
PEIR, the Personal Environmental Impact Report, as a
Platform for Participatory Sensing Systems Research

Min Mun, Sasank Reddy, Katie Shilton, Nathan Yau, Jeff Burke,
Deborah Estrin, Mark Hansen, Eric Howard, Ruth West, Péter Boda*

Center for Embedded Networked Sensing
University of Caliornia, Los Angeles

{bobbymun,destrin}@cs.ucla.edu,sasank@ee.ucla.edu,kshilton@ucla.edu,
{nyau,cocteau}@stat.ucla.edu, jburke@remap.ucla.edu,{ejhoward,rwest}@cens.ucla.edu

Nokia Research Center, Palo Alto*
peter.boda@nokia.com

ABSTRACT

PEIR, the Personal Environmental Impact Report, is a par-
ticipatory sensing application that uses location data sam-
pled from everyday mobile phones to calculate personalized
estimates of environmental impact and exposure. It is an
example of an important class of emerging mobile systems
that combine the distributed processing capacity of the web
with the personal reach of mobile technology. This paper
documents and evaluates the running PEIR system, which
includes mobile handset based GPS location data collec-
tion, and server-side processing stages such as HMM-based
activity classification (to determine transportation mode);
automatic location data segmentation into “trips”; lookup
of traffic, weather, and other context data needed by the
models; and environmental impact and exposure calculation
using efficient implementations of established models. Addi-
tionally, we describe the user interface components of PEIR
and present usage statistics from a two month snapshot of
system use. The paper also outlines new algorithmic com-
ponents developed based on experience with the system and
undergoing testing for integration into PEIR, including: new
map-matching and GSM-augmented activity classification
techniques, and a selective hiding mechanism that generates
believable proxy traces for times a user does not want their
real location revealed.

Categories and Subject Descriptors

H.4.2 [Information Systems]: Information Systems Ap-
pliations—types of systems, decision support ; H.5.2 [Inform-
ation Systems]: Information Interfaces and Presentation—
User Interfaces

General Terms

Design, Performance, Standardization
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1. INTRODUCTION
Participatory sensing refers to the vision of distributed

data collection and analysis at the personal, urban, and
global scale, in which participants make key decisions about
what, where, and when to sense [1]. The infrastructure
formed by an installed base of well over two billion mobile
phones, when combined with a cloud of supporting web ser-
vices, make such adaptive, mobile, human-in-the-loop sens-
ing systems possible. However, the existence of these capa-
bilities does not make them immediately usable or scalable.
To reveal relevant, previously unobservable implications of
human activity requires the development of new types of
integrative platforms. Here, we present PEIR, the Personal
Environmental Impact Report (Figure 1), an example of this
new class of system: It uses mobile handsets to collect and
automatically upload data to server-side models that gener-
ate web-based output for each participant. This paper de-
scribes the PEIR system as originally designed and imple-
mented, evaluates algorithmic developments motivated by
its use, and outlines future work.

Figure 1: PEIR user interface
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Personalization of Environmental Data and Mod-
els: Inspired by the Environmental Impact Reports (EIRs)
required for construction and public works projects, PEIR
was designed to bring specific environmental aspects of our
personal lives to light so that its users can make more in-
formed and responsible decisions. It provides web-based,
personalized reports on environmental impact and exposure,
currently focusing on mobility-related impacts and expo-
sures, using only the commodity sensors built into every-
day smartphones. Participants’ mobile phones run custom
software that uploads GPS and cell tower location traces to
a private repository, where they are processed by a set of
scientific models. The processing pipeline includes an activ-
ity classifier to determine whether users are still, walking,
or driving1. It then uses both dynamic data sources, such
as weather services, and more slowly changing GIS data,
for example the location of schools and hospitals, or classes
of food establishments to provide other inputs needed for
model calculations. In a private user account, the results are
presented to participants in an interactive, graphical user in-
terface. Users can share and compare their PEIR metrics to
those of other users via a network rankings web page, or via
Facebook by running a custom application.

PEIR Usage Model: PEIR was created to explore how
to make participatory sensing systems relevant at a large
scale, through a platform that integrates mobile data col-
lection, other real-time data sources, and models that take
time and location as primary inputs. Addressing complex
issues such as climate change or the effects of the built en-
vironment on obesity or wellness requires more than pro-
viding a one-time carbon calculation or online nutritional
information; it requires tools that support people in gaining
awareness of and weighing the costs and benefits of what
they do. Like the EIR, the personal EIR promotes intel-
ligent decision-making through review of concrete observa-
tions, comparison to similar situations and communities at
a variety of scales, and consideration of patterns over time.
However, unlike EIRs, which are done before major projects,
PEIR operates at the resolution of the individual, runs con-
tinually, and its feedback is available on demand.

Reciprocity Between Impact and Exposure: Ad-
ditionally, one quality that distinguishes PEIR from exist-
ing web-based and mobile carbon footprint calculators like
Ecorio [2], or applications such as Carbon Hero [3] or Ubi-
Green [4], is its emphasis on how individual transportation
choices simultaneously influence both environmental impact
and exposure. PEIR provides users with information for two
types of environmental impact, and two types of environ-
mental exposure. The four everyday impact and exposure
metrics are detailed in Section 4, but can be summarized as:

1. Carbon Impact is a measure of transportation-related
carbon (CO2) footprint, a greenhouse gas implicated
in climate change.

2. Sensitive Site Impact is a user’s transportation re-
lated airborne particulate matter emissions (PM2.5)
near sites with populations sensitive to it, such as hos-
pitals and schools.

1Detection of biking and mass transit use are under devel-
opment.

3. Smog Exposure is a user’s transportation-related ex-
posure to particulate matter emissions (also PM2.5)
from other vehicles.

4. Fast Food Exposure is the time integral of proximity
to fast-food eating establishments2.

These metrics were selected because of their social rele-
vance, and their ability to be customized for individual par-
ticipants using time-location traces. We chose to focus on
everyday transportation choices and patterns instead of the
less frequent and more deliberately planned behaviors such
as air travel since PM 2.5 particulates are of significant pub-
lic health concern3. Extensions to capture decisions such as
air travel through journaling or integration with online reser-
vation systems, for example, are easy to imagine. Also, we
have not focused on incorporating ambient exposure mea-
surements from existing fixed sensor stations, but extensions
to the system that would fuse that data with PEIR’s current
calculations are also envisioned.

