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Replication of time series in microarray experiments is costly. To analyze time series data with no 

replicate, many model-specific approaches have been proposed. However, they fail to identify the 

genes whose expression patterns do not fit the pre-defined models. Besides, modeling the temporal 

expression patterns is difficult when the dynamics of gene expression in the experiment is poorly 

understood. We propose a method called PEM (Partial Energy ratio for Microarray) for the analysis 

of time course cDNA microarray data. In the PEM method, we assume the gene expressions vary 

smoothly in the temporal domain. This assumption is comparatively weak and hence the method is 

general enough to identify genes expressed in unexpected patterns. To identify the differentially 

expressed genes, a new statistic is developed by comparing the energies of two convoluted profiles. 

We further improve the statistic for microarray analysis by introducing the concept of partial energy. 

The PEM statistic can be easily incorporated into the SAM framework for significance analysis. We 

evaluated the PEM method with an artificial dataset and two published time course cDNA 

microarray datasets on yeast. The experimental results show the robustness and the generality of the 

PEM method in identifying the genes of interest. 

Keywords: time course, cDNA  microarray, differentially expressed gene, PEM  

1. Introduction  

Time-course cDNA microarray experiments are widely used to study the cell dynamics 

from a genomic perspective and to discover the associated gene regulatory relationship. 

Identifying differentially expressed genes is an important step in time course microarray 
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data analysis to select the biologically significant portion from the genes available in the 

dataset. A number of solutions have been proposed in the literature for this purpose.  

 

When replicated time course microarray data is available, various statistical approaches, 

like ANOVA and its modifications, are employed.1,2,3 This category of approaches has 

been extended to recent work on longitudinally sampled data, where the microarray 

measurements span in multi-dimensional space with the coordinates to be gene index, 

individual donor, and time point, etc.4,5 However, replication of time series or 

longitudinal sampling is costly if the number of time points is comparatively large. For 

the sake of this, many published time course datasets have no replicate. 

 

When replicated time course is not available, clustering based approaches and model-

specific approaches are widely used. 

 

Clustering based approaches select genes whose patterns are similar to each other. A 

famous example of clustering software is the Eisen’s Cluster.6 Clustering based 

approaches are advantageous in finding co-expressed genes. The drawback is that 

clustering does not provide a ranking for the individual genes, and it is difficult to 

determine a cut-off threshold based on confidence analysis. Additionally, cluster analysis 

may fail to detect changing genes that belong to clusters in which most genes do not 

change.7 

 

Model-specific approaches identify differentially expressed genes based on prior 

knowledge of their temporal patterns. For instance, Spellman et al. used Fourier 

transform to identify cell-cycle regulated genes 8; Peddada et al. proposed an order-

restricted model to select responsive genes 9; Xu et al. developed a regression-based 

approach to identify the genes induced in Huntington’s disease transgenic model 10; in the 

recent versions of SAM 11, two alternative methods, slope based and signed area based, 

are provided for analyzing single time course data. However, the assumption underlying 

the model-specific approaches is too strong and some biologically informative genes that 

do not fit the pre-defined model may be ignored. Bar-Joseph et al. proposed a spline 

based approach, which is established on comparatively weaker assumptions 12. The 

software of EDGE implemented natural cubic spline and polynomial spline for testing the 

statistical significance of genes 5. In spline based approaches, the dimension of spline 

needs to be chosen carefully to balance the robustness and the diversity of gene patterns, 

and an empirical setting of dimension may not be applicable for some applications.  

 

The goal of this paper is to propose a new statistical method called PEM (Partial Energy 

ratio for Microarray) for the analysis of time course cDNA microarray data. In time-

course experiments, the measurements are sampled from continuously varying gene 

expressions. Thus it is often observed that the log-ratio expression profiles of the 

differentially expressed genes are featured with “smooth” patterns, of which the energies 

mainly concentrate in low frequency. To utilize this feature, we employ two simple 
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convolution kernels that function as a low-pass filter and a high-pass filter, namely 

smoothing kernel and differential kernel, respectively. The basic statistic for testing the 

smoothness of a temporal pattern is represented by the energy ratio of the convoluted 

profiles. We further improve the performance of the statistic for microarray anlaysis by 

introducing a concept called partial energy to solve the problem caused by “steep edge”, 

which refers to rapid increasing or decreasing of gene expression level. The proposed 

ratio statistic is incorporated into the permutation based SAM framework for determining 

confidence interval and false discovery rate 13. In the SAM framework, a small positive 

constant called “relative difference” is added to the denominator of the ratio, which 

efficiently stabilizes the variance of the proposed statistic. 

