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Abstract

We proposea new approachto the problem
of searchinga spaceof policies for a Markov
decision process(MDP) or a partially observ-
able Markov decisionprocessPOMDP), given
amodel.Our approachs basedonthefollowing
obsenation: Any (PO)MDP canbe transformed
into an “equivalent” POMDP in which all state
transitionggiventhecurrentstateandaction)are
deterministic. This reduceghe generalproblem
of policy searchto onein which we needonly
considePOMDPswith deterministidransitions.
We give a naturalway of estimatingthe valueof
all policiesin thesetransformed®OMDPs. Pol-
icy searchis thensimply performedby searching
for a policy with high estimatedvalue. We also
establishconditionsunderwhich our value esti-
mateswill begood,recoveringtheoreticaresults
similar to thoseof Kearns MansourandNg [7],
but with “samplecompleity” boundsthat have
only apolynomialratherthanexponentialdepen-
denceon the horizontime. Our methodapplies
to arbitrary POMDPSs,including oneswith infi-
nite stateand action spaces. We also present
empirical resultsfor our approachon a small
discreteproblem,and on a complex continuous
state/continuouactionprobleminvolving learn-
ing to ride a bicycle.

1 Intr oduction

In recentyears,therehasbeengrowing interestin algo-
rithms for approximateplanningin (exponentiallyor even
infinitely) large Markov decisionprocessegfMDPs) and
partially obsenableMDPs (POMDPSs).For suchlarge do-
mains, the value and Q-functionsare sometimescompli-
catedanddifficult to approximategventhoughtheremay
be simple, compactlyrepresentablgolicies that perform
verywell. This obsenationhasled to particularinterestin
directpolicy seach methodge.g.,[16, 8, 15, 1, 7]), which
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attemptto choosea goodpolicy from somerestrictedclass
of policies.

Most approachedo policy searchassumeaccessto the
POMDPeitherin the form of the ability to executetrajec-
toriesin the POMDR or in the form of a black-box“gen-

eratve model” thatenableghe learnerto try actionsfrom

arbitrary states. In this paper we will assumea stronger
modelthanthese:roughly, we assumewve have animple-

mentationof a generatie model, with the differencethat
it hasno internalrandomnumbergeneratorso thatit has
to askusto provide it with randomnumberswhenever it

needshem(suchasif it needsa sourceof randomnes$o

draw samplesrom the POMDPS5 transitiondistributions).
This small changeto a generatie model resultsin what
wewill call adeterministicsimulatve model,andmakesit

surprisinglypowerful.

We shov how, given a deterministic simulatve model,
we can reducethe problem of policy searchin an ar
bitrary POMDP to one in which all the transitionsare
deterministic—thais, a POMDP in which taking an ac-
tion a in a states will always deterministicallyresultin
transitioningto somefixedstates’. (Theinitial statein this
POMDP may still be random.) This reductionis achieved
by transformingthe original POMDPinto an“equivalent”
onethathasonly deterministidransitions.

Our policy searchalgorithmthen operateson these*sim-
plified” transformed®OMDPs.We call our methodPEGA -
sus (for Policy Evaluation-of-Goodnesand SearchUs-
ing Scenariosfor reasonghat will becomeclear). Our
algorithm also bearssomesimilarity to one usedin Van
Roy [12] for valuedeterminatiorin the settingof fully ob-
senableMDPs.

The remainderof this paperis structuredasfollows: Sec-
tion 2 definesthe notationthat will be usedin this pa-
per, andformalizesthe concept®f deterministicsimulative
modelsand of families of realizabledynamics. Section3
thendescribedhiow we transformPOMDPsinto oneswith
only deterministictransitions,and givesour policy search
algorithm. Section4 goeson to establishconditionsun-
der which we may give guaranteesn the performanceof



thealgorithm,Section5 describe®urexperimentakesults,
andSection6 closeswith conclusions.

2 Preliminaries

This sectiongivesour notation,andintroduceshe concept
of thesetof realizabledynamicsof a POMDPundera pol-
icy class.

A Markov decision process (MDP) is a tuple
(S,D, A, {P:a(-)},7,R) where: S is a setof states D
is the initial-state distrib ution, from which the start-state
s is drawn; A is a setof actions, {Ps,(-)} arethetran-
sition probabilities, with P,, giving the next-statedistri-
bution upontaking actiona in states; v € [0,1) is the
discount factor; and R is the reward function, bounded
by R...x. Forthesale of concretenessyewill assumeyn-
lessotherwisestatedthatS = [0, 1]4s is ads-dimensional
hypercubeFor simplicity, we alsoassumeewardsarede-
terministic, and written R(s) ratherthan R(s, a), the ex-
tensionsbeingtrivial. Lastly, everythingthat needsto be
measurablés assumedo be measurable.

A policy is ary mappingr : S — A. Thevalue function
of apolicy 7 isamapV™ : S — R, sothatV™(s) gives
the expecteddiscountedsum of rewardsfor executing«
startingfrom states. With somealuseof notation,we also
definethevalueof apolicy, with respecto theinitial-state
distribution D, accordingto

V(m) = Esgun [V (0)] 1)

(wherethe subscriptsy ~ D indicatesthatthe expectation
is with respecto sy drawn accordingto D). Whenwe are
consideringmultiple MDPs andwish to make explicit that
avaluefunctionis for a particularMDP M, we will also
write V7 (s), Var (7), etc.

In the policy searchsetting, we have somefixed classII
of policies,anddesireto find a goodpolicy = € II. More
preciselyfor agivenMDP M andpolicy classlI, define

opt(M,II) = sup Vi (m). (2)
well

Our goalis to find a policy 7 € II sothatV (#) is closeto
opt(M,1I).

Notethatthisframewnork alsoencompassesasesvhereour

family IT consistof policiesthatdependnly oncertainas-

pectsof thestate.In particulatin POMDPswe canrestrict
attentionto policiesthat dependonly on the obsenables.
Thisrestrictionresultsin a subclas®f stochastianemory-
free policies! By introducing artificial “memory vari-

ables”into the processstate, we canalsodefinestochastic
limited-memorypolicies[9] (which certainlypermitssome
beliefstatetracking).

! Althoughwe have notexplicitly addressedtochastigolicies
so far, they are a straightforvard generalizatione.g. usingthe
transformatiorto deterministicpoliciesgivenin [7]).

