision Fusion’ (traditionally referred as an ‘ensemble
classifier’ in machine learning circles) with two machine
learning approaches (namely Support vector machines and
Decision trees). Another recent work [33] has seen the use
of ‘conversation-based’ approach in the P2P domain, but for
a different problem- namely, the detection of overlapping P2P

109109109



communities in Internet backbone. Their work does not focus
on identification of any specific P2P application- whether ma-
licious or benign. PeerShark significantly extends past works
by addressing the challenging context of detection of stealthy
P2P botnets in network traffic in the presence of benign P2P
applications, and categorization of the specific type of P2P
application running on a host.

To summarize our contributions:

• A ‘conversation-based’ detection mechanism which
is protocol-oblivious, port-oblivious and payload-
oblivious, and relies only on the information ob-
tained from the TCP/UDP/IP headers. Thus it does
not require DPI, and cannot be evaded by payload-
encryption mechanisms.

• Detection of stealthy P2P botnet traffic inside a net-
work, and differentiating it from regular P2P traffic.

• Categorization of the specific type of P2P application
(regular or botnet) running on a host (with an accuracy
of more than 95%).

IV. PEERSHARK: SYSTEM DESIGN

PeerShark relies on understanding the of ‘P2P’ behavior
of P2P applications as well as botnets, and differentiates them
based on their differing behavior. Here we explain the concepts
which lie at the core of PeerShark.

A. Tracking Conversations

Once a bot-master infects a particular machine, it is in the
prime interest of the bot-master to not lose connectivity with
his bots. The bot-peers near to each other in the P2P overlay
network maintain regular communication amongst themselves
to check for updates, to exchange commands and/or to check
if the peer is alive or not. If such messages are exchanged
very frequently, the bot is at risk of getting detected by
IDS/Firewalls protecting the network. Hence the communi-
cation between the bot-master and his bots, or that of bots
amongst themselves, is expected to be low in volume (note here
that this usually corresponds to the rally and waiting stages; ex-
ecution stages can be aggressive or stealthy depending upon the
activity for which the bots are used; DDoS attack can be quite
aggressive, while password stealing may remain stealthy).
Since certain botnets (and even benign P2P applications) are
known to change/randomize their port numbers over which
they operate, the regular ‘flow’ definition will not be able
to give a clear picture of the activity a host is engaged in.
The traditional ‘flow’ definition will create multiple flows out
of what is actually a single conversation happening between
two such peers (although happening on different ports), and
thus give a false view of the communications happening in
the network. To get a bird’s eye-view of the conversations
happening between the P2P hosts can be beneficial for a
network administrator to hunt for malicious conversations
between the bots. This is the approach which lies at the heart
of PeerShark.

B. Categorization of P2P Applications

The other part of PeerShark concerns itself with catego-
rization of a specific P2P application running at the end-host,

which might be a regular P2P application or a bot-related
activity. As discussed above, P2P bot communications will
tend to be low in volume. These bots are automated by the
bot-master to keep contacting each other at certain intervals
of time, and thus the ‘duration’ of their conversations will
be large. On the other hand, P2P applications are used by
average users of the Internet. Such a user can be easily dis-
tinguished from an automated bot. Bots do not download and
share music videos, movies etc. over P2P networks, whereas
regular peers do. Although bots remain connected to each
other and thus exhibit long conversations (as will be evident
from our experiments), a benign peer A’s conversation with
another specific peer is not expected to be long since A might
download one file from B in Brisbane, share another with C in
Cambridge, and download another from D in Denver. Further,
all P2P applications- whether malicious or benign- operate
with their ‘app-specific’ control messages which are used by
peers to connect to the P2P network, make file searches,
leave the network, etc. Since each application has its own
specific control messages, we exploit the patterns hidden in
these control messages to categorize different P2P applications
by considering the median value of the inter-arrival time of
packets for each different P2P application. Moreover, as has
been explained before, bot traffic tends to be stealthy. Hence
bot conversations are expected to have higher inter-arrival time
of packets than benign P2P conversations. Thus inter-arrival
time of packets also supplements in differentiation of P2P
bot traffic from benign P2P traffic. In summary, we extract
four features from the datasets of different P2P applications
(malicious or benign) and use them to differentiate P2P botnets
from benign P2P users, and categorize the different P2P
applications. The four features used in this work are:

1) The duration of the conversation.
2) The number of packets exchanged in the conversa-

tion.
3) The volume of data exchanged in the conversation.
4) The median value of the inter-arrival time of packets

in that conversation.