 

An artificial dataset and two published cDNA microarray datasets are employed to 

evaluate our approach. The published datasets include the yeast environment response 

dataset 14 and the yeast cell cycle dataset 8. The experiment results showed the robustness 

and generality of the proposed PEM method. It outperforms previous versions of SAM 

and spline based EDGE in identifying genes differentially expressed in various manner. 

In the experiment with yeast cell cycle dataset, the PEM method not only identified the 

periodically expressed genes, but also identified a set of non-periodically expressed 

genes, which are verified to be biologically informative. 

 

2. Method 

2.1.  Signal/noise model for cDNA microarray data 

Consider a two-channel cDNA time-course microarray experiment over m genes: g1, g2, 

…, gm, and n time points: t1, t2, …, tn. The log-ratio expression profile of the gene gi (i = 1 

to m) can be represented by Xi = [Xi(t1), Xi(t2), … Xi(tn)]
T, where Xi(tj) (j = 1 to n) 

represents the log-ratio expression value of gi at the jth time point. 

 

We model the log-ratio expression profile Xi as the sum of its signal component Si = 

[Si(t1), Si(t2), …, Si(tn)]
T and its noise component εi = [εi(t1), εi(t2), …, εi(tn)]

T, i.e. Xi = Si + 

εi. We have the following assumption on the noise component:   

 

Assumption of noise: εi is independent on Si, and εi(t1), εi(t2), … εi(tn) are independent 

random variables following a symmetric distribution with the mean equal to zero.  

 

Note that the noise distribution in our assumption is not necessarily normal so that this 

gives a better model of the heavily tailed symmetrical noise distribution that is often 

observed in microarray log-ratio data. 

 

For a non-differentially expressed gene gi, we assume its expression signals in two 

channels are identical at all the time points. In this case, the signal component Si is 
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constantly zero, and the log-ratio expression profile Xi only consists of the noise 

component. Thus the null hypothesis is defined as follow: 

 
iiXH ε=:0

 

Due to the variation of populations in cDNA microarray experiments, there is bias 

between the expression signals in two channels. Thus the assumption underlying the null 

hypothesis may not be established if the log-ratios are calculated directly from the raw 

data. We suggest employing pre-processing approaches such as Lowess regression to 

compensate the global bias 15. To further compensate slight gene-specific bias, we 

introduce a “relative difference” to our statistic, which will be discussed in later section. 

Nevertheless, the null hypothesis provides a mathematical foundation for the 

demonstration of our method. 

 

2.2.  Smoothing convolution and differential convolution 

In time-course experiments, the measurements are sampled from continuously varying 

gene expressions. If there is adequate number of sampled time points, the temporal 

pattern of the signal Si will be comparatively smooth so that the energy of Si will 

concentrate in low frequency. To utilize this feature, we introduce two simple 

convolution kernels for time series data analysis, namely the smoothing kernel and the 

differential kernel. The smoothing kernel is represented by a sliding-window Ws = [0.5, 

0.5], and the differential kernel is represented by Wd = [-0.5, 0.5]. In signal processing, 

the smoothing kernel and the differential kernel function as a low-pass filter and a high-

pass filter, respectively.   

 

Given a vector V = [V(t1), V(t2),…, V(tn)]
T representing a time-series, the smoothed profile 

and the differential profile of V are represented by V*Ws = ½[V(t1) + V(t2), V(t2) + V(t3), 

…, V(tn-1) + V(tn)]
T,  and V*Wd = ½[V(t1) - V(t2), V(t2) - V(t3), …, V(tn-1) - V(tn)]

T, 

respectively, where * is the convolution operator. In Fig. 1, we give an example of the 

smoothed profile and the differential profile of YML027, a gene periodically expressed in 

the alpha phase in yeast cell cycle data 8.  

 

Since the energy of the signal component Si is likely to concentrate in low frequency, we 

have: 

 

Assumption of signal: If Si is a non-zero signal vector, then  

 
)|*)|* 22

disi WSE(|WSE(| > 

 

where |Y| represents the ℓ2-norm of the vector Y. E(| Si *Ws |
2) and E(| Si *Wd |

2) are the 

expected energies of the corresponding smoothed profile and differential profile. 
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Fig. 1.  (a) The original log-ratio gene expression profile of the gene YML027 in alpha 

phase experiment in yeast cell cycle data; (b) the corresponding smoothed profile and 

differential profile generated by the convolution kernels introduced in this paper. 
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Next, we derive two propositions from the Assumption of noise and the Assumption of 

signal, as follows: 

  

Proposition 1:  If the noise component εi satisfies the Assumption of noise, then  

 

                                                                                       *|* is E(|E(| εε = )|

 

Proposition 2: If Si satisfies the Assumption of signal, εi satisfies the Assumption of noise, 

then  

 

                                                                                    
)|ii E(|E(| ε >+

) 22

di WW

*) 22

diis W(SW(S ε+ )|*)

 

The proofs of Propositions 1 and 2 are given in the appendix of this paper. 