Sincewe areinterestedn the “planning” problem,we as-
sumethatwe aregivenamodelof the(PO)MDP Muchpre-
viouswork hasstudiedthe caseof (PO)MDPsspecifiedvia
a generatie model[7, 13], which is a stochastidunction
thattakesasinputary (s, a) state-actiorpair, andoutputs
s' accordingto P;,(-) (andthe associatedeward). In this
paperwe assumea strongemodel. We assumeve have a
deterministicfunctiong : S x 4 x [0,1]%7 — S, sothat
for ary fixed (s, a)-pair, if 7'is distributedUniform|0, 1]#,

theng(s, a, p) is distributedaccordingo thetransitiondis-
tribution P, (). In otherwords,to draw a samplefrom

Py, (-) for somefixed s anda, we needonly draw g uni-

formly in [0, 1]¢7, andthentake g(s, a, ) to beour sample.
Wewill call suchamodeladeterministicsimulative model
for a(PO)MDR

Sincea deterministicsimulatve modelallows usto simu-
lateageneratiemodel,it is clearlyastrongemodel. How-

ever, mostcomputelimplementationsf generatre models
also provide deterministicsimulatve models. Considera
generatie modelthatis implementedsia a procedurehat
takess anda, makesat mostdp callsto arandomnumber
generatarandthenoutputss’ drawn accordingto P, (-).

Then this procedureis alreadyproviding a deterministic
simulatve model. Theonly differences thatthedetermin-
istic simulatve modelhasto make explicit (or “expose”)its

interfaceto the randomnumbergeneratorvia p. (A gen-
eratve modelimplementedria a physicalsimulationof an
MDP with “resets”to arbitrary statesdoesnot, however,

readilyleadto a deterministicsimulative model.)

Letusexaminesomesimpleexamplef deterministicsim-

ulative models.Supposehatfor a state-actiompair (s1, a1)

andsomestatess’ ands’, Ps,q,(s') = 1/3, Ps;q,(s") =

2/3. Thenwe may choosedp = 1 sothatp = p is just

areal number andlet g(s1,a1,p) = s’ if p < 1/3, and
g(s1,a1,p) = s" otherwise.As anotherexample,suppose
S = R, and P,,(-) is anormaldistribution with a cumula-
tive distribution function Fs, (). Againlettingdp = 1, we

maychoosey to beg(s,a,p) = F..1(p).

sa

It is a fact of probability and measureheory that, given
ary transitiondistribution P;, (-), sucha deterministicsim-
ulative model g can always be constructedfor it. (See,
e.g.[4].) Indeed,sometexts (e.g.[2]) routinely define
POMDPsusing essentiallydeterministicsimulatve mod-
els. However, therewill oftenbemary differentchoicesof
g for representing (PO)MDR andit will beupto theuser
to decidewhich oneis most“natural” to implement.As we
will seelater, the particularchoiceof g thattheusermakes
canindeedimpactthe performanceof our algorithm, and
“simpler” (in asensdo beformalized)implementationare
generallypreferred.

To closethis section,we introducea conceptthat will be
useful later, that capturesthe family of dynamicsthat a
(PO)MDP and policy classcanexhibit. Assumea deter
ministic simulatve modelg, andfix a policy 7. If we are



executingm from somestates, the successostateis deter
minedby f.(s,p) = g(s,n(s),P), whichis afunctionof s
andp. Varyingw over II, we geta whole family of func-
tions F = {fx|fx(s,P) = g(s,7(s),p)} mappingfrom
S x [0,1]% into successostatesS. This setof functions
F shouldbe thoughtof asthe family of dynamicsrealiz-
ableby the POMDPandII, thoughsinceits definitiondoes
dependon the particulardeterministicsimulatve modelg
thatwe have chosenthis is “as expressedvith respecto
g For eachf, alsolet f; bethei-th coordinatefunction
(sothat f;(s, ) is thei-th coordinateof f(s, 7)) andlet F;
bethecorrespondingamiliesof coordinatdunctionsmap-
pingfrom S x [0, 1]?# into [0, 1]. Thus,F; capturesall the
waysthatcoordinate of the statecanevolve.

We arenow readyto describeour policy searcimethod.

3 Policy search method

In thissectionwe shav how wetransforma (PO)MDPinto

an“equivalent” onethathasonly deterministictransitions.
This thenleadsto naturalestimates’ () of the policies’

valuesV (). Finally, we may searchover policiesto opti-

mizeV (), to find a (hopefully) goodpolicy.

3.1 Transformation of (PO)MDPs

Givena (POIMDP M = (S,D, A, {Ps.(-)},7v,R) and
a policy classTI, we describehow, using a determinis-
tic simulatve model g for M, we constructour trans-
formed POMDP M' = (S',D', A, {P.,(-)},7,R') and
correspondinglassof policiesIl’, sothat M’ hasonly de-
terministic transitions(thoughits initial statemay still be
random). To simplify the exposition,we assumeip = 1,
sothatthetermsp arejust realnumbers.

M’ is constructeds asfollows: The actionspaceanddis-

countfactorfor M' arethe sameasin M. The statespace
for M'"is S x [0,1]%. In otherwords,atypical statein A/’

canbewrittenasavector(s, p1, pa, . . .) — this consistof

a states from the original statespacesS, followed by an
infinite sequencef realnumbersn [0, 1].

The rest of the transformationis straightforvard. Upon

taking actiona in state(s,p;,p2,...) in M', we deter

ministically transitionto the state (s’, p2,ps, ...), where
s’ = g(s,a,p1). In otherwords,the s portion of the state
(which shouldbe thoughtof asthe “actual” state)changes
to s, andonenumberin theinfinite sequencép,, pa, - - .)

is usedup to generates’ from the correctdistribution. By

the definition of the deterministicsimulatve modelg, we

seethatsolong asp; ~ Uniform|0, 1], thenthe “next-

state”distribution of s’ isthesameasif we hadtakenaction
a in states (randomizatioroverp, ).

Finally, we chooseD’, the initial-state distribution over
S' = 8§x[0,1]*, sothat(s, p1, pa, - - .) drawnaccordingo
D' will besothats ~ D, andthe p;’s aredistributedi.i.d.
Uniform(0, 1]. For eachpolicy = € II, alsolet therebe a

corresponding’ € II', givenby 7’ (s, p1, p2, - . .) = 7 (s),
andlettherewardbegivenby R’ (s, p1,p2,...) = R(s).