1.1 Paper Organization
Section 2 gives a brief overview of the currently func-

tioning PEIR system, including time location-trace collec-
tion from mobile handsets (2.1) and trace processing (2.2).
At the heart of the latter are transportation mode activity
classification and impact/exposure models: Section 3 eval-
uates PEIR’s map-matching assisted HMM-based classifier
and evaluates an enhanced activity classification technique
(using GSM tower information) that may be integrated into
future versions of the system. Section 4 describes the im-
pact and exposure models that operate on the annotated
time-location data. Section 5 describes PEIR’s user experi-
ence and concludes with informal observations on system use
during a two-month snapshot of a six-month trial. Section
6 begins to tackle privacy issues by introducing our applica-
tion of participatory privacy regulation [7, 8] and describes
specific mechanisms [9] planned for PEIR, namely support
for “selective hiding,” in which the system generates best
guess proxy traces for times the user does not wish to re-
veal their real activity. Section 7 summarizes and concludes
with observations on the running system’s impact on our ap-
proach to participatory sensing systems research. Relevant
related and future work is discussed within each section.

2. PEIR: SYSTEM OVERVIEW
PEIR has been running since June 2008 with thirty trial

users using the system intermittently. After developing an
initial end-to-end implementation, our most significant mod-
ifications to the architecture have focused on increasing cal-
culation performance, so that users can see their impact and
exposure scores within minutes of uploading their location

2This metric was included to demonstrate the broad ap-
plicability of the processing model used in PEIR to other
geographically organized models, and because of the inter-
est in the public health community about how exposure to
certain types of foods may affect eating choices relating to
obesity especially in children, where proximity to fast food
has been demonstrated to correlate with increased obesity
while proximity to non-fast food restaurants does not [5].
3A recent study by [6] of data from the 1970’s - 1990’s
for fifty-one major metropolitan areas in the United States
demonstrates that a reduction to exposure of these kinds of
particulates correlates with increased life expectancy.
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Figure 2: System architecture

data. This section describes the current architecture (Fig-
ure 2) as well as plans for improving its modularity, perfor-
mance, and stability.

2.1 Location trace collection
PEIR processing operates on the time-location traces con-

sisting of GPS records sampled approximately every thirty
seconds (To reduce power and bandwidth, we experimen-
tally selected the lowest sample rate that still resulted in
good automatic classification of high speed travel by car.).
In many cases, we also capture the connected cell tower, ra-
dio signal strength, and battery information for debugging
and testing of future features.

The PEIR system accepts location records from mobile
handsets, uniquely identified by International Mobile Equip-
ment Identity (IMEI), that are posted in JSON format over
HTTP or HTTPS, as well as upload of bulk time-location
data in most tracklog formats, such as GPX, by integrating
the GPSBabel software [10]. We currently support three dif-
ferent phone clients, two for Symbian S60 3rd edition, and
one for Windows Mobile (Samsung Blackjack II)4. The mo-
bile phone client used to capture location traces in most of
our development and user testing has been the CENS Cam-
paignr software, a native Symbian C++ application for Se-
ries 60 3rd edition smartphones supporting XML-configured
data collection with both automatic and user-controlled sam-
pling [11]. Using this platform we have tested PEIR with
devices including the Nokia N80 (with an external GPS),
N95, and E71, for over a year. More recently, we have cre-
ated an experimental bridge for data from the Nokia Noko-
scope client software [12], also for S60 3rd edition, which
we hope will provide power consumption improvements over
Campaignr. Campaignr and Nokoscope are both intended
to run without user intervention; however we have found
user-interpretable status display and feedback to be a con-
sistently requested feature that we hope to implement in fu-
ture versions of PEIR. Our initial development focus for the
phone client has been on stability and, in the case of Cam-
paignr, configurability for a number of different sampling

4We plan to integrate location trace collection clients for
several other phone platforms in the near future.

tasks. Next, in addition to provide a more extensive user
interface, we plan to focus on lowering power consumption
and using battery level- and activity-adaptive GPS sampling
such as that introduced by Nokoscope, as well as upload
compression. We also plan to add device-level authentica-
tion and explore taking advantage of WiFi and Bluetooth
stumbling and accelerometer data that most of these client
platforms are capable of capturing, to enhance location trace
and activity classification accuracy.

2.2 Location trace processing
The server-side processes are implemented using Python

code, shell scripts, and native/pre-compiled libraries. The
PEIR web interface reads data from PostGIS [13] and is im-
plemented in PHP and Flash served by the Apache httpd
webserver, using the Wordpress blog engine [14] and Mod-
est Maps Flash library [15]. A separate Kerberos/PKI based
authentication server provides login services and stores per-
sonally identifying user information for this and other CENS
urban sensing projects. The PostGIS store is on a Sun So-
laris server, while processing runs on a second Linux-based
server, and two separate servers for the Web front end are
available to provide UI load-balancing.

Location trace data uploaded from phone clients is re-
ceived by the location data multiplexing service (LocMux), a
Python web service that receives and parses the JSON data,
which forwards it to both testing and production servers and
writes a copy to an archival store. On the production server,
it is received by another web service that verifies the JSON
and writes it to a PostGIS table configured with spatial in-
dexing. The PEIR import and processing service operates
on new data found in this PostGIS store in four stages.

Stage 1: Trace Correction and Annotation, Con-
text Lookup Stage 1 of processing corrects and annotates
the location data with transportation mode activity classi-
fication; i.e., it removes outliers and then attempts to de-
termine the most likely activity for each sample - staying
in one location, walking, or driving, which affects the im-
pact/exposure models used in later processing steps. PEIR’s
activity classification approach uses a Hidden Markov Model
that, in addition to speed, incorporates a “map-matching”
technique for freeway annotation as a feature(Activity clas-
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sification is described in more detail in Section 3.1). PEIR
Stage 1 also looks up other contextual information, such as
temperature and humidity data, needed for the model cal-
culations. These annotations are added to each point by fill-
ing fields in the PostGIS table for processed points. Future
improvements possible in this stage include better activity
classification (more specific modes and higher accuracy), as
well as the explicit inclusion of the uncertainty of the cap-
tured and computed data along with the primary outputs of
the model outputs.

Stage 2: Exposure/Impact Calculations Stage 2 per-
forms per-point impact and exposure processing that is de-
scribed in detail in Section 4. The annotated points are used
to calculate per-point values for each of the four models: (1)
Transportation-related carbon impact, (2) PM2.5 exposure,
(3) PM2.5 output near sensitive sites, and (4) fast food ex-
posure. These annotations are added the PostGIS table in
the same manner as those in Stage 1.

Stage 3: Trip Identification and Annotation Next,
the annotated data points are segmented (“chunked”) into
“trips” and the four environmental impact/exposure mea-
sures are aggregated per trip (A trip is defined as a travel-
ing from one place to the other where a user stays for more
than 10 minutes.). These trips, the primary unit of data
with which the users interact, and their PEIR metrics are
stored in a separate PostGIS table.