P2P benign and malicious datasets were obtained from a
recent work by the authors in [24]. Details of the data extracted
for this work are:

1) Benign P2P Data : 50,000 conversations each of
eMule and uTorrent.

2) Malicious P2P Data : 50,000 conversations each of
Storm and Waledac.

V. IMPLEMENTATION DETAILS

PeerShark relies on the following four modules: (depicted
in Figure 1):

Packet Filtering Module: This module takes in network
logs in the form of raw packet data as input. The module reads
each packet and isolates those which have a valid IPv4 header.
For the purpose of data sanitization, all packets without a valid
IPv4 header are deemed invalid and discarded. The packets
are further filtered to keep only those packets which have a
valid TCP or UDP header and a non-zero payload. From each
packet, the Source IP, Destination IP, Payload length and Time-
stamp are extracted and stored for future use. This module is
algorithmically explained in Algorithm 1.

110110110



Fig. 1. Flow Diagram

Algorithm 1 Packet Filtering Module

1: procedure FILTERPACKETS(packetCapture)
2: ArrayList < ModifiedPkt > filteredPkts;
3: for Packet p in packetCapture do
4: timestamp← p.getT imestamp();
5: if p has IPHeader then
6: ip← p.getIPHeader();
7: IP1← ip.getSourceIP ();
8: IP2← ip.getDestIP ();
9: if p has TCPheader or UDPheader then

10: header ← p.getTransportHeader();
11: pSize← header.getPayloadSize();
12: if payloadSize not null or zero then
13: nextPkt←ModifiedPkt(IP1, IP2,
14: pSize, timestamp);
15: filteredPkts.add(nextPkt);
16: end if
17: end if
18: end if
19: end for
20: return filteredPackets;
21: end procedure

Conversation Creation Module: The output of the Packet
Filtering module is fed as input to the conversation creation
module. This module creates a list of conversations by ag-
gregating packets received from the previous module. Each
conversation is identified by the binary tuple <IP1,IP2>
and an initial FLOWGAP value. The initial FLOWGAP is used
to create conversations: while iterating through packets, if a
packet is encountered which belongs to the IP pair of the
conversation and whose time-stamp lies within FLOWGAP time
from the beginning or end of the conversation, the packet is
added to the conversation and the attributes of the conversation
are modified accordingly. This is explained as follows in

Algorithm 2.

Algorithm 2 Conversation Creation Module

1: procedure CREATECONVERSATIONS(filteredPackets)
2: ArrayList < Conversation > initConvList;
3: ArrayList < PacketGroup > pgList;
4: pgList← filteredPkts.groupPktsByIPpair();
5: for PacketGroup pg in pgList do
6: sort packets in pg by timestamp;
7: nextConv ← Conversation(NULL);
8: for Packet p in pg do
9: if p.timestamp between

10: (nextConv.start - FLOWGAP) &&
11: (nextConv.end + FLOWGAP) then
12: nextConv.addPacket(p);
13: else
14: nextConv ← Conversation(p);
15: initConvList.add(nextConv);
16: end if
17: end for
18: end for
19: return initConvList;
20: end procedure

Conversation Aggregation Module: The conversations
created in the creation module are aggregated for a higher
FLOWGAP value as desired by a network administrator. Here,
the network administrator is given the flexibility to mine data
for the time-period desired by him- say 2 hours, 24 hours
etc., thus giving him visibility into the network logs as desired
by him. Such flexibility is especially valuable for bots which
are extremely stealthy in their communication patterns and
exchange as low as a few packets every few hours. From
the dataset obtained by the authors of [24], we observed that
the ZeuS botnet demonstrated such behavior. Such behavior
demands a special attention and evaluation, and thus we do