If oneobsenresonly the“s”-portion (but not the p;’s) of a
sequencef stateggeneratedn the POMDP M’ usingpol-

icy ', oneobtainsa sequencéhatis drawn from the same
distribution aswould have beengeneratedrom theoriginal
(PO)MDP M underthecorrespondingolicy 7 € II. It fol-

lows that, for correspondingpoliciest € II and=’ € IT,

we havethatVas(m) = Var (7). Thisalsoimpliesthatthe
bestpossibleexpectedreturnsin both (PO)MDPsarethe
same:opt(M, 1) = opt(M',I1").

To summarizewe have shovn how, usinga deterministic
simulative model, we cantransformany POMDP M and
policy classlI into an“equivalent”POMDP M’ andpolicy
classII’, so thatthe transitionsin M’ are deterministic;
i.e.,givenastates € S’ andanactiona € A, thenext-state
in M' is exactly determined. Sincepoliciesin II andII’
have the samevalues,if we canfind apolicy 7' € II' that
doeswell in M' startingfrom D', thenthe corresponding
policy = € II will alsodo well for the original POMDP
M startingfrom D. Hence,the problemof policy search
in generalPOMDPsis reducedto the problemof policy
searchin POMDPswith deterministidransitiondynamics.
In the next section,we shav how we canexploit this fact
to derive a simpleandnaturalpolicy searchmethod.

3.2 PeGAsus: A methodfor policy search

As discussedit sufficesfor policy searchto find a good
policy ' € T’ for the transformed®OMDR sincethe cor-
respondingpolicy = € II will bejustasgood. To do this,
we first constructan approximationVy (-) to Vas(-), and
thensearchover policiesr’ € II' to optimize Vay (7') (as
a proxy for optimizing the hard-to-computé/as ()), and
thusfind a (hopefully) goodpolicy.

RecallthatV, is givenby
V() = Eggnnr [Vii (s0)] 5 ®3)

wheretheexpectations overtheinitial statesg € S’ drawvn
accordingto D’'. Thefirst stepin the approximationis to
replacethe expectationover the distribution with a finite
sampleof states. More precisely we first drav a sam-

ple {s(()l),sgz), .. .,s(()m)} of m initial statesaccordingto
D'. Thesestatesalsocalled“scenarios”(atermfrom the
stochasticoptimizationliterature; see,e.g.[3]), definean

approximatiorto Vi (r):
Var () ~ 3 vz (58 4
e (m) % — > Vi (s5): @)
i=1

Sincethe transitionsin M’ are deterministic,for a given
states € S’ andapolicy = € II', the sequencef states
thatwill bevisiteduponexecutingr from s is exactlydeter

mined;hencethe sumof discountedewardsfor executing



w from s is alsoexactly determinedThus,to calculateone
of the termsV 7, (s(()’)) in the summationin Equation(4)

correspondingo scenariOS(()’), we needonly useour de-
terministicsimulative modelto find the sequence®f states

visited by executingz from s(()’), and sumup the result-
ing discountedewards.Naturally, thiswould beaninfinite

sum, so the second(and standard)part of the approxima-
tion is to truncatethis sumaftersomenumberH of steps,
whereH is calledthehorizontime. Here,we chooseH to

bethee-horizontime H, = log,, (¢(1 —7)/2Rmax), Sothat
(becausef discounting)the truncationintroducesat most

€/2 errorinto the approximation.

To summarize givenm scenarioss(()l), e, s((]m), our ap-
proximationto V. is the deterministicfunction

N 1 & ; ; i
VMI(T(') = EZRI(S(()))_'_,YRI(Sg))_i_”‘+,YH€RI(S(H)€)
i=1

where (s(()i) , sﬁi), .

ministically visited by 7 startingfrom s(()i). Givenm sce-
narios thisdefinesanapproximatiorto V. () for all poli-
ciesw € IT".

55‘2) is the sequencef statesdeter

The final implementationatdetail is that, sincethe states
s(()i) € S x [0,1]*° areinfinite-dimensionalvectors, we
have no way of representinghem (and their successor
states)explicitly. But becauseave will be simulatingonly
H, steps,we needonly represempgi),pg"),...,pg)e, of

the states{” = (s, p{?,p",...), and so we will do
just that. Viewed in the spaceof the original, untrans-
formed POMDR evaluatinga policy this way is therefore
alsoakinto generatingn Monte Carlotrajectoriesandtak-
ing their empiricalaveragereturn,but with the crucial dif-

ferencethatall therandomizations “fix ed” in advanceand
“reused’for evaluatingdifferents.

Having usedm scenariogo defineVy, () for all 7, we
may searchover policies to optimize Ve (m). We call
thispolicy searchmethodPeGA sus: Policy Evaluation-of-
Goodnes#\nd SearchUsing ScenariosSinceV () is a
deterministicfunction, the searchprocedureonly needsto
optimizea deterministidunction,andarny numberof stan-
dard optimizationmethodsmay be used. In the casethat
the action spaceis continuousandIl = {my|f € R} is
a smoothlyparameterizedamily of policies (so 7y (s) is
differentiablein 4 for all s) thenif all the relevantquanti-
tiesaredifferentiablejt is alsopossibleto find the deriva-
tives (d/d) Vi (g), andgradientascentmethodscanbe
usedto optimize Vy: (75). Onecommonbarrierto doing
this is that R is often discontinuouspeing (say) 1 within
a goal region and 0 elsavhere. One approachto dealing
with this problemis to smooth R out, possiblyin com-
bination with “continuation” methodsthat gradually un-
smoothit again. An alternatve approachthatmay be use-
ful in the settingof continuousdynamicalsystemss to al-
ter the reward function to usea continuous-timemodel of

discounting Assumingthatthetime atwhich theagenten-
tersthe goalregionis differentiablethenVy (7y) is again
differentiable?

4 Main theoretical results

PEGAsUs samplesa numberof scenariosfrom D', and
usesthemto form anapproximationl/ () to V(). If V is
auniformly goodapproximatiorto V', thenwe canguaran-
teethatoptimizingf/ will resultin apolicy with valueclose
to opt(M,II). This sectionestablishexonditionsunder
whichthisoccurs.