Stage 4: Aggregate and social network calculation
Stage 4 calculates trend and social network comparisons.
These points of comparison for impact and exposure met-
rics support participant understanding and engagement with
the system. For completed trips, a service updates trend in-
formation using the results of completed trips, calculating
and storing weekly, monthly and yearly aggregates. Rela-
tive comparisons among users who are in the social network
are normalized for amount of data uploaded.

3. TRANSPORTATION MODE

CLASSIFICATION
Activity classification is crucial to PEIR as it enables the

proper impact and exposure models to be applied automat-
ically. We describe and evaluate a tailored map-matching
technique designed to meet PEIR transportation mode ac-
tivity classification needs. We detail our current algorithm
and then develop and evaluate a planned enhancement, us-
ing GSM to improve upon the GPS-only classification ap-
proach by increasing the detection accuracy of surface-street
driving and indoor locations.

3.1 Activity Classification
GPS data have been widely used to infer physical activi-

ties. Much of the work [16, 17, 18, 19] takes external geo-
indexes such as map information to add high-level context
to location data points and improve the performance of the
classifiers. The work of [16, 17] uses GPS data with external
knowledge about bus routes and bus stops to infer and pre-
dict a user’s transportation mode such as walking, driving,
or taking a bus, and in [18, 19] models of a user’s activities
and places from traces of GPS data and locations of restau-
rant, stores, and bus stops are employed for classification
purposes.

For the PEIR application, it is most important to identify
driving activities and less important to distinguish between

staying and walking because emission values are zero in both
cases. In many cases, it is easier to identify that a person
is driving even when speed values are low if we make use
of the fact that a GPS trace locates the user on a freeway,
where the user is very unlikely to be walking. Therefore, our
classifier uses freeway annotation information in addition
to speed values as feature inputs to the classifier. Using
the freeway annotation information obtained from our map-
matching technique as part of our classifier, the accuracy
increases from 40% to 82%, based on test data collected
while a user was driving in heavy traffic on the highway.

3.1.1 Map-Matching Algorithm

We use a map-matching technique to find out whether
a user is on a freeway5. Determining which road a user is
on is non-trivial because individual GPS points often deviate
from the physical road being traversed due to both inaccura-
cies in GPS measurements and the maps themselves. Map-
matching techniques have been developed to improve the
interpretation of GPS location data. Naive map-matching
finds the nearest road segment as a correct match [20]. Al-
though it is simple and fast, it is sensitive to the spatial road
network and often fails in practice. Figure 3(top-left) shows
one example of GPS data errors where the points depart
from the street. In this example, the naive approach identi-
fied Mississippi Ave as the nearest road, and annotated the
point as being on a surface street, while actually the person
was driving on Highway 405.

To address this misclassification behavior, we implemented
a modified map-matching scheme, which we refer to as ”Inter-
section-based map-matching.” It finds pairs of intersecting
roads that a user passes by, and then extracts the com-
mon road among subsequent intersections to determine the
street on which the user was most likely to be traveling.
Consider Figure 3(bottom-left)’s example, in which naive
map-matching would have mistakenly selected Highway 405
as the nearest road. The intersection-based method first
records that the location trace falls near an intersection be-
tween Sawtelle and National boulevards, and that the next
falls near the intersection of National Blvd. and Sepulveda
Blvd. The system selects National Blvd. as the street that
the user is traveling on.

We detail the steps for our new algorithm as follows:

1. Find the two nearest roads for each data point.

2. If distances from a GPS data point to the two roads
are less than .04 miles6, label the GPS data point as
the pre-intersection. Otherwise, add it to the buffer of
data points. Continue until the next intersection point
is identified, referred to as the post-intersection.

3. Compare the pre- and post-intersections and identify
the road that appears in both intersections as the cor-
rect match for the buffered data points. If no com-
mon road is found, consider the subsequent GPS data
points to identify an alternative post-intersection.

5Note that the purpose of map-matching technique usages
for our application is not to get precise GPS location data
but to annotate GPS traces with freeway information.
6We found that our map-matching method performs the
best when we use 0.04 miles as a threshold value after ap-
plying the value from 0 to 0.1 miles. This value has to be
evaluated further.

58



Case 1 Case 2 Case 3 Case 4 Case 5 Average

Naive map-matching 76% 58% 93% 57% 56% 68%
Intersection-based 5% 83% 100% 77% 96% 72%

Intersection w/nearest road and substitution 89% 83% 100% 63% 96% 86%

Table 1: Comparison of accuracy for different map-matching approaches

Figure 3: Example of naive map-maptching fail-
ure (top-left), intersection-based map-matching
(bottom-left), and intersection with nearest road
and substitution (right)

After using the system for several months and examining
data traces and errors, we added two mechanisms to improve
our Intersection algorithm. The first mechanism considers
the nearest road within .04 miles as a possible intersection
point when looking for a common road segment between two
consecutive intersection points. This helps us correct for the
situation when the captured GPS data points are not near
intersections and we therefore miss turning points that occur
in between the captured GPS data points. The second mech-
anism considers replacing both pre- and post-intersections
when there is no common road between two consecutive in-
tersections; it does so by assigning the post-intersection as
the new pre-intersection, and using a subsequent intersec-
tion as the new post-intersection. This helps us correct for
erroneous identification of pre-intersections, so that the error
does not propagate. We call this new algorithm, Intersec-
tion w/ nearest roads and substitution. Figure 3(right) gives
an example in which this algorithm correctly locates a set
of points. The previous Intersection algorithm would have
tried to use pre-intersection A, B and post-intersection C,
D to identify the common road and when it failed (there
is no common road.) would have tried successive post-
intersections until it found A, E. Therefore the algorithm
would identify A as the road traveled while a user was ac-
tually driving on Highway C. Intersection w/ nearest roads
and substitution instead uses A, B as pre-intersection and
nearest-road C as the post-intersection. When no common
road is found, it substitutes C as the new pre-intersection
and C, D as the new post-intersection and thereby correctly
identifies road C as the road traveled.

We evaluate our map-matching approach with a data gath-
ered from five PEIR users over the course of two hours. To
obtain ground truth information on the roads that users
traveled, we visualized each individual’s time-stamped traces
on a map and interviewed users to correctly label them based
on their recall. We included different scenarios: crossing un-
der highways with several turning points (case 1), getting on
and off highways (case 2 and 4), driving on straight paths
(case 3) and switching highways (case 5). We use accuracy as
our evaluation metric and accuracy is defined as the percent-
age of the number of correctly matched points. The result is
shown in Table 1. Our improved Intersection algorithm with
nearest road and substitution mechanisms added performs
the best with the average accuracy of 86%. Case 1, in which
there are many turns made, illustrates the situation in which
these improvements have the most dramatic effect, improv-
ing map-matching accuracy from 5% to 89% for that case.
In one of our five cases, Case 4, accuracy reduces from 77%
to 63% because the algorithm can get confused by highway
segments that lie right above surface streets.

