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Abstract

Previous work found that an earlier ice breakup favors the recruitment of juvenile polar cod (Boreogadus saida) by enabling 

early hatchers to survive and reach a large size by late summer thanks to a long growth season. We tested the hypothesis 

that, in addition to a long growth season, an earlier ice breakup provides superior feeding conditions for young polar cod by 

enhancing microalgal and zooplankton production over the summer months. Ice cover and surface chlorophyll a were derived 

from satellite observations, and zooplankton and juvenile cod biomass were estimated by hydroacoustics in ten regions 

of the Canadian Arctic over a period of 11 years. Earlier breakups resulted in earlier phytoplankton blooms. Zooplankton 

backscatter in August increased with earlier breakup and bloom, and plateaued at chlorophyll a > 1 mg m−3. Juvenile cod 

biomass in August increased with an earlier breakup, and plateaued at a zooplankton backscatter > 5  m2  nmi−2, supporting the 

hypothesis that higher food availability promotes the growth and survival of age-0 fish in years of early ice melt. However, 

there was little evidence that late summer biomass of either zooplankton or age-0 polar cod benefitted from ice breakup 

occurring prior to June. On average, zooplankton standing stock was similar in the Southern Beaufort Sea and the North 

Water-Lancaster Sound polynya complex, but juvenile cod biomass was higher in the Beaufort Sea. Intense avian predation 

could explain the lower biomass of juvenile cod in the polynya complex, confirming its reputation as a biological hotspot 

for energy transfer to higher trophic levels.

Keywords Boreogadus saida · Juvenile recruitment · Zooplankton · Ice breakup date · Phytoplankton bloom · Canadian 

Arctic Ocean

Introduction

The polar cod (Boreogadus saida), a small forage fish, domi-

nates the pelagic fish assemblage in Arctic seas (Fortier et al. 

2015). It plays a pivotal role in the transfer of energy from 

zooplankton to Arctic predators, thus changes in its abun-

dance in response to climate change could alter the services 

provided to northern communities by the pelagic ecosystem 

(Welch et al. 1992; Tynan and DeMaster 1997; Darnis et al. 

2012). The larvae hatch from January to early July and develop 
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in the epipelagic layer (0–100 m) over spring and summer 

(Bouchard and Fortier 2008, 2011; Geoffroy et al. 2016). By 

September and October, age-0 juvenile polar cod initiate an 

ontogenetic downward migration and recruit progressively to 

the adult stock in the mesopelagic layer as their size increases 

(Geoffroy et al. 2016). The abundance and biomass of epipe-

lagic age-0 polar cod in August and September, before this 

migration, is believed to be a predictor of recruitment to the 

adult population (e.g., polar cod in Bouchard et al. 2017; other 

gadids in Laurel et al. 2016).

In the Canadian Arctic, the biomass of juvenile polar cod 

in August and September increases exponentially with earlier 

ice breakup (< 50% ice cover) and warmer spring–summer 

sea surface temperatures (Bouchard et al. 2017). Only the late 

hatchers survive in years of late ice breakup, resulting in fewer 

and smaller fish in the fall. In years of early ice breakup, early 

hatchers survive and enjoy a long growth season, which results 

in more abundant and heavier fish in the fall. Differences in 

recruitment to the juvenile stage can be large: juvenile polar 

cod biomass in September can be 11 times greater for an early 

May ice breakup compared to a late September ice breakup 

(Bouchard et al. 2017). Juvenile recruitment was strongly cor-

related to ice breakup date and sea surface temperatures (SST), 

two correlated abiotic drivers. However, Bouchard et al. (2017) 

suspected that the survival of early hatchers in years of early 

ice breakup is enhanced by biotic factors such as an advanced 

bloom of ice algae and phytoplankton (e.g., Kahru et al. 2011) 

and the resulting earlier and more intense production of cope-

pod nauplii and copepodites (Fortier et al. 1995; Ringuette 

et al. 2002; Daase et al. 2013), the preferred prey of age-0 polar 

cod (Michaud et al. 1996; Bouchard et al. 2016).

In this study, new data are added (18 region-year combi-

nations in August and 12 in September) to further explore 

the correlation between ice breakup date and the biomass of 

juvenile polar cod in late summer reported by Bouchard et al. 