 

Note that the log-ratio expression profile Xi = Si + εi, and the null hypothesis H0 assumes 

Si = 0. According to Propositions 1 and 2, we define a statistic called energy ratio (ER) 

for testing the null hypothesis, as follow: 

 

                                                                                                                                           (1)                             2

2

|*|
)( i

i
X

XER =
|*|

di

s

W

WX

 

 
  

Fig. 2. The numerically estimated distributions of logarithm of ER(Xi) under null 

hypothesis, where n is the number of time points.  
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Under the null hypothesis H0, i.e. Xi = εi, the logarithm of ER statistic follows a 

symmetric distribution highly peaked around zero. Fig. 2 shows the distributions of 

logarithm of ER with variant number of time points, where εi is multivariate Gaussian. 

The distribution is two-tailed, but we are only interested in the positive tail when testing 

the null hypothesis. This is because the negative tail implies the energy concentrates in 

the high frequency. According to Nyquist sampling criterion, the high frequency 

component is not adequately sampled thus the expression profile may not be reliable. 

When n→∞, ER(εi) is asymptotically independent on the distribution of εi. 
 
2.3 Partial energy  

 
In most time-course microarray experiments, the number of time points is limited. Due to 

insufficient sampling, the smoothness of the signal component Si is not guaranteed at all 

the time points. We call this a “steep edge” problem. A steep edge refers to rapid 

increasing or decreasing of gene expression level at certain time points. Fig. 3 shows an 

example of responsive gene expression profile in which a steep up-slope edge occurs 

between the 3rd and the 4th time points. When the number of time points is limited, the 

steep edge adds a large value to the denominator in Eq. (1), hence reduces the statistical 

significance of the ER score.  

 
To solve the “steep edge” problem, we propose a new concept called partial energy. The 

basic idea of partial energy is to exclude the steep edges in calculating the energy of a 

differential profile. Denote Y = [Y1, Y2, … Yn]
T be a vector representing a profile, the k-

order partial energy of Y is defined as: 

                                                     ∑∑
==

−=
k

i

i

n

i

ik YYYPE
1

2

)(

1

2)(

where k<n, and  represents the ith biggest value of , , …, 2 . For example, let Y = 

[1, -1, -4, 3, 2]

2

)(iY 2

1Y 2

2Y
nY

T, its 2-order partial energy PE2 (Y) = 12 + (-1)2 + 22 = 6, where -4 and 3 are 

excluded in calculating the partial energy. 

 

For most responsive patterns in microarray data, the number of steep edges is much 

smaller than the number of time points. We assume there are no more than 2 steep edges 

in the gene expression profile, and modify the statistic to be the ratio of the 2-order 

partial energies (PER2) of the smoothed profile and the differential profile:    

                                                
)*(

)*(
)(

2

2
2

di

si
i

WXPE

WXPE
XPER =                                      (2)        

where * is the convolution operator, and Ws and Wd are the smoothing kernel and the 

differential kernel defined in section 2.2. 
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Fig. 3.  An example of responsive gene expression profile where a “steep edge” occurs 

between the 3rd and the 4th time points. 

 

 
2.4 Significance analysis 

 
Since the PER2 statistic defined in Eq. (2) takes the form of a ratio, it can be easily 

incorporated into the SAM framework for significance analysis 11.  

 

In the first step, a “relative difference” s0 is added to the denominator in Eq. (2), as 

follow: 

                                                

02

2

)*(

)*(
)(

sWXPE

WXPE
XPEM

di

si

i +
=                                  (3) 

For the sake of simplicity, the constant s0 is chosen to be the 5 percentile of PE2 (Xi*Wd) 

for all the genes (i = 1 to m). By adding introducing the relative difference, the genes with 

small fold-changes are excluded from the top-ranking list. This efficiently reduces the 

influence of channel bias and stabilizes the variance of statistic. The statistic defined in 

Eq. (3) is called PEM (Partial Energy ratio for Microarray). 