3.1.2 Classification Model

For each GPS data point, we obtain a speed value and a
freeway annotation by using the above map-matching tech-
nique. Hidden Markov Models (HMM) have been success-
fully used in modeling different types of time-series data,
e.g. in speech recognition, gesture tracking [21, 22]. We use
HMMs as our inference model to capture temporal dynam-
ics. There are three states, “Staying in place,” “Walking,”
and “Driving.” Instead of directly using the raw feature val-
ues, we discretize values into six observations based on the
distribution of feature values. The initial probability is as-
signed equally for the three states. Transition (the change
of the states in the underlying Markov chain) and observa-
tion (how likely we observe a certain observation for each
state) probability matrices are trained using a data set of
sixty hours gathered from one user who also provided ground
truth annotations using a journal during the course of the
data collection period. The most likely sequence of hidden
transportation mode states is found using the Viterbi algo-
rithm [23].

We asked five PEIR users to annotate location traces
with their transportation modes for a day; we wrote a cus-
tom python script showing multiple choices, “Stationary In-
doors,”“Walking Indoors,”“Stationary Outdoors,”“Walking
Outdoors,”“Driving,” and users were asked to tag their lo-
cation traces whenever they changed transportation modes.
In total, we gathered fifty hours of data from these five users.
The accuracy is defined as the percentage of the number of
correctly predicted data points. As shown in Figure 4, our
classifier performs fairly well, over 80% accuracy, for user
1, 4 and 5. However, it works poorly for user 2 and 3. By
examining the data, we found that environmental interfer-
ences inside buildings led to lower positioning accuracy, in
the order of several meters or worse. For user 2 and 3, their

59



0% 

20% 

40% 

60% 

80% 

100% 

120% 

User1  User2  User3  User4  User5 

A
c
c
u
ra
c
y
 

User 

GPS + Mapmatching 

GPS + GSM + Mapmatching 

Figure 4: GPS-based versus GPS and GSM-based
accuracy

0% 

20% 

40% 

60% 

80% 

100% 

120% 

User1  User2  User3  User4  User5 

In
d
o
o
r 
M
o
b
il
it
y
 P
e
rc
e
n
tg
e
 

User 

Indoor Moving 

Indoor Stationary 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staying-in-place activity involved a lot more movements than
the staying of other users (See Figure 5), introducing more
errors in the GPS data; incorrect GPS coordinates with high
speed values were recorded. This phenomenon caused the
data to be misclassified as walking or driving. After exclud-
ing data gathered indoors, the classifier identified user 2 and
3’s data 96% and 98% correctly.

3.2 Improvements by Leveraging GSM data
PEIR’s models are sensitive to whether a person’s activity

is properly classified as driving. Classification based on GPS
data alone is difficult if GPS performance is compromised by
limited satellite visibility. This can result in misclassification
of users when they are indoors (false positive for driving) or
near tall buildings (false positives and negatives). In addi-
tion, correctly classifying slow surface street driving is dif-
ficult at any time, because map-matching cannot rule out
walking as it can if the user is on a freeway. Therefore, we
explore using GSM cell tower association data7 to enhance
classier performance, especially for these cases.

A GSM base station is typically equipped with a num-
ber of directional antennas that define sectors of coverage or
cells, each of which has uniquely identifiable cell ID by com-
bination of “Country Code,”“Network Code,”“Area Code”
and“Cell ID.” Information from the cell ID provides a rough
indication of a person’s position [24]. Features derived from
this information, such as the number of changes in the as-
sociated cell IDs for certain duration, can help the classifier
identify activities correctly when GPS data is noisy.

7We focus on what can be achieved with only GPS and GSM
as they are already widely available, enabling PEIR to be
deployed now without waiting for custom sensors.

The benefits of GSM data afforded by high coverage and
availability on mobile phones have been recognized earlier.
Google MyLocation [24] calculates a user’s position rela-
tive to the unique identifications and footprints of nearby
cell towers to find a user’s approximate location. The work
of [25, 26] uses neighboring cells in addition to the current
serving cell from mobile phones to recognize high-level prop-
erties of user mobility. Unfortunately, many mobile phones
do not provide access to the list of multiple cell towers in
range (i.e. mobiles phones based on Symbian OS which con-
stitute 67% of the “smart mobile device” market only re-
veal the connected cell ID information [27]). But we can
still take advantage of the connected cell ID information for
transportation mode classification.

Features Window Size(Seconds)

Total Traveling Distance 60
Average Speed Differences 120

Average Speed 180
Average Traveling Distance 240
Number of Unique Cell IDs 150,300
Number of Cell ID Changes 240

Freeway Annotation 1

Table 2: Selected features for GPS and GSM classi-
fier

Our GSM-enhanced classifier considers previous data points
as well as the current data point to compute its features.
In this way, we extract meaningful features from the asso-
ciated cell information. The GSM enhanced classifier im-
provements are important for the PEIR application because
they help to avoid classifying noisy indoor GPS readings as
driving, and help to correctly classify slow driving on surface
streets as driving instead of as walking.

Each data point used by this algorithm consists of GPS
coordinates, speed, associated cell ID and timestamp. The
seven selected features listed in Table 2 are computed for
each data point. To identify the most effective window size
for each feature we evaluated values from 5 to 300. We
adopted the C.4.5 Decision Tree as our inference model for
initial offline analysis because of its simplicity [28].

To better understand the performance results of the mod-
els, the same data set used in evaluating our running clas-
sifier in Section 3.1.2 is used to test the proposed GPS
and GSM based classifier. The results are shown in Fig-
ure 4. The classifier achieves the overall accuracy of 91%
and works well when users are on surface streets and high-
ways, as well as indoors. The techniques evaluated here will
require further analysis to assess their implications for sys-
tem performance. Also, in addition to using GPS and GSM
features [29, 30, 26], future activity classification techniques
could leverage additional on-board sensor types (e.g., ac-
celerometers and WiFi [31, 32, 33]), as well as additional
GIS and map data (e.g. bus routes [16, 17, 18, 19]).