(2017). We also test the prediction that increased juvenile 

recruitment in years of early ice breakup is correlated to an 

earlier phytoplankton bloom and the resulting higher avail-

ability of zooplankton. Phytoplankton bloom onset date and 

acoustically estimated zooplankton standing stock in the fall 

are used as indices of the production of the pelagic ecosystem 

over the summer months. Pelagic production and the recruit-

ment of juvenile polar cod are contrasted among three prov-

inces of the Canadian Arctic: Southern Beaufort Sea in the 

Arctic Ocean Basin proper, the shallow Kitikmeot region in 

the central Archipelago, and Northwest Baffin Bay including 

the North Water-Lancaster Sound polynya complex.

Materials and methods

Study area

The Canadian sector of the Arctic Ocean extends from the 

Beaufort Sea in the West to Baffin Bay in the East (Fig. 1). 

The sector is divided into several regions by the Canadian 

Ice Service based on sea-ice characteristics and regime 

(www.ec.gc.ca/glace s-ice). Typically, these regions are 

covered by ice for most of the year, with ice breakup occur-

ring from May to September or not at all depending on the 

year (Bouchard et al. 2017; National Snow and Ice Data 

Center 2018). From 2006 to 2017, 63 hydroacoustic-trawl 

surveys of variable duration (1 to 30 days) were completed 

in ten of these regions in August and September (Fig. 1, 

Table 1) as part of the ArcticNet annual expedition of the 

research icebreaker CCGS Amundsen to the Canadian 

Arctic Ocean (2006–2017) and the Fisheries and Oceans 

Canada surveys aboard the trawler F/V Frosti in the Beau-

fort Sea (2012–2014). Overall, valid hydroacoustic esti-

mates of zooplankton and juvenile polar cod biomass were 

obtained for 40 region-year combinations in August and 23 

in September(Table 1).

The ten regions surveyed span three main oceanographic 

provinces (Fig.  1). Southern Beaufort Sea in the west 

comprises the productive Mackenzie Shelf with intermit-

tent upwelling at its northeast edge (Carmack and Kulikov 

1998; Carmack et al. 2004); the mouth of the Amundsen 

Gulf with the large Cape Bathurst polynya (Stirling 1980; 

Arrigo and van Dijken 2004; Williams and Carmack 2008); 

and the deep Amundsen Gulf. The Kitikmeot region in 

the Southern Canadian Arctic Archipelago (CAA) is char-

acterized by shallow (< 220 m) gulfs, sounds and straits 

(Coronation-Queen Maud gulfs, Larsen Sound-Victoria 

Strait), and deeper (< 420 m) sounds and channels (Peel 

Sound, M’Clintock Channel). Northwest Baffin Bay includes 

the productive North Water and Lancaster Sound polynya 

complex, and the western Baffin Bay region (Fig. 1). The 

west–east general circulation carries surface waters from the 

Beaufort Sea to Baffin Bay through the shallow CAA (Wang 

et al. 2012). Biologically, polar cod and the large copep-

ods Calanus hyperboreus and Calanus glacialis dominate 

pelagic biomass in the deep Beaufort Sea and NW Baffin 

Bay, while benthic fish and smaller copepods characterize 

the shallow Kitikmeot (Bouchard et al. 2018, Darnis et al. 

unpublished data). The North Water and Lancaster Sound 

polynya complex is considered one of the most biologically 

productive regions of the Arctic Ocean (e.g., Stirling 1980; 

Barber et al. 2001; Tremblay et al. 2002).

http://www.ec.gc.ca/glaces-ice
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Remote sensing of ice and Chl a

Ice breakup week (IBW) in a given region-year was defined 

as the week during which ice concentration fell below 50% 

(Scott and Marshall 2010) using the Canadian Ice Service 

data (www.ec.gc.ca/glace s-ice).

For each region-year, the mean chlorophyll a concen-

tration from 1 April to 31 August (Chl a) was estimated 

using Level 3 daily Aqua MODIS remote-sensing data at a 

4  km2 resolution (https ://ocean color .gsfc.nasa.gov/cgi/l3). 