4.1 The caseof finite action spaces

We begin by consideringthe caseof two actions,A =

{ai,ay}. Studying policy searchin a similar setting,
Kearns,MansourandNg [7] establisheadtonditionsunder
which their algorithm gives uniformly good estimatesof

thevaluesof policies.A key to thatresultwasthatuniform

cornvergencecanbe establishedo long asthe policy class
IT haslow “complexity.” Thisis analogougo the settingof

supervisedearning,wherea learningalgorithmthat uses
a hypothesistlass? that haslow compleity (suchasin

the senseof low VC-dimension)will alsoenjoy uniform

convergenceof its errorestimatego their means.

In our setting,sincell is just a classof functionsmapping
from S into {a1, a2}, it is just a setof booleanfunctions.
Hence,VC(II), its Vapnik-Cheronenkisdimension[14],
is well defined.Thatis, we sayIl shattes a setof m states
if it canrealizeeachof the 2™ possibleaction combina-
tionsonthem,andVC(II) is justthe sizeof thelargestset
shatteredy II. Theresultof Kearnsetal. thensufficesto
give thefollowing theorem?

Theorem1 Leta POMDP with actionsA = {a;,a2} be
given,and let IT be a classof strategiesfor this POMDR
with Vapnik-Chervonenkisimensiond = VC(II). Also

letanye,d > 0 befixed,andlet V be the policy-value
estimatesieterminedy PEGASUS usingm scenariosand

%More precisely if the agententersthe goal region on some
time step,thenratherthangiving it a reward of 1, we figure out
whatfractiont € [0, 1] of thattime step(measuredh continuous
time) the agenthadtakento enterthe goal region, andthengive
it reaward~" instead Assumingr is differentiablein the systems
dynamicstheny™ andhenceV/,,: (4) arenow alsodifferentiable
(otherthanon a usually-measur® set,for examplefrom trunca-
tion at H. steps).

3Thealgorithmof KearnsMansourandNg usesa “trajectory
tree”methodto find theestimated/ (r); sinceeachtrajectorytree
is of sizeexp(O(H.)), they werevery expensve to build. Each
scenaridn PEGASUS canbeviewedasa compactrepresentation
of atrajectorytree(with atechnicaldifferencethatdifferentsub-
treesare not constructedndependently)and the proof given in
Kearnsetal. thenapplieswithoutmodificationto give Theoreml.



a horizontimeof H,. If

m=0 (poly (d, Fmax 1o
€

c3)) ©

thenwith probability at least1 — &, V' will be uniformly
closeto V:

V() — V(Tl’)‘ <e¢ forallmell (6)

Usingthetransformatiorgivenin Kearnsetal., the caseof
afinite actionspacewith |A| > 2 alsogivesriseto essen-
tially the sameuniform-corvergenceresult, so long asII
haslow “complexity.”

The bound given in the theoremhas no dependencen
the size of the statespaceor on the “complexity” of the
POMDPS5 transitionsandrewards. Thus,solong asII has
low VC-dimensionuniform corvergencewill occur inde-
pendentlyof how complicatedhePOMDPis. Asin Kearns
et al., this theoremthereforerecoversthe bestanalogous
resultsin supervisedearning,in which uniform corver
genceoccursso long asthe hypothesislasshaslow VC-
dimension,regardlessof the size or “complexity” of the
underlyingspaceandtargetfunction.

4.2 The caseof infinite action spaces:*Simple” II is
insufficient for uniform convergence

We now consider the case of infinite action spaces.
Whereasin the 2-actioncase I being“simple” wassuffi-
cientto ensureuniform corvergencethisis notthe casen
POMDPswith infinite actionspaces.

SupposeA is a (countably or uncountably)infinite set
of actions. A “simple” classof policieswould be IT =
{me|ma(s) = a,a € A} — the setof all policiesthatal-
wayschoosehe sameaction,regardlesof the state.Intu-
itively, this is the simplestpolicy thatactuallyusesaninfi-
nite actionspacealso,arny reasonablaotionof complexity
of policy classeshouldassignll a low “dimension” If it
weretruethatsimplepolicy classesmply uniform corver
gence,thenit is certainly true that this II shouldalways
enjoy uniform convergence.Unfortunately this is not the
caseaswe now show.

Theorem?2 Let A be an infinite set of actions, and let

II = {m4|me(s) = a,a € A} bethe correspondingset

of all “constantvalued” policies. Thenthere existsa finite-

stateMDP with actionspaceA, and a deterministicsimu-

lative modelfor it, sothat PEGASUS' estimatesusingthe

deterministicsimulativemodeldo not uniformly corverge

to their meansi.e. Theris ane > 0, sothatfor estimates
14 derivedusinganyfinite numberm of scenariosandany

finite horizontime thereis a policy = € II sothat

[V (r) = V(n)| > e (7)

The proof of this Theoremwhichis not difficult, is in Ap-

pendixA. Thisresultshovsthatsimplicity of II is not suf-
ficient for uniform corvergencein the caseof infinite ac-
tion spacesHowever, thecounter&ampleusedn theproof
of Theorem2 hasa very complex g despitethe MDP be-
ing quite simple. Indeed,a differentchoicefor g would
have madeuniform corvergenceoccut* Thus, it is natu-
ral to hypothesizeéhatassumptionsn the “complexity” of

g arealsoneededo ensureuniform corvergence.As we
will shortly see thisintuition is roughly correct. Sinceac-
tions affect transitionsonly throughg, the crucial quantity
is actuallythe compositionof policiesandthe determinis-
tic simulatve model— in otherwords,the classF of the
dynamicsrealizablein the POMDP and policy class,us-
ing a particulardeterministicsimulatve model.In the next

section,we shav how assumptionsn thecomplexity of F

leadsto uniform corvergenceboundsof thetypewe desire.

4.3 Uniform corvergencein the caseof infinite action
spaces

For the remainderof this section,assumeS = [0,1]%s.
Then F is a classof functions mappingfrom [0, 1]¢s x
[0,1]77 into [0, 1]¢s, and so a simple way to captureits
“complexity” is to capturethe complexity of its families
of coordinatefunctions,*;, i = 1,...,ds. EachF; isa
family of functionsmappingfrom [0, 1]%s x [0, 1]¢7 into
[0,1], the i-th coordinateof the statevector Thus, F; is
justafamily of real-valuedfunctions— the family of i-th
coordinatedynamicsthatII canrealize,with respecto g.