4. NEAR REAL-TIME MODELING OF

EXPOSURE AND IMPACT
Server-side PEIR analysis culminates with the computa-

tion of a series of metrics that describe both the impacts that
a participant has on the communities they travel through
during their day, as well as the environmental hazards they
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Figure 6: Data flow diagram

encounter. Admittedly, these are fairly broad terms, and in
our first implementation of the system, we focused on four
specific measures. In some sense, our choices (and our focus
on transportation in general) were inspired by our experi-
ences living in Los Angeles. While other groups, possibly in
different parts of the country, might have different concerns,
the PEIR system has been designed around the broader con-
cept that location-traces, decorated with some estimate of
participant activities and local “context,” can be combined
with impact and exposure models to create new interpreta-
tions of a participant’s choices. In this section, we describe
the computation of the four metrics we selected for the first
implementation of PEIR: Carbon dioxide emissions, PM 2.5
emissions near sensitive sites, PM 2.5 exposure and fast food
exposure. The data flow for these processes is shown as Fig-
ure 6.

4.1 Modeling assets
A number of data sources and modeling “primitives” are

used repeatedly in the PEIR system. Most of these sources
are currently updated on relatively long timescales (possibly
6 months to a year or more) because that is what is available
and most geographically scalable. However, the system can
draw on more dynamic inputs as they become available.

4.1.1 Roads and specific locations

Maps of the local roadways (exposed through PostGIS)
are critical for PEIR. StreetPro, part of the ESRI 2006 Maps
and Data collection, provided these [34]. In addition to aid-
ing activity classification, the nearness of a participant to
a freeway, say, is the critical parameter in computing their
exposure to PM 2.5. We also depend on StreetPro for the
location of sensitive sites within Los Angeles County, specif-
ically schools and hospitals. Finally, from the Los Angeles
Department of Public Health, we obtained a list of all the
fast food restaurants in Los Angeles County (with the ex-
ception of Pasadena, Vernon and Long Beach) [35]. To ease
computation, a “buffer” polygon is computed for each point
(each hospital, school, and fast food establishment) so that
later PEIR processing can easily establish whether a par-
ticipant is traveling nearby (for sensitive sites the buffer is

200m, while for fast food it is a quarter of a mile - see the
text below.). Again, these point data (hospitals, schools,
fast food establishments) reflect the interests of the PEIR
team; there is nothing in our architecture that would pre-
clude other choices.

4.1.2 Weather

With our emphasis on transportation and airborne pol-
lutants, our impacts and exposures necessarily depend on
the local weather conditions (specifically, temperature and
relative humidity). Through the Meteorological Assimila-
tion Data Ingest System (MADIS), the National Oceano-
graphic and Atmospheric Association (NOAA) maintains
a real-time database of observations from weather stations
worldwide [36]. These data are culled hourly for stations
in Los Angeles County. To tie these data to a participant’s
location, we create another table that associates Zipcode
Tabulated Areas (ZCTAs) [37] with the five nearest weather
stations (nearest to the centroid of the ZCTA; note that any
two MADIS weather stations are separated by several ZC-
TAs.). This table was formed using ArcGIS [34]. Future
versions should investigate spatial mappings that are more
uniform or reflective of micro-climates than ZCTAs.

4.1.3 Traffic conditions

Real-time traffic measurements are available in some ma-
jor metropolitan areas like Los Angeles. However, we wanted
PEIR’s approach to be scalable to cities without such infras-
tructure. So, we instead developed our first implementation
around a traffic flow model from the Southern California
Association of Governments (SCAG) [38]. Originally de-
signed for transportation planning, this model reports bi-
directional traffic flow information (the number of vehicles
per hour, their types and their speeds) for all road segments
in Southern California. These data are further stratified into
six time frames (morning and evening rush hours, midday
and night) across six county regions. Eventually, the com-
plete “model” (table) is made visible to PEIR by exporting
it from ArcGIS to PostGIS.
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4.1.4 Vehicle emissions

The final ingredient in our asset list has to do vehicle per-
formance. To support its planning process, the California
Air Resources Board (CARB) has developed the Emissions
Factors Model (EMFAC) [39]. EMFAC, a FORTRAN pro-
gram, computes vehicle emissions based on current weather
conditions (temperature and relative humidity), and the speed
and type of vehicle (the former derived from a participant’s
trace, and the latter collected at sign-up). While EMFAC
produces a number of estimates, we rely on PM 2.5 and car-
bon dioxide emissions. During our initial development of the
PEIR system, EMFAC proved to be a bottleneck. To speed
computation and to “open” the model, we developed an ap-
proximation to EMFAC, computed via a functional ANOVA
model [40]. Through phases of repeated fitting and testing,
we created a tensor-product spline model that both allowed
for fast computation as well as a view into the dependence
of the emissions outputs as functions of weather and vehicle
characteristics. We used the statistical computing environ-
ment R [41] to fit the functional ANOVA model and stored
the result as a Python object; in this way we can update the
model as needed and not interfere with the running system.

These four data and processing components are the basis
for the impact and exposure computations in PEIR. Note
that a participant can easily interrogate each of the first
three pieces with a GIS platform. By design, the func-
tional ANOVA model approximating EMFAC is also eas-
ily viewed, emissions being represented as a combination of
several curves and surfaces, each a function of the four in-
put variables. As a group, these four can also benefit from
participant contributions. With an expanded participation
model, members of the PEIR community could add new
sensitive sites and new points of interest; contribute to finer-
scale citizen-supported weather monitoring; correct SCAG
estimates with actual traffic observations [42]; and replace
generic EMFAC profiles with the specifics of their own ve-
hicles. These additions are a key part of PEIR’s future.

4.2 Computations
The four components listed above are called on at sev-

eral points during the PEIR processing pipeline. The im-
pact and exposure measures are computed record-by-record,
where each record consists of a participant’s system ID, their
vehicle type, their current location and speed (derived from
their GPS), and an activity class.

4.2.1 Impacts: Carbon dioxide and PM 2.5

Carbon dioxide emissions are the simplest to explain. For
those records classified with the activity driving, we add
current temperature and humidity at the participants’ lo-
cation (data from the closest weather station that reported
data in the last hour; closest among the five associated with
the ZCTA of the participant’s current location). We then
apply the functional ANOVA approximation to EMFAC to
estimate current carbon dioxide emissions. Technically, EM-
FAC computes an emissions factor in units of grams per mile;
this is translated into grams using the participant’s speed
and an estimate of the amount of time traveling at that
speed (computed as the (tj − tj−1)/2where tj is the time
associated with the jth record). PM 2.5 emissions near sen-
sitive sites work in the same way, except that we accumulate
emissions (again, in units of grams) only when the partic-

ipant is within 200m of a sensitive site8. The buffer zones
around sensitive sites are pre-computed, and so this step
involves a single spatial intersect query(A buffer of 200m
was chosen after reviewing literature on the rate at which
pollutant levels drop off with distance form the source [43].).