Daily sea-ice concentration was assigned to each Chl a con-

centration from the nearest most overlapping pixel of the 

25-km resolution Defense Meteorological Satellite Program 

(DMSP) Special Sensor Microwave Imager (SSM/I)-Special 

Sensor Microwave Imager/Sounder (SSMIS) (https ://nsidc 

.org, 2006–2016) and of the 12.5-km resolution IFREMER-

CERSAT (ftp.ifremer.fr/ifremer/cersat 2017) datasets. Pixels 

of Chl a concentration with ice concentration > 15% were 

removed from the analysis to avoid possible contamina-

tion of the ocean color signal. For a given region-year, the 
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Fig. 1  a Limits of the ten Canadian Ice Service regions analysed 

in the study grouped by the Southern Beaufort Sea, Kitikmeot and 

Northwest Baffin Bay oceanographic provinces. b Hydroacoustic and 

ichthyoplankton surveys from 2006 to 2017. Black lines represent 

hydroacoustic transects. Colored dots are the locations of ichthyo-

plankton sampling stations with color indicating the number of net 

samples at each location over the study period
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phytoplankton bloom start date (BSD) was defined as the 

day when the daily mean Chl a concentration exceeded 20% 

of the maximum daily mean Chl a concentration from 1 

April to 31 August (Platt et al. 2009; Marchese et al. 2017).

Hydroacoustic estimates of polar cod 
and zooplankton

Ichthyoplankton nets and trawls were deployed (Fig. 1b, 

Table 1) from the surface to depths varying from 10 to 

100 m to ascertain the epipelagic fish assemblage and vali-

date the acoustic signals (details in Bouchard et al. 2017). 

The fresh standard length (SL) of individual age-0 polar cod 

was measured on the ship and their weight (W) was calcu-

lated based on W = 0.0055 (SL)3.19 (Geoffroy et al. 2016). 

Data from the two ships for a given region-year were pooled.

Hydroacoustic data were recorded continuously along the 

track of the ships (Fig. 1b, Table 1) with a Simrad EK60® 

split-beam echosounder at 38 and 120 kHz (nominal beam 

angle of 7°). The ping rate varied from ~ 1 to 2 s depending 

on maximum depth, and pulse duration was set to 1024 µs. 

Power was 2 kW at 38 kHz and 500 W (2006–2011) or 

250 W (2012–2017) at 120 kHz. The co-located transducers 

were calibrated annually using the standard sphere method 

(Demer et  al. 2015). Conductivity–Temperature–Depth 

(CTD) profiles from the Amundsen (SBE-911 plus®) and the 

Frosti (SBE-25® and SBE-19 plusV2®) were used to deter-

mine sound speed in water (Mackenzie 1981) and the coef-

ficient of sound absorption (Francois and Garrison 1982) for 

the acoustic analysis. The echograms were all scrutinized to 

correct bottom detection by the sounder and to discard noise 

and signals from other deployed instruments. A time-varied 

threshold (TVT = 20logR + 2αR − 140, where R is the range 

from the transducer) was also added in the 38 and 120 kHz 

echograms to offset noise amplification at depth by the 

time-varied gain (e.g., Geoffroy et al. 2016). A minimum 

(− 90 dB) and a maximum (− 40 dB) volume backscattering 

strength  (Sv; dB re: 1 m−1) threshold was applied on the data 

at both frequencies (Benoit et al. 2014; Geoffroy et al. 2016).

The difference in mean volume backscattering strength 

ΔMVBS (dB re: 1 m−1) between 38 and 120 kHz was used 

to discriminate polar cod from zooplankton (ΔMVBS120-38 

in the range − 10 dB to 5 dB, Benoit et al. 2014; Geof-

froy et al. 2016). Monthly mean size (SL and W) of polar 

cod sampled by nets and the nautical area backscattering 

coefficient (NASC,  m2  nmi−2) in echo-integration cells 

(0.25 nautical mile long by 3 m deep) at 38 kHz were 

used to estimate age-0 polar cod integrated biomass (mg 

 m−2) from 13.5 m (effective sampling depth of the trans-

ducers) to 100 m. Monthly (August and September) mean 

integrated age-0 polar cod biomass (B) was calculated for 

each region-year surveyed (Table 1).

By excluding fish in the top 13.5 m of the water column 

and at the ice-water interface, our acoustical estimates of 

age-0 polar cod biomass are underestimating total bio-

mass. The proportion of the age-0 population excluded 

from the estimates is poorly documented, but the bias is 

assumed constant across years and regions.

A proxy for zooplankton density in the epipelagic layer 

(13.5–100 m) was calculated using NASC  (m2  nmi−2) 

in echo-integration cells at 120  kHz. To discriminate 

zooplankton backscatter from that of fish and macro-

zooplankton, only cells with ΔMVBS120-38 > 12 dB 

(Madureira et al. 1993) were kept in the echo-integration.