111111111



Fig. 2. Comparion of network traces of Storm, Waledac, uTorrent and eMule

not include ZeuS in our present evaluation. For this evaluation,
the value being used is 1 hour.
The resultant conversations are then used to train our clas-
sification model. The attributes of each conversation which
are analyzed are: Number of packets, Conversation volume
(summation of payload lengths), Conversation duration and
the Median value of Inter-arrival time of packets in the
conversation. The reasons behind choosing these features have
already been explained in the previous section.
The median of Inter-arrival time of packets was observed to be
a better metric than the mean because PeerShark aggregates
several conversations into a single conversation as per the
FLOWGAP value supplied. In such a scenario, it is quite
possible that conversation A and conversation B get merged
into a single conversation while the last packet of conversation
A and first packet of conversation B occur several minutes (or
even hours) apart. This will skew the mean value, and the
use of median value was found to be more suitable from our
experiments.
The conversation aggregation module is explained in Algo-
rithm 3.

Classification Module: The Classification module uses
supervised machine learning algorithms (using Weka [34]) for
training its model and classifying the test data. To validate our
approach, models were built using a number of algorithms,
namely Bayesian networks [35], Decision trees and Boosted
REP trees.

Figure 2 provides a comparison of data of P2P botnets and
applications for one hour FLOWGAP duration in the form of
scatter plots. Each point on the plot denotes a conversation,
with the intensity of the color denoting higher number of
conversations at that point. The X axis has the Volume (in
Kilobytes), while Duration (in thousands of seconds) is plotted
on the Y axis. The data (for each application) corresponds to

Algorithm 3 Conversation Aggregation Module

1: procedure AGGCONV(initConvList, FLOWGAP)
2: ArrayList < Conversation > finalConvList;
3: ArrayList < ConversationGroup > cgList;
4: cgList← initConvList.groupConvByIPpair();
5: for ConversationGroup cg in cgList do
6: sort conversations in cg by timestamp;
7: nextConv ← Conversation(NULL);
8: if c.timestamp between
9: (nextConv.start - FLOWGAP) &&

10: (nextConv.end + FLOWGAP) then
11: nextConv.addConv(c);
12: else
13: nextConv ← Conversation(c);
14: finalConvList.add(nextConv);
15: end if
16: end for
17: return finalConvList;
18: end procedure

a 24 hour period, which means 86,400 seconds. Hence 86.4
forms the upper limit on the Y axis.

From the scatter plots, it is evident that bots tend to ‘lie
low’ and remain stealthy. Their traffic is low-volume and
high-duration, with only very few conversations being high in
volume. In clear contrast, most conversations seen in benign
P2P traffic (eMule and uTorrent) do not exhibit the trend of
low-volume and high-duration. Rather the points are widely
spread over the entire length and breadth of the plot. The
few high-duration conversations seen in benign P2P traffic can
be attributed to the fact that this is dataset was generated
at the University of Georgia [24] by continuously running
P2P applications (with sharing, downloading, etc.) over several

112112112



days. Since the applications were running continuously, high
durations conversations are present. Such a pattern is not
expected to be seen with an average user of the Internet.

VI. EVALUATION & RESULTS

PeerShark was evaluated using network trace datasets ob-
tained from the University of Georgia [24]. Data from two
P2P applications (eMule and uTorrent) and two P2P botnet
applications (Waledac and Storm) were used for this work. As
described in the previous section, network traces were parsed
to create and then further aggregate ‘conversations’. The data
so obtained was labeled to create a ‘labeled training dataset’
for each application. It is important to note that in the traces
of Storm and Waledac, the number of known ‘malicious hosts’
are 13 and 3 respectively. However, it is not known whether
the other IP addresses seen in the network traces are benign
or malicious1. Hence, for the sake of creating a ‘ground truth’
for our evaluation, we treat a conversation as ‘malicious’ even
if either of the IPs (either source or destination) is known to
be ‘malicious’.

Further, to build machine learning models with a balanced
dataset, 50,000 conversations of each application were used. In
order to not over-estimate the accuracy of PeerShark, we val-
idated our results using multiple machine learning algorithms
with ten-fold cross-validation. Due to space limitations, we
present our evaluation only with three algorithms- Decision
trees, Boosted REP trees and Bayesian Networks.