4.2.2 Exposures: Fast food and PM 2.5

Fast food exposure also makes use of a spatial intersect
query using the participant’s current location. In this case,
the buffer is a quarter mile and was determined based, in
part, on ease of access. The records of a trip are then an-
notated with a flag indicating whether a fast food establish-
ment was nearby. We then accumulate the total amount of
time near a fast food restaurant per trip.

The computation of PM 2.5 exposure is broadly similar in
that we need to determine how close participants are to know
hazards, in this case vehicle emissions. For each road seg-
ment, the SCAG model is used to estimate the number, type
and speed of vehicles present. Given a PEIR record, then,
we combine the SCAG model, data on the local weather con-
ditions and EMFAC predictions to estimate a participant’s
rate of exposure to PM 2.5. Air quality indices do not quote
emissions rates, but instead work with concentrations of pol-
lutants. For interpretability, we further transform our esti-
mate into a concentration by taking into account the volume
of air over a road segment. In this way, we can determine the
amount of time per trip that a participant spends in a haz-
ardous condition (a concentration of 0.112716 µg/m3) [43].

Note that while in some sense exposure and impact are
dual calculations, we quote metrics that are in units of grams
for impact (quantity of pollutants) and time for exposure
(time spent in a hazardous condition). Our choice for the
impact metric made PEIR results comparable to existing
carbon calculators; while our choice for the exposure metric
was more directly interpretable for the PEIR user. As with
other parts of the modeling system, there is nothing fixed
about these choices. Ultimately, participants should be able
to shape the output in the format they are interested in. We
present these metrics as a proof of concept.

5. USER ENGAGEMENT
While environmental impact and exposure values may not

be immediately understandable, location (from which those
values are derived) is already part of people’s everyday vo-
cabulary. We designed the PEIR user interface with this
in mind, using a map-based visualization as its foundation.
Just as the traces that underlie PEIR metrics provide pow-
erful, intuitive insight, that same location information is
highly sensitive and potentially of great privacy concern.
Our current system takes privacy seriously, and as we offer
more features based on location data and PEIR model out-
puts, we are developing techniques that provide users with
full control over who sees their data, data deletion and shar-
ing, and transparency of data processing. This section de-
scribes the spatially-oriented user experience, explores meth-
ods to share PEIR outputs with others, and describes obser-
vations learned from monitoring usage of the system. Pri-
vacy protecting techniques are further explored in Section 6.

8Currently, our system only considers a small number of sen-
sitive sites (hospitals, schools), and so the impact measure
is often zero.
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Figure 7: Dashboard view

5.1 PEIR metric legibility
PEIR users see a dashboard of activity (Figure 7.A) for the

week as well as current upload and backend processing sta-
tus (Figure 7.B) at initial login. We use an interactive map
to visualize location traces color-coded by level of impact
or exposure. The more intensely colored a trace, the higher
the impact or exposure metric is. Users are able to select
among PEIR’s available models - carbon impact, particulate
matter exposure, sensitive sites impact, and fast food expo-
sure - to color traces by the metric of interest.Traces are
highlighted as the user scrolls over them on the map, and
trip details (e.g. trip type, impact estimates) are displayed
when the user clicks on the corresponding trip. Trips can be
browsed by time via the time browser (Figure 7.C) on top
of the map. Color-coding corresponds to that of the map.
Bar graphs (Figure 7.D) supplement the map and provide a
snapshot of the week’s impact and exposure in a day-by-day
breakdown. This dashboard is meant as an overview for the
user. From the dashboard, the user can look at previous
weeks, or move on(Figure 7.E) to extended details for an
individual trip. Details can also be reached from the PEIR
trip log, which is simply a list of all trips a user has made
that can be filtered and sorted by date, trip type, and impact
and exposure estimates.

To support deeper legibility of PEIR data provenance, the
UI offers a breakdown of how each trip’s impact and expo-
sure values were estimated; it shows the user that it is not
simply the act of driving that causes impact and exposure.
The trip breakdown shows, for example, percentage of time
spent on the freeway, activity classification, and the weather
at the time and place the trip took place.

5.2 User Publishing/Sharing
The dashboard and trip details show information on an

individual’s impact and exposure, but how do users learn
how they relate to others? Comparing themselves to peers,

Figure 8: Facebook application(top), PEIR network
view(bottom)

coworkers, or friends can help users determine where their
carbon consumption or pollution exposure ranks, and per-
haps provide some incentive to reduce.

The PEIR publishing and sharing functions provide con-
text for users to interpret and compare their results. Users
share their impact and exposure via a Facebook applica-
tion. The Facebook application shows impact and expo-
sure for both the user and the average values for Face-
book friends who have also installed the application (Figure
8(top)). Green icons of trees appear if impact and exposure
are low relative to friends, and smokey and smoggy icons
appear if impact and exposure are high. Users can also see
their rank among friends. Within the PEIR pages, users can
see the same rankings among friends (Figure8(bottom)), as
well as a weekly snapshot displayed in bar graphs (not shown
in figure) similar to that of the user’s individual dashboard.

Because location data is particularly sensitive, PEIR de-
faults to sharing only aggregate impact and exposure data.
Both user profiles and the Facebook application share and
compare daily impact and exposure numbers without reveal-
ing any location data. Future improvements to PEIR will
also enable users to share location data with people they
trust. Giving users the option to share designated routes
with specific people could encourage discovery of new routes
or participation in workplace competitions. UI features will
enable users to select routes to share with specified individu-
als. Selective, opt-in sharing of sensitive location data helps
users retain control over exposure. Additionally, logging and
displaying outsider access to user data can give participants
feedback on how their data is used. Displaying map or trip
diary access (“John Smith has accessed your trip diary 2

63



Figure 9: Usage patterns, detailed view. Darker boxes signify higher daily counts.

times this week.”) alerts users as to who is viewing their
data, and can help users hold friends accountable for shared
location data [44].