 

Secondly, we employ the algorithm of SAM for determining the confidence interval and 

the false discovery rate (sometimes called q-value). For the detail of the algorithm, one 

can refer to the SAM manual available at the website: http://www-stat.stanford.edu 

/~tibs/SAM/. Here, we briefly describe our strategy of randomized permutation. With the 

http://www-stat.stanford.edu%20/%7Etibs/SAM/
http://www-stat.stanford.edu%20/%7Etibs/SAM/
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PEM statistic, the procedure of permutation consists of two steps. In the first step, the 

order of the log-ratio measurements in the expression profile are randomly permutated for 

each gene; in the second step, the signs of the measurements are randomly flipped.  The 

second step is based on the Assumption of noise, where the distributions of the 

measurements of non-differentially expressed genes are assumed to be symmetric with 

zero mean.   

3. Experiment 

 
The robustness and generality of the proposed PEM method are evaluated with both 

simulation dataset and published microarray datasets, which include the yeast 

environment response dataset 14 and the yeast cell cycle dataset 8. The missing values in 

the published datasets are filled in using KNN-Impute16.The evaluation is based on 

relative operating characteristic (ROC) score, which gives a reasonable measurement of 

sensitivity vs. specificity 17.  

 

For comparison, our evaluation also includes the approaches employed in two of the most 

popular microarray analysis software, which are the SAM11 and the spline based EDGE 5.  

 

Recent version of SAM provides two alternative approaches for the analysis of single 

time course data. They are slope based and signed area based, respectively. The slope 

based SAM is designed for identifying the genes with monotonous increasing or 

decreasing patterns, and the signed area based SAM is an improved version of paired t-

test.  

 

In the EDGE software, both the natural cubic spline and the polynomial spline based 

approaches are included in our evaluation. The dimension of splines is empirically 

optimized to be 4 in the simulation and in the yeast environment response experiments. In 

yeast cell cycle experiment, the dimension of splines is optimized to be 8 for cubic spline, 

and is set to be 5 for polynomial spline to avoid singular matrix in calculation.  

 

3.1 Simulation 

 

In the simulation experiment, each log-ratio expression profile is generated by summing 

its signal component and its noise component. The noise component follows normal 

distribution with zero mean. For non-differentially expressed genes, the intensity of the 

signal component is constantly zero. For differentially expressed genes, the signal 

component is one of the three frequently observed signal patterns in time course 

microarray data, as shown in Fig. 3(a). They are monotonous decreasing pattern defined 

by linear function, peaked responsive pattern defined by Gaussian function, and periodic 

pattern defined by sine function. There are two free parameters in our simulation test: the 

number of time points and the signal- noise ratio (SNR). For each parameter setting, we  
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Fig. 4. Evaluation of the methods in simulation. (a) Three basic patterns of gene 

expression profile defined in the artificial dataset; (b) ROC score vs. number of time 

points; (c) ROC score vs. S/N ratio. 
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generate 6000 artificial time course gene expression profiles, of which 5400 (90%) 

belong to non-differentially expressed genes and 600 (10%) belong to differentially 

expressed genes. The 600 profiles of differentially expressed genes are equally divided 

into 3 portions, corresponding to monotonous decreasing pattern, peaked responsive 

pattern, and periodic pattern. 

 

First, we generate artificial datasets by setting the SNR to be 1.0 and the numbers of time 

points to be 5, 7, 10, or 15. The ROC scores are plotted against the number of time points 

in Fig. 3(b). Next, we fix the number of time points to be 10 and set the SNR to be 0.5, 

1.0, and 2.0. The ROC scores are plotted against SNR in Fig. 3(c).  

 
The result of simulation experiment demonstrates that PEM achieves the best overall 

performance among the methods in evaluation. The signed area based SAM is the most 

robust when the number of time points is 5. However, as the number of time points 

increases or the SNR becomes larger, the PEM and EDGE approaches achieve much 

higher ROC score than SAM. This is because the SAM approaches are modeled base on 

specific patterns, while the models underlying PEM and EDGE are more general. 