Thecompleity of aclassof boolearfunctionsis measured
by its VC dimensiondefinedto bethesizeof thelargestset
shatteredy theclass.To capturethe “complexity” of real-
valuedfamiliesof functionssuchasF;, we needageneral-
ization of the VC dimension. The pseudo-dimensiordue
to Pollard[10] is definedasfollows:

Definition (Pollard, 1990).Let H beafamily of functions
mappingfromaspaceX into R. Letasequencef d points
z1,...,2q4 € X begiven. We say# shattes z1,...,z4

if thereexists a sequencef real numbersty, ..., tq such
thatthe subsef R? givenby {(h(z1) — t1,...,h(zq) —

ta)|h € H} intersectsall 2¢ orthantsof R? (equivalently,

if for any sequencef d bits by,...,bq € {0,1}, thereis

afunctionh € H suchthath(z;) > t; & b; = 1, for

alli = 1,...,d). The pseudo-dimensionof H, denoted
dimp(H), is the size of the largestsetthatH shatterspr

infinite if 7 canshatterarbitrarily largesets.

The pseudo-dimensiogeneralizeshe VC dimensionand
coincideswith it in the casethat?{ mapsinto {0,1}. We

will useit to capturethe“complexity” of the classe®f the

POMDPS5realizabledynamics?;. We alsoremindreaders
of thedefinitionof Lipschitz continuity.

4For example,g(so, a,p) = s_1 if p < 0.5, s1 otherwisesee
AppendixA.



Definition. A function f : R® — R is Lipschitz con-
tinuous (with respectto the Euclideannorm on its range
anddomain)if thereexists a constantB suchthat for all
z,y € dom(f), |[f(z) — f(y)ll2 < Bllz —yll2. Here,
B is calleda Lipschitz bound. A family of functionsH
mappingfrom R™ into R is uniformly Lipschitz contin-
uous with LipschitzboundB if every functionh € H is
Lipschitzcontinuouswith LipschitzboundB.

We now stateour maintheoremwith a corollaryregarding
whenoptimizing V" will resultin a provably goodpolicy.

Theorem3 Leta POMDP with statespaceS = [0, 1]%,

and a possiblyinfinite action spacebe given. Also let

a policy classTl, and a deterministicsimulative model
g: S x Ax[0,1]4" — S for thePOMDPbegiven.LetF

be the correspondingamily of realizabledynamicsin the
POMDR and F; theresultingfamiliesof coordinatefunc-
tions. Suppos¢hatdimp(F;) < dforeadhi =1,...,ds,

andthat eadh family F; is uniformly Lipschitz continuous
with Lipschitz boundat mostB, andthat the reward func-
tion R : S — [—Rmax, Rmax] IS alsoLipscitz continuous
with Lipschitz boundat mostBg. Finally, lete,§ > 0 be
given,andlet V bethe policy-valueestimatesietermined
by PEGASUs usingm scenariosanda horizontime of H..

Ifm=

0 (poly (d, Fmax ,log
€

thenwith probability at least1 — 4, V will be uniformly
closeto V:

‘V(ﬂ') —V(r)| <e

1 1
d1-—

forall m € I (8)

Corollary 4 Underthe conditionsof Theoem1 or 3, let
m be chosenasin the Theoem. Thenwith probability at
least1 — 4, the policy & chosenby optimizingthe value
estimatesgivenby # = argmax,en V(r), will be near
optimalin IT:

V(#) > opt(M,TI) — 2 )

Remark. The (Lipschitz) continuity assumptiongjive a
sufficient but not necessanget of conditionsfor the the-
orem, and other setsof sufficient conditionscan be en-
visaged. For example,if we assumehat the distribution

on statesinducedby ary policy at eachtime stephasa
boundeddensity thenwe canshowv uniform corvergence
for a large classof (“reasonable”)discontinuousreward
functionssuchas R(s) = 1if s; > 0.5, 0 otherwise’

®Spaceconstraintprecludea detaileddiscussionbut briefly,
this is done by constructingtwo Lipschitz continuousreward
functions Ry and Ry, thatare“close to” andwhich upper and
lower-bound R (andwhich hencegive value estimateghat also
upper andlower-boundour value estimatesinderR); usingthe
assumptiorof boundeddensitiesto shov our valuesunder Ry
andR aree-closeto thatof R; applyingTheorem3 to shav uni-
form convergenceoccurswith Ry and Rz ; andlastly deducing
from this thatuniform corvergenceoccurswith R aswell.

Bgr
IOgB log R ds,dp))

Using tools from [5], it is also possibleto shav similar
uniform corvergenceresultswithout Lipschitz continuity
assumptionsby assuminghatthe family = is parameter
ized by a smallnumberof realnumbersandthat (for all
m € II), g, and R areeachimplementeddy a functionthat
calculategheir resultsusingonly a boundechumberof the
usualarithmeticoperationson realnumbers.

The proof of Theorem3, which usestechniquedirst intro-
ducedby Haussler{6] and Pollard[10], is quite lengthy,
andis deferredo AppendixB.

5 Experiments

In this sectionwe reporttheresultsfrom two experiments.
Thefirst, run to examinethe behaior of PEGASUS para-
metrically, involveda simplegridworld POMDR The sec-
ond studieda complex continuousstate/continuousaction
probleminvolving riding a bicycle.

Figure 1a shaws the finite stateand action POMDP used
in our first experiment. In this problem,the agentstarts
in the lower-left corner andrecevesa —1 reinforcement
per stepuntil it reacheghe absorbingstatein the upper
right corner The eight possibleobsenations,alsoshavn
in the figure, indicate whethereachof the eight squares
adjoiningthe currentposition containsa wall. The policy
classis small,consistingof all 4% = 65536 functionsmap-
ping from the eight possibleobsenationsto the four ac-
tions correspondindo trying to move in eachof the com-
passdirections. Actions are noisy, andresultin moving
in a randomdirection 20% of the time. Sincethe policy
classis smallenoughto exhaustvely enumerategur opti-
mizationalgorithmfor searchingover policieswassimply
exhaustive searchtrying all 48 policiesonthem scenarios,
andpicking the bestone. Our experimentsveredonewith
~ = 0.99 andahorizontime of H = 100, andall resultsre-
portedon this problemareaveragesover 10000trials. The
deterministicsimulative modelwas

d(s,up) if p<0.05

0(s, left) if 0.05 < p<0.10
g(s,a,p) =< d(s,down) if0.10<p<0.15

0(s,right) if 0.15 < p <0.20

0(s,a) otherwise

whered(s, a) denotesgheresultof moving onestepfrom s
in thedirectionindicatedby a, andis s if this move would
resultin runninginto awall.