Table 1  Date range of 

ichthyoplankton and 

hydroacoustic sampling periods 

in each region: Southern 

Beaufort Sea: MS Mackenzie 

Shelf, AGM Amundsen Gulf 

Mouth, AG Amundsen Gulf; 

Kitikmeot: CM Coronation-

Maud, LV Larsen Sound-

Victoria Strait, MC M’Clintock 

Channel, PS Peel Sound; and 

Northwest Baffin Bay: LS 

Lancaster Sound, NW North 

Water, WBB West Baffin Bay

No sampling in 2009

Month Year MS AGM AG CM LV MC PS LS NW WBB

August 2010 14–28 9–10 8–9 6–8

2011 9–12 8–9 7–8 2–7

2012 6–31

2013 24–31 1–24 10–20 13–31 14–29 9–12

2014 2–31 17–21 11–16 10–11 1–7

2015 25–30 22–30 22 17–21 17 16–17 9–14 5–9

2016 29–31 27–29 26–27 20–26 19–20 19 4–18 4–17 1–3

2017 8–10 7–10 2–5

September 2006 24–27 23–24 6–23 6–20

2007 28–30

2008 2–9 9–23 10–30

2011 2–30 1–30

2013 3–29

2014 1–24 24–25

2015 19–22 22–23 25–30

2016 1–6 15–16 16–20 20 21–22 23–25 26–29
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Monthly mean zooplankton backscatter (Zoo) was calcu-

lated for each region-year.

Copepods dominate the zooplankton of Canadian Arctic 

seas with the large Calanus hyperboreus and C. glacialis 

herbivores making up 50 to 90% of the zooplankton bio-

mass and small species such as Pseudocalanus spp., Oithona 

similis, and Triconia borealis prevailing by numbers (Darnis 

et al. 2008, 2012). We thus assumed that the acoustic signal 

attributed to zooplankton is dominated by these species.

All hydroacoustic data analyses were performed with 

Echoview® 7.1.

Statistics

Spearman’s rank correlations were first tested between 

abiotic and biotic variables and among biotic variables as 

exploratory analyses. Each relationship was further investi-

gated using simple linear mixed-effects regression models. 

In models that included Chl a or zooplankton backscatter as 

independent variables, these variables were ln-transformed 

based on a visual examination of scatterplots, as well as 

on the theory of predator–prey interactions (Holling 1959). 

Region of sampling was included in the models as a ran-

dom effect. Relationships between zooplankton backscatter 

or age-0 polar cod biomass and ice breakup week or phyto-

plankton bloom start date were also evaluated using second-

order mixed-effects models. Linear and second-order mixed-

effects models were compared with the Akaike information 

criteria (AIC). Marginal r2 was calculated for each model 

(Nakagawa and Schielzeth 2013). Dependent variables in the 

relationships were ln-transformed prior to statistical analyses 

to achieve approximate homoscedasticity and normality of 

model residuals.

Average onset date of the phytoplankton bloom, zoo-

plankton backscatter in August, and age-0 polar cod biomass 

in August were compared among oceanographic provinces 

with a one-way ANOVA and a Tukey HSD test.

Statistical analyses were conducted with R® version 3.2.3 

(R Core Team 2015).

Results

Ice breakup, microalgal bloom, zooplankton 
and juvenile polar cod biomass

Across the region-years, the onset date of the phytoplank-

ton bloom was significantly influenced (slope = 0.020, 

p = 0.002) by the ice breakup week (linear mixed-effects 

model, Fig. 2a; Online resource 1a). Chl a averaged over the 

period 1 April to 31 August was significantly correlated to 

ice breakup week (Spearman’s rank correlation, p < 0.001), 

although the effect was not statistically significant in the 

linear mixed-effects model (slope = − 0.018, p = 0.108). Ear-

lier ice breakup tended to result in greater surface microalgal 

biomass over spring–summer (Fig. 2b; Online resource 1b).

Based on the linear mixed-effects model, zooplank-

ton backscatter in the epipelagic layer (13.5–100  m) 

in August increased with an earlier ice breakup week 

(slope =  − 0.170, p < 0.001) and an earlier phytoplank-

ton bloom (slope =  − 0.015, p = 0.014) (Fig. 3a, b; Online 

resource 2a). An early ice breakup in May increased zoo-

plankton backscatter up to 116-fold relative to a late ice 

breakup in September (Fig. 3a). A second-order mixed-

effects model [ln(Zoo) = 1.11–4.92 IBW–2.89  IBW2] yielded 

a higher coefficient of determination (marginal r2 = 0.51 vs. 