5.3 Usage Statistics

0 10 20 30 40

0

10

20

30

40

Number of days with GPS upload

N
u

m
b

e
r 

o
f 

d
a

y
s
 v

is
it
in

g
 U

I

Upload dominant

UI dominant

Usage Patterns, Data Upload v. UI visits

●

●

●

●

●

●

●

●●

●

●●

●

●

● ● ●●

●

●●

●

Figure 10: Usage patterns of UI views and data up-
load

The PEIR system using this interface has been running in
“pilot production mode”since June 8, 2008 and as of Novem-
ber 28, 2008 has logged over four million individual GPS
points grouped into over 20,000 separate trips. While the
project site launched on June 8, both the underlying data
processing (trip chunking, activity classification) as well as
the user interface continued to undergo periodic upgrades.
Many of these system changes make it hard to analyze usage
patterns across the entire time period. For example, as our
trip chunking technology changed, so too did the estimated
duration of each trip (for the most part shifting from shorter
to longer grips as the algorithm was made less sensitive to
GPS noise). In a similar way, the basic structure of the
user interface, the placement of the central map-based trip
explorer, and the addition of a simple trip tagging module,
changed how participants examine their data (and their rea-
son for doing so; trip tagging was introduced, for example,

to help diagnose and correct errors in the activity classifica-
tion scheme.). Finally, our group of dedicated participants
is relatively small (on the order of 20 or so of the 30 total
distinct users) and made up of people with quite different
motivations for examining their data. While most of our par-
ticipants approached PEIR from the standpoint of personal
reflection with an interest in understanding their transporta-
tion choices, many were also system designers, tasked with
assessing and improving the various processing components
that constitute PEIR. The casual testing and monitoring
by these participants is immediately obvious in most data
summaries of system usage (plots describing the frequency
of data uploads or UI requests, say). In addition, we can
see the effect of external campaigns, periods of focused data
collection, that impact all of the participants. Therefore,
any PEIR usage summary is necessarily equal parts proof of
concept (the system is alive and able to handle contributions
from an expanding group of participants.) and part investi-
gation into broad modes of interaction (such as patterns of
upload versus UI access).

Given all these caveats, we selected a two-month period
immediately following our initial launch (June 8, 2008 through
August 9, 2008) when the processing and interface designs
were fairly stable. In this window, just under 1300 trips
were recorded with a median duration of about 25 minutes.
In Figure 10, we plot the number of days each active partic-
ipant (someone with at least five days of trip uploads, trips
lasting 15 minutes or longer) examined their data by loading
the PEIR UI, versus the number of days they uploaded data
during our two month window. We have added dashed lines
through the origin with slopes one, a half and two(indicating
users who uploaded and examined data at roughly the same
rate, and those that were UI or upload “dominant”). From
this plot, we can identify two extremes where participants
contributed trips or visited the UI in much greater propor-
tion. Here we see the roles of our participants shaping usage;
the person with over 40 days of UI visits was actually more
of a complex than an individual, with several PEIR team
members logging in daily as this participant (with their per-
mission) to check the system’s uploads(Our logging facil-
ity cannot distinguish between these scenarios.). We expect
that the upload-dominant usage pattern will be more com-
mon when PEIR is open to the general public, since data
upload can be automated.

In Figure 9, we examine a participant’s data for each of
the three usage patterns more closely, in particular the in-
terplay between upload and visual analysis via the UI. The
UI dominant participant is the ”complex” as we indicated
before, the equal proportion participant had 20 days of UI
access and 20 days of data upload, and the upload dominant
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participant had over 30 days of trips uploaded and 6 days of
UI visits. The rows are grouped into pairs where the lower
represents upload activities and the upper indicates UI ac-
cesses for each of the three participants. Furthermore, each
column represents a day starting from June 8 and ending
with August 9. The cells are shaded according to the num-
ber of trips uploaded on the indicated day or the number
of (unique) trips viewed through the UI on that day (these
counts range from zero to 62; a linear grayscale is applied to
the square-root of these counts.).

While we hesitate to infer general PEIR usage patterns
from this fairly small sample of participants, we can draw
some modest conclusions. First, PEIR is a functioning plat-
form, easily capable of handling the demands of this small
community, and currently being scaled support groups of
roughly 100. Next, the interplay between data upload and
UI access for our“equal proportion”participant is consistent
with the experiences of several members of our group; data
collection can continue relatively easily in the background,
with only periodic visits to the UI to assess overall exposures
and impacts. Interestingly, uploads that occur after a gap
of a few days are usually accompanied by a same-day visit
to the UI. Again, this pattern makes sense given the kind
of analysis PEIR provides; the more (temporally) distant
a trip, the harder it is to examine (and instead an overall
commuting pattern becomes relevant.). As we scale PEIR
to process GPS traces from a larger group of participants,
we are architecting a more complete UI and upload tracking
system. Future reports will allow us to detail the typical
age of trips analyzed in the UI, the interplay between the
Facebook application and our GUI, and system-wide “chal-
lenges” issued by participants to lower their impacts. Having
presented the spatially oriented user interface for PEIR, in
the next section we address the critical privacy issues that
arise from the capture, storage, and sharing of the personal
location traces that underlie PEIR.

6. PARTICIPATORY PRIVACY

REGULATION
Although capturing location traces and displaying infer-

ences based on them are critical to PEIR’s purpose, both are
potentially invasive. Shared or stolen data on individuals’
routes and routines could compromise their safety. Granular
records of participants’ actions prevent plausible deniability,
compromising behavior we use to smooth social relation-
ships. Location tracking can also create chilling effects on
legal but socially stigmatized activities [45, 46, 47].

These risks involve complicated tradeoffs. Are the bene-
fits of using PEIR worth the risks of exposure? The answer
will vary depending upon individual preferences and situ-
ational factors (exposure of what, and to whom). System
legibility principles discussed above, such as displaying and
explaining all data stored in the system, already support
users in understanding the scope of data collection. In ad-
dition, discussion forums can encourage users to voice their
privacy concerns, and learn about the concerns of others,
while system alerts can remind users of pervasive data col-
lection, sharing choices, and data retention windows. Below,
we explore more involved techniques for participatory pri-
vacy regulation: selective hiding, which attempts to return
the capability for plausible deniability, as well as selective
deletion and retention rule sets.

6.1 Selecting Sharing and Hiding
As mentioned in Section 5.2, the PEIR system will en-

able users to share their location traces with people they
trust. But, in certain situations, individuals might not want
to share all portions of their trace. A common privacy fil-
ter might be to hide a particular trip to a location (such as
visit to the hospital, a certain store, or a particular restau-
rant). However, simply removing the trip is suspicious - the
lack of data may raise attention to the space/time being
protected. Thus, we propose a new approach, selective hid-
ing, that replaces a location trace segment to a particular
significant destination with a trace that is most closely re-
lated to the original in terms of model output equivalency
and is based on historical information of the user’s likely
movements. This approach has the following objectives:

• Privacy enhancement: Increase the user’s sense of pri-
vacy when sharing a substituted-trace.

• Application output equivalency: The substitute trace
results in minimal changes to the PEIR metrics.