 

3.2 Evaluation with yeast environment response dataset 

 
The yeast environment response dataset consists of measurements in 173 arrays 14, 18. The 

dataset is used to discover the way in which the budding yeast S. Cerevisiae cells adapt to 

variant changing environments. Among the arrays available in the dataset, we selected 79 

arrays based on two criteria: (i) population from wild-type cells; (ii) at least 7 time points 

sampled under each condition. These arrays fall into 10 individual experiments: 

 

� Heat shock from 25°C to 37°C, consisting of 8 time points; 

� Hydrogen peroxide treatment, consisting of 10 time points; 

� Menadione exposure, consisting of 9 time points; 

� DTT exposure, consisting of 8 time points; 

� Diamide treatment, consisting of 8 time points; 

� Hyper-osmotic shock, consisting of 7 time points; 

� Nitrogen source depletion, consisting of 10 time points; 

� Diauxic shift, consisting of 7 time points;  

� Stationary phase, including two nearly-identical experiments consisting of 10 and 12 

time points, respectively. 

 

We assess the approaches by applying them to the 10 time course experiments 

individually. To evaluate the sensitivity and specificity of the methods, we use a list of 

270 genes available at the website of Chen et al. 19. This list is the intersection of (i) 

around 800 Environment Stress Response (ESR) genes which were identified by Gasch et 

al. using hierarchical clustering on multiple experiments 14, and (ii) a list of ortholog 
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genes in fusion yeast S. Pombe which are differentially expressed under environment 

stress. These evolutionarily conserved ERS genes are expressed with various expression 

patterns in different experiments so that they provide a good test-bed to evaluate the 

robustness and the generality of the methods.  

 

The ROC scores for the methods are summarized in Table 1. The PEM method 

outperforms other methods in 7 out of 10 experiments. It achieves reasonably good ROC 

scores (>0.7) in most experiments, except for the Menadione exposure experiment in 

which all the methods do not perform well. To further show the superiority of PEM, we 

averaged the ROC scores over all experiments for each method, and used paired t-test for 

comparison of the performance of PEM and the other methods. The p-values of the 

paired t-test demonstrate the significance of the improvement made by PEM. 

 

 

Experiment  Slope 

based 

SAM  

Signed 

area based 

SAM  

Cubic 

Spline 

based 

EDGE 

Poly. 

Spline 

based 

EDGE  

PEM  

 

Heat shock  0.501 0.753 0.841 0.848 0.889 

Hydrogen 

peroxide 

0.626 0.782 0.775 0.789 0.792 

Menadione 0.557 0.552 0.588 0.604 0.565 

DTT 0.743 0.522 0.722 0.723 0.722 

Diamide 0.498 0.667 0.808 0.800 0.838 

Hyper-osmotic 

shock 

0.639 0.593 0.651 0.688 0.736 

Nitrogen 

depletion 

0.459 0.699 0.628 0.605 0.715 

Diauxic shift 0.758 0.632 0.710 0.705 0.728 

Stationary 

phase, expr. 1 

0.494 0.841 0.702 0.673 0.860 

Stationary 

phase, expr. 2 

0.745 0.786 0.739 0.732 0.889 

Average  0.602 0.683 0.716 0.717 0.773 

P-value of 

paired t-test 

4.0E-3 1.6E-3 8.4E-3 1.8E-2    __ 

 

Table 1. ROC scores of the evaluated methods on environment response experiments. 

The bold fonts correspond to the highest scores in the rows. 

 



 Instructions for Typing Manuscripts (Paper’s Title) 

 

13 

3.3 Evaluation with Yeast Cell Cycle Dataset 

The yeast cell cycle dataset consists of the measurements in three experiments (Alpha 

factor, CDC15, CDC28) on cell cycle synchronized yeast S. Cerevisiae cells 8. We 

employed a reference list containing 104 cell cycle regulated genes determined by 

traditional biological experiments, as mentioned in the original paper. In addition to SAM 

and EDGE, we also include the method of Fourier transform in our evaluation 8. The 

Fourier transform (FT) method was introduced specifically for identifying periodically 

expressed genes.  The ROC scores are shown in Table 2. The PEM method outperforms 

the SAM approaches and the spline based EDGE approaches in all experiments. The FT 

method performs slightly better than PEM in identifying periodically expressed genes. 

However, the PEM method also identified a number of non-periodically expressed genes, 

which account for considerable false positives in calculating ROC scores. To show this, 

we clustered the top 706 differentially expressed genes identified by the PEM in the alpha 

factor experiment. These genes are selected based on a false discovery rate equal to 0.1. 