Decision trees are simple to train and fast algorithms.
However, they tend to create complex tree structures and
over-fit the data. Although this gives high accuracy on the
training data and even over the test data when tested in a
controlled lab environment, such botnet detection models may
not generalize to a real-world scenario. Hence, apart from
using the J48 implementation of Decision trees in Weka, we
also used the implementation of Reduced-error pruning trees,
a.k.a. REP trees, and limited the maximum depth of the tree to
8. Although we sacrifice on the training accuracy by limiting
the maximum depth, this helps in obtaining a generalized
model. Boosting [36] was used with REP trees to increase
the accuracy obtained from a single classifier. We used the
AdaBoost meta-classifier of Weka, and set it to use 10 REP
trees (with each tree limited to a maximum depth of 8).

As a choice for the third classifier, we use Bayesian
networks [35] which are probabilistic graphical models that
can identify relationships among variables of interest. The
model stores dependencies among all variables and can handle
the missing data and outliers quite well. It also provides insight
into a problem domain by providing relationships between
various features of data.

Table I gives the results for ten-fold cross validation
performed with the J48 Decision trees, Boosted REP trees and
Bayesian networks. TPR refers to the True Positive Rate (the
fraction of true positives out of the total actual positives) per
class, FPR refers to the False Positive Rate (the fraction of
false positives out of the total actual negatives) per class, and
AUROC refers to the Area under the ROC (Receiver Operator

1Personal communication: Babak Rahbarinia [24], November 2013

Fig. 3. Total Accuracy of each algorithm

Characteristic) Curve per class, which is created by plotting
the TPR versus FPR for that class.

As Table I shows, PeerShark could consistently give more
than 97% accuracy in detection of the two P2P botnet applica-
tions, and at least 92% accuracy in the detection of the two P2P
applications, with very low false positives. Figure 3 gives the
total accuracy (weighted average of per-class accuracy) of the
three classifiers. As an overall average, PeerShark’s accuracy
stands above 95%.

VII. POSSIBLE EVASIONS & DISCUSSIONS

PeerShark is able to correctly detect and categorize P2P
applications- whether malicious or benign- with high accuracy.
Here we consider the limitations of PeerShark. PeerShark is
presently designed with a multi-class classification approach,
where the output will always be one of the four classes as in
the training phase. Such an approach does not fare well with
new or unknown P2P applications since they do not belong
to either of the four classes. PeerShark could be extended to
add an ‘unknown’ class label which will account for all P2P
data that does not match the classification criteria of any of
the other classes.

If peer A and peer B are engaged in P2P file sharing
and both of them are also a part of a botnet, PeerShark will
see their communications as a single ‘conversation’. Because
of an overlap between the botnet data and application data,
PeerShark will not be able to correctly classify the kind of
botnet or application running on peers A & B. But with regard
to the present day botnets, such a scenario may not happen
frequently. This can be explained as follows: in most cases,
bots are covertly installed on the system of an unsuspecting
victim (through drive-by downloads, infected USB sticks, etc.).
Considering two such random victims to be A and B, it is
not very likely that the actual owners of A and B will also
be engaged in P2P file-sharing with each other. However, we
must argue on the case of ‘smarter’, futuristic bots which
may try to evade the detection mechanism of PeerShark. Bot-
masters could configure their bots to engage in occasional file-
sharing activity amongst each other in a regular P2P network
(like eMule, uTorrent etc.). With such benign-like activity,
bots will no longer display a ‘low-volume’ behavior. Since
such a behavior is one of the main detection criterion used
by PeerShark, PeerShark is likely to mis-classify such bots.
But, since occasional file-sharing by bots involves network

113113113



TABLE I. P2P BOTNET DETECTION WITH BAYESNET, J48 AND BOOSTED REP TREES

Bayesian Network J48 Decision Trees Adaboost with REP trees

TPR FPR AUROC TPR FPR AUROC TPR FPR AUROC

eMule 0.929 0.012 0.996 0.964 0.012 0.987 0.93 0.021 0.993

Storm 0.988 0.009 0.999 0.986 0.003 0.996 0.979 0.004 0.999

Waledac 0.989 0.01 0.999 0.988 0.005 0.995 0.97 0.009 0.998

uTorrent 0.947 0.019 0.996 0.965 0.012 0.989 0.943 0.025 0.994

bandwidth usage (and, say, accompanying monetary charges),
such an activity has the likelihood of getting noticed by the
owner of the system or a network administrator, and is thus
fraught with risks for the bot-master. Nonetheless, we admit
that it is possible for bot-masters to design smarter bots which
mimic benign-like behavior and/or add noise (or randomness)
to their communication patterns, and thus evade the present
detection mechanism of PeerShark.