0.36) and a lower AIC value (110.8 vs. 118.7) than did the 

linear mixed-effects model (Fig. 3a), suggesting that zoo-

plankton backscatter was maximum for an ice breakup in 

early June. Based on a second-order mixed-effects model 

as well (marginal r2 = 0.23 vs. 0.17; AIC value = 122.5 vs. 

124.4), zooplankton backscatter peaked when the surface 

bloom started in late May (Fig. 3b). Despite much noise 

in the relationship, zooplankton backscatter in late sum-

mer tended to increase initially with spring–summer Chl 

a (slope = 0.453, p = 0.363), and then to plateau at Chl 

a > 1 mg m−3 (Fig. 3c).

Biomass of age-0 polar cod (mg  m−2) in August in 

the epipelagic layer increased with an earlier ice breakup 

(slope =  − 0.254, p < 0.001) (Fig. 4a; Online resource 3a). 

Polar cod biomass in August was ~ 16 times higher for the 

earliest ice breakup on week 19 (early May) compared to 

the latest ice breakup on week 36 (early September). As for 

zooplankton backscatter, the residuals of the linear mixed-

effects regression tended to be positive in June and negative 

before and after, suggesting that juvenile polar cod biomass 

in August was maximum when the ice broke up in June. 

A second-order mixed-effects model also yielded a slightly 

higher coefficient of determination (marginal r2 = 0.47 vs. 

0.44) and a lower AIC value (135.6 vs. 142.6) than did 

the linear mixed-effects model (Fig. 4a). Age-0 polar cod 

biomass in August increased with zooplankton backscatter 

(slope = 0.762, p < 0.001) until it reached a plateau at zoo-

plankton backscatter > 5  m2  nmi−2 (Fig. 4b).

The relationships found in August between abiotic 

and biotic variables and among biotic variables were also 

detected in September but at lower statistical significance 

levels (Online Resources 2 to 5).

Bloom onset date, zooplankton standing 
stock and juvenile polar cod biomass 
across oceanographic provinces

The onset date of the phytoplankton bloom averaged over 

years tended to be more variable in regions of the South-

ern Beaufort Sea than in the regions of the other two 
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Fig. 2  a Bloom start day (BSD) 

and b average surface chloro-

phyll a concentration from 1 

April to 31 August (Chl a) in 

relation to ice breakup week 

(IBW) for all region-years 

(filled symbols: August; open 

symbols: September; n = 52) 

over the period of study. Solid 

lines are the linear mixed-effects 

regression models and dashed 

lines are the 95% confidence 

intervals. Regression equations 

are given with the p value of the 

slope and marginal r2. ρ is the 

Spearman’s rank correlation
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to 31 August (Chl a). Solid black lines are the (a, b) linear or c loga-

rithmic mixed-effects regression models and dashed lines are the 95% 

confidence intervals. Regression equations are given with the p value 

of the slope and marginal r2. ρ is the Spearman’s rank correlation. 
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oceanographic provinces (Fig. 5a). Bloom start dates were 

significantly later (Tukey HSD test, p < 0.05) in the Kitik-

meot province of the Canadian Archipelago, and showed no 

statistical difference between the Southern Beaufort Sea and 

NW Baffin Bay.

Mean acoustic estimates of zooplankton density in 

August were similar in the deep Southern Beaufort Sea and 

deep NW Baffin Bay and significantly lower (Tukey HSD 

test, p < 0.05) in the shallow Kitikmeot (Fig. 5b).

Juvenile polar cod biomass in August averaged 

over region-years was highest in Southern Beaufort 

Sea (mean = 252  mg  m−2), intermediate in NW Baffin 

Bay (mean = 139 mg m−2) and lowest in the Kitikmeot 

(mean = 19 mg m−2) (Fig. 5c).

Discussion

Early ice breakup and summer pelagic production

In the strongly pulsed primary production cycle of Arctic 

seas, microalgal biomass first develops in spring at the ice-

water interface (Horner 1985; Sakshaug and Slagstad 1991; 

Søreide et al. 2010). Thanks to early removal of the snow 

cover over the ice or to leads allowing light to penetrate 

the surface waters, phytoplankton sometimes blooms before 

the ice breakup (Haecky et al. 1998; Fortier et al. 2002; 

Arrigo et al. 2012; Assmy et al. 2017). However, the surface 

phytoplankton bloom typically starts in the weeks follow-

ing ice breakup and then deepens towards the nitracline to 

form a sub-surface chlorophyll maximum (SCM) (Martin 

et al. 2010). With an increasingly late freeze-up allowing 

wind mixing, a second surface phytoplankton bloom is 

now observed in autumn in many Arctic seas (Ardyna et al. 