Figure 1b shavs the resultof runningthis experiment,for
differentnumberof scenariosThevalueof thebestpolicy
within IT is indicatedby thetopmosthorizontalline, andthe
solid curve below thatis the meanpolicy valuewhenusing
our algorithm. As we see,even using surprisinglysmall
numbersof scenariosthe algorithmmanageso find good
policies,andasm becomesarge,thevaluealsoapproaches
theoptimalvalue.
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Figure 1: (a) 5x5 gridworld, with the 8 obserations. (b) PEGASUS resultsusing the normal and complex deterministicsimulatve
models.Thetopmosthorizontalline shaws the valueof the bestpolicy in II; the solid curwve is the meanpolicy valueusingthe normal
model;thelower curwve is the meanpolicy valueusingthe complex model. The (almostnggligible) 1 s.e.barsarealsoplotted.

We had previously predictedthat a “complicated” deter

ministic simulatve modelg canleadto poor results. For

each(s, a)-pair, let b, , : [0, 1] — [0, 1] beahashfunction
that mapsary Uniform[0, 1] randomvariableinto another
Uniform[0, 1] randomvariable® Thenif g is a determin-
istic simulatve model,g' (s, a, p) = g(s, a, hs o(p)) is an-
otheronethat,becausef the presencef thehashfunction,
is amuchmore“complex” modelthang. (Here,we appeal
to the readers intuition aboutcomplex functions, rather
thanformal measuresf complexity.) We would therefore
predictthat using PEGASUs with ¢’ would give worsere-

sultsthang, andindeedthis predictionis borneout by the
resultsasshavn in Figure 1b (dashedcurve). The differ-

encebetweenthe curvesis not large, andthis is also not
unexpectedgiventhe smallsizeof the problem?

Our secondexperimentusedRandlgvand Alstram’s [11]
bicycle simulator wherethe objective is to ride to a goal
onekilometeraway. Theactionsarethetorquer appliedto
thehandlebarandthedisplacement of therider'scenter
of-gravity from the center The six-dimensionaktateused
in [11] includesvariablesfor the bicycle’s tilt angleand
orientation,and the handlebas angle. If the bicycle tilt
exceedsr /15, it falls over and entersan absorbingstate,
receving a large negative reward. The randomnesin the
simulatoris from a uniformly distributedtermaddecdo the
intendeddisplacemenbf the centerof-gravity. Rescaled
appropriatelythis becamehe p term of our deterministic
simulatve model.

We performedpolicy searchoverthefollowing space:We

8In our experiments this wasimplementedby choosing,for
each(s, a) pair, a randominteger k(s, a) from {1,...,1000},
andthenletting hs,o (p) = fract(k(s,a) - p), wherefract(z)
denoteghefractionalpartof z.

"Theorypredictsthatthedifferencebetweery andg’’s perfor

manceshouldbeat mostO(/log |II|/m); se€[7].

selectedavectorZ of fifteen (simple,manually-chosebut
not fine-tuned)featuresof eachstate; actionswere then
choserwith sigmoids:7 = o (w1 - #)(Timax — Tmin) + Tmin,
v = o(ws - )(¥max — Ymin) + Vmin, Whereo(z) =
1/(1 + e *). Note that since our approachcan handle
continuousactionsdirectly, we did not, unlike [11], have
to discretizethe actions. The initial-statedistribution was
manually chosento be representatie of a “typical” state
distribution whenriding a bicycle, andwasalsonot fine-
tuned.We usedonly a smallnumberm = 30 of scenarios,
v = 0.998, H = 500, with the continuous-timemodel of
discountingdiscussecarlier and(essentially)gradientas-
centto optimize over the weights® Shapingrewards, to
reward progresgowardsthe goal, werealsoused?

We ran 10 trials usingour policy searchalgorithm,testing
eachof the resultingsolutionson 50 rides. Doing so, the
medianriding distancego the goalof the 10 differentpoli-
ciesrangedfrom about0.995km° to 1.07km. In all 500
evaluationrunsfor the 10 policies, the worst distancewe
obsenedwasalsoaboutl.07km. Theseresultsaresignifi-
cantly betterthanthoseof [11], which reportedriding dis-
tancesof about7km (sincetheir policies often took very
“non-linear” pathsto the goal), and a single “best-ever”
trial of aboutl.7km.

8Runningexperimentswithout the continuous-timemodel of
discounting,we also obtained,using a non-gradientasedhill-
climbing algorithm, equally goodresultsasthosereportedhere.
Ourimplementatiorof gradientascentusingnumericallyevalu-
atedderivates wasrun with aboundonthelengthof a steptaken
onary iteration,to avoid problemmearV(m)’s discontinuities.

90Otherexperimentaldetails: The shapingreward waspropor
tional to andsignedthe sameasthe amountof progressowards
thegoal. Asin [11], we did notincludethedistance-from-goads
oneof the statevariablesduringtraining; training thereforepro-
ceeding'infinitely distant”from thegoal.

Opjistancesunder1km arepossiblesince,asin [11], the goal

hasa 10mradius.



6 Conclusions

We have shavn how any POMDP canbe transformednto

an “equivalent” onein which all transitionsare determin-
istic. By approximatingthe transformed®OMDP5 initial

statedistribution with a sampleof scenariosye definedan
estimatdor thevalueof everypolicy, andfinally performed
policy searchby optimizing theseestimates. Conditions
were establishedinderwhich theseestimateswill be uni-

formly good,andexperimentalkesultsshoved our method
working well. It is also straightforward to extend these
methodsand resultsto the casesof finite-horizonundis-
countedreward, and infinite-horizonaveragereward with

e-mixing time H..
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Appendix A: Proof of Theorem 2

Proof (of Theorem 2). We constructan MDP with states
s_1,80, ands; plusanabsorbingstate. The reward func-
tionis R(s;) = i fori = —1,0, 1. Discountingis ignored
in thisconstructionBoth s_; ands; transitionwith proba-
bility 1 to theabsorbingstateregardles®f theactiontaken.
Theinitial-statesy hasa .5 chanceof transitioningto each
of s_1 ands;j.