Another similar approach by which bots could evade
PeerShark is by changing their ‘high-duration conversation’
behavior. That is, a bot-master may design his botnet in
such a way that bots do not maintain proper connectivity
with other bot-peers. Again, since ‘high-duration conversation’
behavior of P2P bots lies at the heart of the detection algorithm
of PeerShark, this technique can surely defeat its detection
mechanism. But this will come at a very heavy cost for the
bot-masters. If the bots do not maintain connectivity with
their peers, propagating Command & Control messages and/or
updates will involve much higher latencies. And this will result
into the usability (and thus the profitability) of the botnet itself
comes into question.

Furthermore, assume the case of a peer A which is engaged
in P2P file sharing with a benign peer B, but is also covertly
a part of a botnet and is engaged in exchanging Command &
Control with a malicious peer C. PeerShark will see these as
two conversations, namely A to B and A to C. Since PeerShark
regards a conversations as ‘malicious’ even if either of the IPs
(either source or destination) is malicious, A to C is identified
as ‘malicious’ without hesitation. But since the conversation
between A and B also involves one malicious peer (namely A),
this conversation will also be tagged as malicious. Although
it is a limitation on the part of PeerShark to regard that peer
B is engaged in a malicious conversation, it is not a serious
shortcoming since peer B is, as a matter of fact, conversing
with a peer which has been compromised, and thus it runs high
chances of being infected in future. Thus, raising an alarm for
peer B (apart from A and C) is not completely unwarranted.

Finally, as described in the Packet Filtering Module (Sec-
tion V), PeerShark discards all packets having a zero payload.
This was necessary to remove corrupted packets and sanitize
the network traces obtained from authors in [24]. However,
such an approach has an inherent drawback of dropping all
legitimate packets with zero payloag- such as TCP connec-
tion establishment (SYN) packets. Further, being protocol-
oblivious, PeerShark does not differentiate between TCP and
UDP packets. This can be exploited by an active adversary who
may use zero payload TCP packets (SYN or ACK packets) to
exchange simple commands between bots. Some solutions for
the limitations are proposed in the next section.

VIII. CONCLUSION & FUTURE WORK

In this paper, we presented PeerShark, a novel approach
which extends the previous efforts for P2P botnet detection.
The main contribution of PeerShark is the detailed evaluation
of a conversation-based approach which was clearly shown
to be advantageous over traditional flow-based approaches.
Using the simple and novel conversation-based features, Peer-
Shark could also correctly categorize different kinds of P2P
applications- whether malicious or benign- with high accuracy.

However, the accuracy obtained with classification of be-
nign P2P applications is relatively lower as compared to
the accuracy of detection of P2P botnets. Accurate detection
of these applications is an important area of future work.
The present evaluation was also limited to two benign P2P
applications. We plan to add greater variety of benign P2P
applications to our dataset and experiment with several other
features which can help in correctly categorizing P2P traffic-
such as the control (or management) traffic information of P2P
applications [24].

A few limitations of the present implementation of Peer-
Shark were discussed in the previous section. Most of these
limitations are tethered to the fact that PeerShark’s present ap-
proach gives a bird’s eye-view of the conversations happening
in the network. Being flow-oblivious (i.e., port and protocol-
oblivious), many lower-level details (such as the Transport
layer protocol) are neglected. We plan to address these lim-
itations by modifying PeerShark to begin with a flow-aware
approach followed by clustering of similar flows (clustered on
the basis of, say, inter-arrival time, average payload length,
etc.). Then, the flow-oblivious conversation aggregation will
be performed for all the flows belonging to a particular cluster
only. If more than one P2P application is running between
two peers (either benign or malicious), the flows from different
applications are expected to get separated into different clusters
(because of the different nature of flows seen in different
application). Work on this approach is already in progress, and
we expect it to address the limitations and possible evasions
addressed previously.