2014).

By allowing light penetration, an earlier ice breakup trig-

gers an earlier phytoplankton bloom (e.g., Ringuette et al. 

2002; Kahru et al. 2011; Leu et al. 2011), which results in 

a longer season of production and, despite the possibility 

of nutrients becoming limiting in some regions (Tremblay 

et al. 2012), an overall greater primary production over the 

spring–summer (Arrigo et al. 2008; Arrigo and van Dijken 

2015). Satellite observations detect neither ice microalgae, 

under-ice phytoplankton, nor deep SCMs (Arrigo and van 

Dijken 2015). Hence, the remote-sensing measurements of 

surface Chl a used here certainly underestimated the overall 

microalgal biomass available to zooplankton grazers over 

spring–summer (e.g., Assmy et al. 2017). Nevertheless, sur-

face Chl a averaged from April to August, our crude index of 

ecosystem primary production, was correlated to ice breakup 

week (Fig. 2). Bloom start date, which dictates the duration 

of the period of food availability to zooplankton grazers, also 

depended on ice breakup week as reported previously (e.g., 

Ringuette et al. 2002; Søreide et al. 2010; Leu et al. 2011).

First-feeding polar cod larvae prey on copepod eggs and 

the naupliar stages of small copepods such as Pseudocalanus 

spp. and Oithona similis, whereas juveniles shift their diet to 

the nauplii and early copepodite stages of the larger Calanus 

spp. (Fortier et al. 1995; Michaud et al. 1996; Bouchard et al. 

2016). An early ice breakup in the North Water relative to 
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Barrow Strait led to the earlier production and higher densi-

ties of Pseudocalanus spp. and Calanus spp. early copepo-

dite stages (Ringuette et al. 2002). As well, Leu et al. (2011) 

observed a temporal mismatch between the algal bloom and 

the growth of the new copepod generation when ice broke 

up late in Rijpfjorden (Svalbard) in 2008. These authors sug-

gested that very early ice breakups and algal blooms could 

also disconnect herbivorous zooplankton from its food, lead-

ing to lower population levels, as has been also observed at 

lower latitudes in the Bering Sea (Hunt et al. 2002).

In the present study, zooplankton backscatter in August 

was more strongly correlated to ice breakup date and phy-

toplankton bloom onset date than to Chl a concentration 

(Fig. 3), indicating that the duration of the season of food 

availability rather than food abundance likely was the pri-

mary driver of the late summer biomass of zooplankton. 

Over a 4-month range in ice breakup and phytoplankton 

bloom dates (early May to early September), zooplankton 

backscatter in August generally increased with an earlier 

breakup and bloom (Fig. 3). Yet, a close inspection of the 

relationship reveals that maximum backscatter in August 

was achieved for ice breakups and blooms occurring in late 

May and June and that, consistent with the prediction of 

Leu et al. (2011), the few instances of very early breakup 

and bloom in May were correlated with somewhat lower 

zooplankton backscatter in August (Fig. 3a, b). Statisti-

cally, the adjustment of a second-order mixed-effects model 

depicting this maximum in zooplankton recruitment for late 

May–June breakups and blooms explained a larger fraction 

of the variance (r2) in zooplankton backscatter in August and 

resulted in a better model (lower AIC) than a linear mixed-

effects model (Fig. 3a, b). Maximum zooplankton backscat-

ter would point to June as the threshold over which climate 

warming and an ever earlier ice breakup would stop benefit-

ing the present zooplankton assemblage in Arctic seas.

Pelagic production and juvenile polar cod 
recruitment

Statistical relationships linking fish recruitment to some 

environmental factor often fail with the addition of new 

observations, in particular if these come from outside the 

range of conditions for which the initial relationship was 

established (Frank 1997; Myers 1998; Leggett and Frank 

2008). The addition of 18 new data points for August (from 

22 to 40) to the relationship reported by Bouchard et al. 

(2017) confirmed the link between juvenile polar cod bio-

mass in the fall and the date of ice breakup (Fig. 4a). This 

suggests that the environmental conditions in Canadian Arc-

tic seas have not yet changed enough to modify the forcing 

of polar cod recruitment by sea-ice dynamics.