We now constructg, which will dependin a complicated
way onthepterm. LetU = {UY [ai, bi] |ai, b; € [0,1] N

Q,a; < b;,1 < N < oo} bethecountablesetof all finite

unionsof intervalswith rationalendpointsn [0,1]. Let U’

bethecountablesubsebf U thatcontainsall elementof U

thathave total length(Lebesgueaneasuregxactly 0.5. For

example, [1/3,5/6] and[0.0,0.25] U [0.5,0.75] are both

inU'. Let Uy, Us,... beanenumeratiorof the elements
of U’'. Also let {ai,as,...} beanenumeratiorof (some
countablyinfinite subsebf) A. The deterministicsimula-
tive modelon theseactionsis givenby:

s_1 ifpeU;
s1 otherwise

9(s0,a5,p) = {

S0, Pyya,; (81) = Pisya;(s—1) = 0.5 for all a;, andthisis a
correctmodelfor theMDP. NotealsothatV (x) = 0 for alll
m e Il



For ary finite sample of m  scenarios
(50,7M), (s0,7?), ..., (s0, ™), there exists someU;
suchthatp(” ¢ U; forall j = 1,...,m. Thus,evaluating
m; = a; usingthis setof scenariosall m simulatedtrajec-
torieswill transitionfrom s from s;, sothevalueestimate
(assumingH, > 1) for m; is V(w;) = 1. Sincethis argu-
mentholdsfor ary finite numberm of scenariosye have
shawn that V doesnot uniformly corvergeto V (xr) = 0
(overr € II). a

Appendix B: Proof of Theorem 3

Dueto spaceconstraintsthis proof will beslightly dense.
The proof techniquesve useare dueto Haussle6] and

Pollard[10]. Hausslel[6], to which we will berepeatedly
referring, provides a readablentroductionto mostof the

methodausedhere.

We begin with somestandarddefinitionsfrom [6]. For a
subsefl” of aspaceX endavedwith (pseudo-)metrigp, we
sayTy C X is ane-cover for T if, for everyt € T, there
is somet’ € T, suchthatp(t,t') < e. For eache > 0, let
N (e, T, p) denotethesizeof the smallest-coverfor 7'.

Let H beafamily of functionsmappingfrom asetX into
aboundedyseudametricspace 4, p), andlet P beaprob-
ability measureon X. Define a pseudometric on H by
dis(pp)(f:9) = Bonrlp(f(2), 9(x))]. Definethe capac-
ity of # to beC(e, H, p) = sup N(e,H,dp1(p,)), Where
thesup is overall probabilitymeasure$’ on X. Thequan-
tity C(e, H, p) thusmeasureshe “richness”of theclassH.
NotethatC and A\ arebothdecreasingunctionsof ¢, and
thatC(e, H, p) = C(ke, H, kp) forary k > 0.

The mainresultsobtainedwith pseudo-dimensioare uni-
form corvergenceof the empirical meansof classesof
randomvariablesto their true means. Let H be a fam-
ily of functionsmappingfrom X into [0, M], and let Z
(the “training set”) be m i.i.d. draws from someprob-
ability measureP over X. Thenfor eachh € H, let
h(®) = (1/m) Y ", h(z;) be the empirical mean of
h(z). Also let ry (P) = E,~. p[h(z)] bethetruemean.

We now statea few resultsfrom [6]. In [6], theseareThe-
orem6 combinedwith Theorem12; Lemma7; Lemmas;
andTheorem9 (with Y beinga singletonset,4(y, a) = a,
a = €¢/4M, andv = 2M). Below, ¢; and/, respectiely
denotethe Manhattanand Euclideanmetricson R”. e.g.

G(Z,9) = iy e — gl

Lemma5 Let#H beafamily of functionsmappingfrom X
into [0, M], andd = dimp(H). Thenfor any probabil-
ity measue P on X andany0 < ¢ < M, we havethat
N(e,H, dpi(pey) < 2((2eM/e) In(2eM[e))?.

Lemma6 LetH,,...,H; ead be a family of functions
mappingfrom X into [0, 1]. Thefreeproduct of the H;'s

HThisis inconsistentvith the definitionusedin [6], whichhas
anadditional(1/n) factor

is the classof functions = {(f1,...,fx) : f; € H;}
mappingfrom X into [0,1]* (whee (fi,...,fr)(z) =
(fi(z),..., fr(x))). Thenfor any probability measue P
on X ande > 0,

k
N(67H7 dLl(P,lfl)) < H N(e/kaﬂjﬁ dLl(P,Zg)) (10)

=1

Lemma?7 Let (X1,p1),---,
metricspacesandforeaj =1,...,k, letH; beaclass
of functionsmappingfrom X; into X;;,. Supposehat
ead H; is uniformly Lipschitz continuoug(with respecto
the metric p; onits domain,and p;41 onits range), with
somelipschitzboundb; > 1. LetH = {fro---of1: f; €
H;,1 < j < k} bethe classof functionsmappingfrom
X1 into X411 givenby compositiorof the functionsin the
H;'s.Letey > 0 begiven,andlete = I<;(H;€ 1 bj)eo. Then

(Xk+1,pr+1) be bounded

k
C € H pk+1 S H 607 ]7pj+1) (11)

Lemma8 LetH beafamllyof functionsmappingfrom X
into [0, M], andlet P bea probabilitymeasueon X . LetZ
begeneatedbym independendrawsfrom X, andassume
€ > 0. Then

Pr[3h € H : [fp (&) — ra(P)| > €]

< AC(e/16,H, by)e < ™/64M7 (12)
We arenow readyto prove Theorem3. No seriousattempt
hasbeenmadeto tightenpolynomialfactorsin the bound.