As a part of work-in-progress, we are extending our ap-
proach with a distributed model for data collection where data
collectors sit closer to the nodes inside the network (say at wi-
fi access points). This will give greater visibility of the network
traffic which occurs over LAN and never touches the backbone
router of an enterprise. Such insight can be very valuable for
detecting P2P bots inside a network perimeter which maintain
connectivity with each other over LAN in a P2P fashion, but
limit the conversation with the outside world via one or two
designated peers only.

114114114



ACKNOWLEDGMENT

This work was supported by Grant number 12(13)/2012-
ESD for scientific research under Cyber Security area from the
Department of Information Technology, Govt. of India, New
Delhi, India.

REFERENCES

[1] “Ipoque internet study 2008/2009,” http://www.ipoque.com/en/
resources/internet-studies, accessed on 4 January 2014.

[2] “Sandvine global internet phenomena report 2013,” https://www.
sandvine.com/trends/global-internet-phenomena/, accessed on 4 Jan-
uary 2014.

[3] R.-A. Shang, Y.-C. Chen, and P.-C. Chen, “Ethical decisions about
sharing music files in the p2p environment,” Journal of Business Ethics,
vol. 80, no. 2, pp. 349–365, 2008.

[4] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson, “Privacy-
preserving p2p data sharing with oneswarm,” in ACM SIGCOMM
Computer Communication Review, vol. 40, no. 4. ACM, 2010, pp.
111–122.

[5] J.-T. Kim, H.-K. Park, and E.-H. Paik, “Security issues in peer-to-peer
systems,” in Advanced Communication Technology, 2005, ICACT 2005.
The 7th International Conference on, vol. 2. IEEE, 2005, pp. 1059–
1063.

[6] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer
content distribution technologies,” ACM Computing Surveys (CSUR),
vol. 36, no. 4, pp. 335–371, 2004.

[7] “Bittorrent,” http://www.bittorrent.com/, accessed on 17 December
2013.

[8] “Seti @ home,” http://setiathome.berkeley.edu/, accessed on 22 January
2014.

[9] “Livestation,” http://www.livestation.com/, accessed on 22 January
2014.

[10] “Skype,” http://www.skype.com/en/, accessed on 17 December 2013.

[11] J. Buford, H. Yu, and E. K. Lua, P2P networking and applications.
Morgan Kaufmann, 2009.

[12] P. Narang, J. M. Reddy, and C. Hota, “Feature selection for detection
of peer-to-peer botnet traffic,” in Proceedings of the 6th ACM India
Computing Convention, 2013, pp. 16:1–16:9.

[13] C. Kanich, N. Weaver, D. McCoy, T. Halvorson, C. Kreibich,
K. Levchenko, V. Paxson, G. M. Voelker, and S. Savage, “Show me the
money: Characterizing spam-advertised revenue.” in USENIX Security
Symposium, 2011, pp. 15–15.

[14] D. Dittrich and S. Dietrich, “P2p as botnet command and control: a
deeper insight,” in Malicious and Unwanted Software, 2008. MALWARE
2008. 3rd International Conference on. IEEE, 2008, pp. 41–48.

[15] C. Rossow, D. Andriesse, T. Werner, B. Stone-Gross, D. Plohmann,
C. J. Dietrich, and H. Bos, “Sok: P2pwned-modeling and evaluating
the resilience of peer-to-peer botnets,” in Security and Privacy (SP),
2013 IEEE Symposium on. IEEE, 2013, pp. 97–111.

[16] D. Andriesse, C. Rossow, B. Stone-Gross, D. Plohmann, and H. Bos,
“Highly resilient peer-to-peer botnets are here: An analysis of
gameover zeus,” in Malicious and Unwanted Software:” The Ameri-
cas”(MALWARE), 2013 8th International Conference on. IEEE, 2013,
pp. 116–123.

[17] “Hacked fridge part of botnet attack,” http://asia.cnet.com/
hacked-fridge-part-of-botnet-that-sent-750000-spam-emails-62223486.
htm, Accessed on 12th February 2014.