Polar cod is often associated with the ice-water interface 

and sometimes observed within anfractuosities in the sea 

ice (Lønne and Gulliksen 1989; Gradinger and Bluhm 2004; 

Søreide et al. 2006; Melnikov and Chernova 2013; David 

et al. 2016). This raises the possibility that in region-years of 

late ice breakup, some age-0 polar cod would ascend to the 

ice-water interface in August–September, escaping detection 

in the 13.5 + m layer ensonified by our echosounder. The 

concentration of juvenile polar cod at the ice-water interface 

or within the top 13.5 m of the water column could explain 

in part the estimated low biomasses of age-0 fish in years of 

late breakup. In the central Arctic Ocean, polar cod sampled 
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at the ice–water interface with the Surface and Under Ice 

Trawl (SUIT) in August and September were age-1 + fish 

from 52 to 140 mm SL (David et al. 2016). The 0.3 mm 

mesh of the inside net of the SUIT should have retained 

age-0 polar cod if any were distributed at the ice-water 

interface. Other studies also reported that polar cod associ-

ated with sea ice were mostly age-1 and age-2 fish (Lønne 

and Gulliksen 1989; Melnikov and Chernova 2013). While 

further studies of sea ice as habitat for age-0 polar cod are 

warranted (Geoffroy et al. 2016), these observations do not 

support the hypothesis of a significant migration of age-0 

polar cod to the ice–water interface in the fall.

The dependence of juvenile polar cod biomass on ice 

breakup date can be interpreted in two non-exclusive ways 

(Bouchard et al. 2017). First, polar cod larvae hatch from 

as early as January to the first weeks of July (Bouchard and 

Fortier 2008, 2011). Higher recruitment in late summer 

could solely result from the fact that an early ice breakup 

provides early hatching larvae with the minimum tempera-

ture and feeding conditions to survive and benefit from a 

long growth season, leading to abundant and large fish in 

August. Warmer summer temperatures and more abundant 

food would play no significant role in polar cod survival 

and recruitment. Second, in addition to minimum conditions 

for survival, warmer SST and a general increase in summer 

pelagic production resulting from an earlier bloom would 

also contribute to maximize juvenile polar cod biomass in 

late summer in region-years of early ice breakup. It is dif-

ficult to tease apart the respective roles of early breakup 

and high SST as they are highly correlated (Bouchard et al. 

2017). In the laboratory, age-0 polar cod achieved better 

morphometric and lipid conditions at high temperature (5° 

vs. 2 °C) or high food ration (2–5 vs. 0.5 prey  ml−1) (Koen-

ker et al. 2018). The present field study confirms that the 

zooplankton food available to young polar cod increases 

with an earlier ice breakup and phytoplankton bloom onset 

(Fig. 3a, b); and that the biomass of juvenile polar cod in 

August is limited at low densities of zooplankton (Fig. 4b). 

The dependence of polar cod recruitment on zooplankton 

density followed the expected asymptotic curve predicted 

by theory when predators become saturated beyond some 

threshold prey concentration (Holling 1959; Cushing and 

Horwood 1994). Therefore, the emerging proximal mecha-

nism behind the enhancement of juvenile polar cod recruit-

ment with early ice breakup is the maximization of pre-

winter sizes, and possibly lipid storage, by exposing early 

hatchers to higher SST and saturating feeding conditions.

Bouchard et al. (2017) reported weaker relationships 

between epipelagic juvenile polar cod biomass and ice 

breakup date or spring–summer SST for acoustic surveys 

conducted in October relative to August or September. 

They attributed the seasonal deterioration of the relation-

ships to the downward migration of the juveniles leaving 

the epipelagic layer (Geoffroy et al. 2016), and emphasized 

the importance of conducting surveys during the appropri-

ate temporal window (Bouchard et al. 2017). In the present 

study, all relationships involving the backscatter of zoo-

plankton were weaker in September than in August (Online 

resource 2 to 5). By September, the Calanus species making 

up the bulk of zooplankton biomass have initiated or com-

pleted their seasonal vertical migration to depths > 100 m 

(Dawson 1978; Hirche 1997; Darnis and Fortier 2014). 

Moreover, an earlier ice breakup and phytoplankton bloom 

accelerate the development of Arctic copepods and hasten 

their migration to depth (e.g., Ringuette et al. 2002). While 

the backscatter of larger macro-zooplankton was excluded in 

our acoustic analyses, zooplankton backscatter recorded at 

120 kHz might have included that of other organisms similar 

in size to large copepods (e.g., small amphipods). Notwith-

standing this potential bias, our results suggest that August 

is the optimal time window for acoustic surveys aiming at 

capturing the dependence of juvenile polar cod recruitment 

on the availability of their epipelagic copepod prey.