We applied K-mean clustering using Eisen’s Cluster software 6 and came up with eight 

clusters, as shown in Fig. 5. Five of the clusters are periodic and the remaining three are 

non-periodic. Note that the non-periodic portion of the differentially expressed genes is 

not significant with the Fourier transform approach. The non-periodic clusters are 

mapped to the gene ontology clusters using GO Term Finder in SGD database 

(http://db.yeastgenome. org/cgi-bin/GO/goTermFinder/). We selected four significant 

gene ontology terms corresponding to the non-periodic clusters, as listed in Table 3. The 

Bonferroni correlated hypergeometric P-values show that these non-periodic clusters are 

biologically meaningful. 

 

The evaluation with the yeast S. Cerevisiae cell cycle dataset clearly indicates the ability 

of the PEM method in identifying genes with either periodic or non-periodic patterns. In 

comparison to model-specific approaches like Fourier transform, the PEM method is 

more general and leads to a better overview of the dynamics of gene expression changes. 

 
 

 

 
 Slope based 

SAM 

Signed area 

based SAM 

Cubic Spline 

based EDGE 

Poly. Spline 

based EDGE 

FT PEM 

alpha 0.579 0.679 0.854 0.777 0.917 0.883 

cdc15 0.402 0.386 0.804 0.590 0.811 0.808 

cdc28 0.485 0.526 0.747 0.705 0.859 0.763 

 

Table 2. ROC scores for evaluation of the methods in identifying periodically expressed 

cell cycle regulated genes. 

 

http://db.yeastgenome.org/cgi-bin/GO/goTermFinder/
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Fig. 5. Clustering result shows periodic and non-periodic patterns of differentially 

expressed genes identified by PEM in alpha factor experiment. 

 

 

 
 

 

 

 

 

 

                        

 Significant gene ontology term GO cluster ID P-value 

Cluster 6 Sexual reproduction GO:0019953 4.14e-14 

Cluster 7 Oxidoreductase activity GO:0016491 1.32e-6 

Glutamate biosynthesis GO:0006537 1.00e-8 Cluster 8 

Energy derivation by oxidation of 

organic compund 

GO:0015980 3.38e-7 

 

 

Table 3. Selected significant gene ontology terms mapped to non-periodic clusters. The 

GO terms and cluster IDs are retrieved from SGD database. 
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4.  Conclusion and discussion 

 

Replications in time course microarray experiments are costly. In selecting methods for 

analysis without replicates, people usually have to face the problem to make tradeoff 

between robustness and generality. If the assumption underlying the method is too strong, 

the method may fail to identify the genes whose expression patterns do not fit the pre-

defined model. In this paper, we propose a general statistical method called PEM (Partial 

Energy ratio for Microarray), for identifying differentially expressed genes in time course 

cDNA microarray experiment without replicates. In the PEM method, we assume the 

gene expressions vary smoothly in time series. This assumption is comparatively weak 

hence the PEM method is more general in identifying genes expressed in unexpected 

patterns. To identify differentially expressed genes, we employed convolution kernels in 

our statistic and introduced the concept of partial energy. The proposed statistic can be 

easily incorporated into the SAM framework for significance anlaysis, in which the 

variance of the statistic is stabilized by introducing the “relative difference”. 

Experimental results show the robustness and generality of PEM when the number of 

time points is comparatively large (>6). Another advantage of PEM is that the parameters 

of PEM can be fixed for applications of different experiments, although automatic 

determination of the optimal parameters may slightly improve the performance, which 

will be investigated in the future.  

 

The main limiatation of the PEM method is, the assumption of signal smoothness may 

not be satisfied if the measurements are not adequately sampled. In this case, replication 

of the time series is necessary. Thus, we will also explore the possibility of modifying the 

PEM method for the applications where replicates are available. For this problem, one 

possible solution is to integrate the PEM statistic and the ANOVA F-score using a 

permutation based strategy, which will be implemented and be tested in near future. 
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Appendix: Proofs of Proposition 1 and 2 

 

Proposition 1:  If the noise component εi satisfies the Assumption of noise, then  

 

                                                                                       *)|* 2

isi E(|WE(| εε = )|2dW

Proof: let δi = [εi(t1), -εi(t2), …, (-1)nεi(tn)]
T, we have: 
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                                                  |δ
 

 
 

According to the Assumption of noise, δi and εi follow the same distribution, thus: 

 

 

 

 

Q.E.D. 

 

Proposition 2: If Si satisfies the Assumption of signal, εi satisfies the Assumption of noise, 

then  

 

                                                                                    
ii

Proof:  According to the Assumption of noise, εi is independent on Si, and εi follows a 

symmetric distribution with zero mean. Hence: 

 

 

 

 

Thus we have: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly, we have:  
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Based on the Assumption of signal and Proposition 1, we derive: 
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