[18] S. Sen, O. Spatscheck, and D. Wang, “Accurate, scalable in-network
identification of p2p traffic using application signatures,” in Proceedings
of the 13th international conference on World Wide Web. ACM, 2004,
pp. 512–521.

[19] J. Li, S. Zhang, Y. Lu, and J. Yan, “Real-time p2p traffic identification,”
in Global Telecommunications Conference, 2008. IEEE GLOBECOM
2008. IEEE. IEEE, 2008, pp. 1–5.

[20] M. Iliofotou, H.-c. Kim, M. Faloutsos, M. Mitzenmacher, P. Pappu,
and G. Varghese, “Graph-based p2p traffic classification at the internet
backbone,” in INFOCOM Workshops 2009, IEEE. IEEE, 2009, pp.
1–6.

[21] G. Gu, R. Perdisci, J. Zhang, W. Lee et al., “Botminer: Clustering
analysis of network traffic for protocol-and structure-independent botnet
detection.” in USENIX Security Symposium, 2008, pp. 139–154.

[22] J. François, S. Wang, R. State, and T. Engel, “Bottrack: Tracking botnets
using netflow and pagerank,” in Proceedings of the 10th International
IFIP TC 6 Conference on Networking - Volume Part I, 2011, pp. 1–14.

[23] H. Hang, X. Wei, M. Faloutsos, and T. Eliassi-Rad, “Entelecheia:
Detecting p2p botnets in their waiting stage,” in IFIP Networking
Conference, 2013, 2013, pp. 1–9.

[24] B. Rahbarinia, R. Perdisci, A. Lanzi, and K. Li, “Peerrush: Mining
for unwanted p2p traffic,” in Detection of Intrusions and Malware,
and Vulnerability Assessment, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2013, vol. 7967, pp. 62–82.

[25] J. Zhang, R. Perdisci, W. Lee, X. Luo, and U. Sarfraz, “Building a
scalable system for stealthy p2p-botnet detection,” Information Foren-
sics and Security, IEEE Transactions on, vol. 9, no. 1, pp. 27–38, 2014.

[26] R. Schoof and R. Koning, Detecting peer-to-peer botnets, University of
Amsterdam, 2007, technical report.

[27] S. Nagaraja, P. Mittal, C.-Y. Hong, M. Caesar, and N. Borisov, “Botgrep:
Finding p2p bots with structured graph analysis.” in USENIX Security
Symposium, 2010, pp. 95–110.

[28] J. Zhang, R. Perdisci, W. Lee, U. Sarfraz, and X. Luo, “Detecting
stealthy p2p botnets using statistical traffic fingerprints,” in Depend-
able Systems & Networks (DSN), 2011 IEEE/IFIP 41st International
Conference on. IEEE, 2011, pp. 121–132.

[29] T.-F. Yen and M. K. Reiter, “Are your hosts trading or plotting? telling
p2p file-sharing and bots apart,” in Distributed Computing Systems
(ICDCS), 2010 IEEE 30th International Conference on. IEEE, 2010,
pp. 241–252.

[30] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “Blinc: multilevel
traffic classification in the dark,” in ACM SIGCOMM Computer Com-
munication Review, vol. 35, no. 4. ACM, 2005, pp. 229–240.

[31] T. Karagiannis, A. Broido, M. Faloutsos et al., “Transport layer iden-
tification of p2p traffic,” in Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement. ACM, 2004, pp. 121–134.

[32] S. Zhang, “Conversation-based p2p botnet detection with decision
fusion,” Master’s thesis, Fredericton: University of New Brunswick,
2013.

[33] L. Li, S. Mathur, and B. Coskun, “Gangs of the internet: Towards
automatic discovery of peer-to-peer communities,” in Communications
and Network Security (CNS), 2013 IEEE Conference on. IEEE, 2013,
pp. 64–72.

[34] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[35] R. R. Bouckaert, “Bayesian network classifiers in weka for version 3-
5-7,” Artificial Intelligence Tools, vol. 11, no. 3, pp. 369–387, 2008.

[36] Y. Freund and R. E. Schapire, “Experiments with a new boosting algo-
rithm,” in Thirteenth International Conference on Machine Learning.
San Francisco: Morgan Kaufmann, 1996, pp. 148–156.

115115115