Extrapolating the ongoing trend in earlier ice breakup 

in the different regions studied, Bouchard et al. (2017) pro-

jected some admittedly unrealistic increases in the biomass 

of polar cod by mid-century. They concluded that several 

factors amplified by the ongoing warming of the Arctic 

would likely limit an eventual proliferation of polar cod, 

including the reduction in habitat for the ice-associated 

individuals and the invasion of Arctic seas by competing or 

predatory subarctic fish species. In the present study, both 

the backscatter of zooplankton (Fig. 3a) and biomass of 

juvenile polar cod (Fig. 4a) were maximum for ice breakups 

occurring from late May to early July and tended to stagnate 

or decline for earlier ice breakups in May (note the log scales 

in both Figs. 3, 4). This parallel response suggests that a 

mismatch between copepods and their food when the ice 

breaks earlier than June (Leu et al. 2011) could cascade to 

the recruitment of juvenile polar cod and contribute to limit 

the population development of this key species in response 

to climate warming.

Contrasting oceanographic provinces: depth, 
seabirds, and the recruitment of polar cod

The Southern Beaufort Sea and the NW Baffin Bay oceano-

graphic provinces are characterized by deep regions and the 

presence of a large recurrent polynyas (respectively the Cape 

Bathurst polynya and the North Water-Lancaster Sound pol-

ynya complex). The North Water-Lancaster Sound polynya 

complex in particular is considered an oasis for Arctic preda-

tors (Stirling 1980; Brown and Nettleship 1981; Heide-Jør-

gensen et al. 2013). By contrast, shallow depths (< 100 m) 

and the resulting absence of warm Atlantic Water limit the 

abundance of large Calanus copepods and adult polar cod 
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in the Kitikmeot (Bouchard et al. 2018; Darnis et al. unpub-

lished data). Over the period covered by the present study 

(2006–2017), ice breakups in the regions of the Kitikmeot 

were among the latest and ranged between early July and 

early September. Unsurprisingly, the average onset date of 

the phytoplankton bloom was significantly later (Tukey HSD 

test, p < 0.05) in this province (Fig. 5a).

Similar to the onset date of the bloom, mean zooplankton 

backscatter in August presented a clear pattern across the 

three provinces, with high and similar average values in the 

deep Southern Beaufort Sea and the deep NW Baffin Bay 

(6.1–9.7  m2  nmi−2 across regions), and low values (< 2  m2 

 nmi−2) in the shallow Kitikmeot (Fig. 5b). Late ice breakup 

and phytoplankton bloom, the low abundance of zooplank-

ton prey, and a scarcity of adult polar cod (Bouchard et al. 

2018) likely resulted in low juvenile polar cod biomass in 

the Kitikmeot (Fig. 5c).

In all regions of the Southern Beaufort Sea and the NW 

Baffin Bay oceanographic provinces, mean zooplankton 

backscatter exceeded the 5  m2  nmi−2 threshold (Fig. 5b) 

under which juvenile polar cod recruitment seems limited 

(Fig. 4b). Interestingly, despite non-limiting prey density 

in both provinces, generally higher mean and maximum 

juvenile polar cod biomasses were observed in the South-

ern Beaufort Sea than in NW Baffin Bay (Fig. 5c). Mostly 

because of the availability of nesting cliffs (Gaston et al. 

2012), piscivorous seabirds including the thick-billed murre 

(Uria lomvia), northern fulmar (Fulmarus glacialis) and 

black-legged kittiwake (Rissa tridactyla), are considerably 

more abundant in the North Water-Lancaster Sound polynya 

complex of NW Baffin Bay than in the Southern Beaufort 

Sea (Wong et al. 2014). The availability of zooplankton prey 

being non-limiting in the two provinces, we suspect that 

intense avian predation lowered juvenile polar cod biomass 

in NW Baffin Bay relative to the Southern Beaufort Sea (top-

down instead of bottom-up control). While energy trans-

fer from lower trophic levels to fish and marine mammals 

through polar cod could be similar in the two provinces, 

we suggest that intense avian predation on juvenile polar 

cod in the North Water-Lancaster Sound polynya complex 

increases overall energy transfer to higher trophic levels. Our 

results quantitatively confirm the reputation of the North 

Water as a biological hotspot, further justifying the trans-

formation of the Pikialasorsuaq region into an international 

protected area under Inuit management (see Eegeesiak et al. 

2017).
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