Proof (of Theorem 3). Our proofis in threeparts.First, V/
givesan estimateof the discountedewardssummedover
(H, +1)-stepswe reducethe problemof showving uniform
corvergenceof V to oneof proving that our estimatesof
the expectedrewardsonthe H-th step,.H = 0, ..., H,, all
corvergeuniformly. Secondwe carefully definethe map-
ping from the scenarioss¥ to the H-th steprewards,and
useLemmass, 6 and7 to boundits capacity Lastly, apply-
ing Lemma8 givesour result. To simplify the notationin
this proof,assumeR .« = 1, andB, Bg > 1.

Part I: Reductionto uniform corvergenceof H-th step
rewards.V wasdefinedby

- 1 & i i
V(m) = — 3 R(sy)) +7R(st”) +

i=1
ForeachH, let Vi (r) = Ly R(sg)) betheempirical
meanof the reward on the H-th step,andlet Vg (7)) =

E;,, [R(sm)] bethetrue expectedreward on the H-th step
(startingfrom sq ~ D andexecutingw). Thus,V(r) =

=07 Ve (m).
Supposeve canshow, for eachH = 0,.. .,
probabilityl — 6/(H, + 1),

[Vir(w) — Vi (n)| < €/2(H+1) Vo e Tl

-+ R(sf).

H,, thatwith

(13)



Thenby the union bound,we know thatwith probability

1 -0, |[Va(r) — Va(x)| < €/2(H, + 1) holdssimulta-
neouslyfor all H = 0,...,H, andfor all # € II. This
impliesthat,for all = € II,
|V (w) = V(m)]
) H. H,
<|V(x YIVa ()| +1 Y v Vi (x) = V()|
H=0 H=0
H,
<Y |Va ()| +€/2
H=0
<e
wherewe usedthefactthat| Eg;o YEVy(r) = V()| <

€/2, by constructionof the e-horizontime. But this is ex-
actly the desiredresult. Thus, we needonly prove that
Equation(13) holdswith high probability for eachH =
0,...,H..

Part Il: Bounding the capacity. Let H < H,. befixed.
We now write outthe mappingfrom ascenarias(® € S x

([0,1]¢7)>° to the H-th stepreward. Sincethis mapping
depend®nly onthefirstdp-H element®f the" p’s portion
of thescenariowe will, with someahuseof notation write

the scenaricas s € S x [0,1]47H, andignoreits other
coordinates.Thus, a scenarios'” may now be written as

(87p17p27 s 7deH)'

Givenafamily of functions(suchasF;) mappingfrom S x

[0,1]?7 into [0, 1], we extendits domainto S x [0, 1]¢P+7

for ary finite n > 0 simply by having it ignore the ex-

tra coordinates. Note this extensionof the domaindoes
not changethe pseudo-dimensioaf a family of functions.
Also, for eachn = 1,...,n, definea mappingI, from
S x [0,1]™ — [0,1] accordingto L,(s,p1,p2,---,Pn) =

pn. Foreachn, letZ,, = {I,} besingletonsets. Where
necessany,,'s domainis alsoextendedaswe havejustde-
scribed.

For eachi = 1,...,H + 1, define X; = S x
([0, 1]4r)H+1=i " For example, X; is just the spaceof
scenarios(with only the first dp H elementsof the p's
kept), and Xgy1 = S. For eachi = 1,...,H, de-
fine a family of mapsfrom X; into X;,; accordingto
Hi = Fi x Fax -+ X Fgg X Lgpi1 X Lgpqa X --- X
Tia-i+1)ap (Wherethe definition of the free productof
setsof functionsis as given in Lemmas); note suchan
‘H; hasLipschitz boundat most By = (ds + Hdp)B
Also let Hgy1 = {R} bea singletonsetcontainingthe
reward function,and Xg2 = [—Rmax, Bmax]. Finally,
letH = Hpgq10Hpo---oH, bethefamily of mapsfrom
S x ([0,1]%7)H into [~ Rmax, Rmax)-

Now, let VT, ;; + S' = [—Rmax; Rmax] be the reward
recevedonthe H-th stepwhenexecutingr from ascenario
s € S'. As we let 7 vary over II, this definesa family
of mapsfrom scenariosnto [— Rpax, Rmax]- Clearly, this
family of mapsis a subseof #. Thus,if we canboundthe

capacityof H (andhenceprove uniform corvergeover #),
we have alsoproveduniform convergencefor Vi,  (over
all 7 € II).

For eachi = 1,...,ds, sincedimp(F;) < d, Lemma5
implies that N (e, Fi,dp1(py,)) < 2((2¢/€) In(2e/€))?.
Moreover, clearly N'(e,Z;,d1(pe,)) = 1 sinceeachZ;
is a singletonset. Combinedwith Lemmas, this implies

that,foreachi = 1,..., H ande < 1,
N(€7Hi7 dLl(P,fl))

ds

< [INV(e/(ds + (H = i)dp), Fy,dp(p )
j=1
ds

< [IN(e/(ds + Hedp), Fy,dpap )
j=1

dd
< ods (26(d5 + H.dp) In 2e(ds + Hedp)) s
€ €

< 9ds (2€(ds + HedP))Qdds
- €

wherewe have usedthe factthat NV is decreasingn its €
parameter By taking a sup over probability measured,
thisis alsoa boundon C (e, H;, ¢1). Now, asmetricsover
R(ds+(H=i)dp) g, < ¢, Thus,thisalsogives

2dds
2e(ds -};Hfdp)) (14)

Cle, Hi bo) < 205 (

Finally, applyingLemma? with eachof the p;,’s beingthe
£> norm on the appropriatespacek = H + 1, ande =
(H + 1)B§BR60, we find

C(QHJKQ)
H+1
< II ¢(e/((H +1)B§' Br), #;, £2)

H 2dd
< szs <2€(ds +H€dp)(H—|— l)BgIBR> s
- €

=1

H 2dds H.
< gisH. <2€(ds + Hdp)(H. + 1) B; éBR>
B €

Part Ill: Proving uniform convergence. Applying
Lemma8 with the above boundon C(e, H, ¢5), we find
thatfor thereto bea 1 — § probability of our estimateof
the expectedH -th steprewardto bee-closeto themean,it
sufficesthat

m = 2656 <log(1S + log (4C(e/16,H, 52)))

=0 <poly (d log(ls 1= !

This completeghe proof of the Theorem. O

logB log BR,dS,dp>) .