• Believability: The substitute trace should be credible
to the people with whom the user shares his/her data.

This selective hiding approach lets a user choose sensitive
destinations and the algorithm generates candidate substi-
tute traces that do not contain the indicated destination but
which do generate similar PEIR metric outputs. The system
adjusts the candidate substitute traces to recreate the PEIR
metric outputs by time shifting, and increasing or decreasing
the time duration for activities. It then selects the best-fit
substitute and notifies a user with the changed routes. The
current system runs offline and semi-automatically, but will
be integrated into the running system in the future.

To better understand the performance of our technique,
we also implement and evaluate two previously proposed
countermeasure methods: spatial rounding and noise addi-
tion. Spatial rounding is the process of changing the original
location to one that is coarser [48]. An example of spatial
rounding is the process of rounding or snapping locations to
larger granularity zone [49]. We snap specific latitude and
longitude to the northwest point on a square grid with spac-
ing 0.1 ∼ 10000 meters. Noise addition deals the process of
distorting the original location value by a certain amount.
For each point, we generate a noise vector with a random
uniform distribution over (0,Π) and a Gaussian-distributed
magnitude from N(0, σ) [49]. We use ten different σ values
from 50 to 500 meters in increments of 50 meters.

To show the effectiveness of the three measures in en-
hancing privacy (in this case hiding a trip to a particular
significant destination), we first show how much data cor-
ruption results when prior art counter measures are used to
hide the person’s destination. We used a data set gathered
from three users for one month and identified their signifi-
cant destinations from original and obfuscated traces. We
found that in order to protect significant destinations, the
spatial rounding/noise addition has to be significant (at least
100 meter addition), which conforms with the results shown
in [49]. Second, we take a particular user’s trace in PEIR
and apply the three methods to hide sensitive destinations.
The scenario is one in which the user wants to hide his/her
visit to a particular restaurant (C) on Friday evening by
modifying the original trace, A, B, A, C, A. Using the prior
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Figure 11: The effect of adding noise, spatial rounding and selective hiding in protecting privacy

art countermeasures, fifty and 100 meter noise is added, and
100 meter and 1km grid values are applied to the original
trace. In comparison, our selective hiding method enables
the user to select substitute traces from previous trips that
start from either A or B, and end at A in order to fill the
gap in the original trace. The substitute is selected such
that the substitution produces similar impact and exposure
metrics. Because most people have different mobility pat-
terns on weekdays and weekends, in this example the search
is based on previous trips only on Friday evening. This
method allows us to find “realistic” route candidates. A new
destination, denoted by D in Figure 11, is chosen and a new
trace, A, B, D and A, is generated to replace the original
one. The time and date of the route candidate are shifted
so that the new trace fits into the original ones. The dura-
tion of driving from D to A is reduced slightly by increasing
speed values to decrease carbon impact values. The duration
of staying at D increases in order to increase a particulate
exposure value. We could increase the duration for A or B,
but D is chosen since it is the most polluted.
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Figure 12: Comparison of selective hiding tech-
niques

Figure 11 shows how the original trace changes after ap-
plying the three counter measures - prior art and our mech-
anism. Although location traces become more vague after
adding noise and rounding, the movement pattern remains
the same and sensitive information is not necessarily hid-
den such that the user may not feel comfortable sharing
the modified traces. On the other hand, the new location

traces using our method show a different, yet credible move-
ment pattern while producing similar application outputs.
Our countermeasure technique generates substitute location
data that, unlike prior art, still generates believable output
from location-based models. This further helps avoid de-
tection efforts that would use anomalous model outputs as
indicators of faked data. Figure 12 shows how much PEIR
metrics deviate from the original impact and exposure values
when we applied prior art counter measures relative to our
path substitution approach. Adding noise disperses points
and increase speed values, which results in higher carbon
emission values. Spatial rounding to points on a grid causes
several points to go to one particular point, which increases
“staying points.” In the case of spatial rounding with 1km
size grid, the carbon emission values become zero. That is,
the high degree of corruption required to preserve privacy
could make location-based services like PEIR unusable by
altering application outputs. However, selective hiding with
substitute path segments produced nearly the same PEIR
model output met.

6.2 Selective deletion and retention
Another important privacy issue is control of data re-

tention. As users collect data, they create an exhaustive
database of their routines and locations. Collected over
months or years, this data provides an intimate portrait of
individuals’ lives that could be subject to theft or subpoena.
Allowing users to delete their data can prevent some of the
privacy harms that stem from long-term retention [50, 51,
52].

PEIR retains aggregate calculations of impact and expo-
sure indefinitely, so that users may compare their impact
and exposure over months or years. But the system will
default to deleting all location information after six months
unless users specify otherwise. Users will be able to alter
their profile preferences to retain location data for shorter
or longer periods. Users can also delete specific routes or
locations in their trip diaries. Deleting individual trips per-
manently deletes the associated GPS coordinates from the
database. We are also exploring approaches to permanent
deletion from backups [53]. PEIR does not recalculate aggre-
gate impact and exposure, however, so the impact of deleted
trips remains reflected in PEIR totals.
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7. CONCLUSIONS
PEIR exemplifies an emerging class of adaptive, human-

in-the-loop sensing systems that combine the distributed
processing of the web with the personal reach of mobile tech-
nology to engage people in exploring the previously unob-
servable relationships of their actions to the world around
them. PEIR automatically segments each user’s location
data into trips, and generates impact and exposures for
these journeys. To help users build personal understand-
ing of the estimates, the system also provides trends over
time, access to intermediate calculations, and comparisons
among users in the same Facebook social network. This
paper outlined PEIR’s existing architecture and implemen-
tation details, and discussed system lessons learned and en-
hancements already underway, for a version in use by thirty
users over six months in 2008, collecting approximately four
million GPS records.

PEIR has been an excellent experimental platform that
motivated new algorithms to provide well performing activ-
ity classification, runtime model computation, and selective
sharing. Future work on the PEIR system will focus on
scalability, stability, performance, and usability. In order to
scale the server to handle thousands of real time users and
future application enhancements we must define more mod-
ular interfaces for incorporating data inputs and models. Fu-
ture users will exist around the world, and so we must make
it easier to integrate with local models and data sets relevant
to PEIR inferences. As we do so we face a tension between
greater inference accuracy, through the use of local air qual-
ity resources for example, and that of greater scalability,
by keeping the inferences based on more broadly applicable
models as inputs. Similarly, our activity classification must
be extended to accommodate modalities common in other
locations such as cycling, bus, train, and subway. Sustained
usability of the system will be greatly enhanced through the
introduction of goal setting and feedback. This calls for new
features on both the server side and the handheld device.
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