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Pemphigus encompasses a heterogeneous group of autoimmune blistering diseases,

which affect both mucous membranes and the skin. The disease usually runs a

chronic-relapsing course, with a potentially devastating impact on the patients’ quality

of life. Pemphigus pathogenesis is related to IgG autoantibodies targeting various

adhesion molecules in the epidermis, including desmoglein (Dsg) 1 and 3, major

components of desmosomes. The pathogenic relevance of such autoantibodies has

been largely demonstrated experimentally. IgG autoantibody binding to Dsg results in

loss of epidermal keratinocyte adhesion, a phenomenon referred to as acantholysis. This

in turn causes intra-epidermal blistering and the clinical appearance of flaccid blisters and

erosions at involved sites. Since the advent of glucocorticoids, the overall prognosis of

pemphigus has largely improved. However, mortality persists elevated, since long-term

use of high dose corticosteroids and adjuvant steroid-sparing immunosuppressants

portend a high risk of serious adverse events, especially infections. Recently, rituximab,

a chimeric anti CD20 monoclonal antibody which induces B-cell depletion, has been

shown to improve patients’ survival, as early rituximab use results in higher disease

remission rates, long term clinical response and faster prednisone tapering compared to

conventional immunosuppressive therapies, leading to its approval as a first line therapy

in pemphigus. Other anti B-cell therapies targeting B-cell receptor or downstream

molecules are currently tried in clinical studies. More intriguingly, a preliminary study in a

preclinical mouse model of pemphigus has shown promise regarding future therapeutic

application of Chimeric Autoantibody Receptor T-cells engineered using Dsg domains

to selectively target autoreactive B-cells. Conversely, previous studies from our group

have demonstrated that B-cell depletion in pemphigus resulted in secondary impairment

of T-cell function; this may account for the observed long-term remission following

B-cell recovery in rituximab treated patients. Likewise, our data support the critical

role of Dsg-specific T-cell clones in orchestrating the inflammatory response and B-cell

activation in pemphigus. Monitoring autoreactive T-cells in patients may indeed provide

further information on the role of these cells, and would be the starting point for

designating therapies aimed at restoring the lost immune tolerance against Dsg. The

present review focuses on current advances, unmet challenges and future perspectives

of pemphigus management.

Keywords: pemphigus, CAAR T-cell, rituximab, anti-CD 20 antibodies, BTK inhibitors, neonatal Fc receptor (FcRn)

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.01418
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.01418&domain=pdf&date_stamp=2019-06-25
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dario.didona@uk-gm.de
mailto:robertomaglie.med@libero.it
https://doi.org/10.3389/fimmu.2019.01418
https://www.frontiersin.org/articles/10.3389/fimmu.2019.01418/full
http://loop.frontiersin.org/people/533405/overview
http://loop.frontiersin.org/people/637489/overview
http://loop.frontiersin.org/people/613325/overview


Didona et al. Therapeutic Advances in Pemphigus

INTRODUCTION

Definition
Pemphigus encompasses a heterogeneous group of autoimmune
chronic blistering skin diseases, which affect both mucous
membranes and the skin. Pemphigus group diseases
are characterized by IgG autoantibodies directed against
epidermal adhesion complexes (desmosomes) of keratinocytes,
leading to loss of cell–cell adhesion, a phenomenon called
acantholysis (1, 2).

Pemphigus can be divided into three major forms: pemphigus
vulgaris (PV), pemphigus foliaceus (PF), and paraneoplastic
pemphigus (PNP). Autoantibodies directed against Dsg3 and
Dsg1 are mainly identified in PV; anti-Dsg1 autoantibodies are
the serological hallmark of PF (3). In addition, autoantibodies
targeting non-Dsg antigens have been reported in PV patients
(4), such as IgG against alpha9 acetylcholine receptor (5), various
mitochondrial nicotinic cholinergic receptor subtypes (4) and
desmocollins 1-3 (4).

A variety of IgG autoantibodies have been described in PNP
patients, including IgG against adhesion proteins of the plakin
family, plakophilin 3, desmocollins 1 and 3, Dsg1, and Dsg3 and a
170 kD protein which has been recently identified as the protease
inhibitor, alpha-2 macroglobulin-like 1 (A2ML1) (6).

Alike PV, PF and PNP, IgA pemphigus is an extremely rare
variant of pemphigus, in which IgA but not IgG autoantibodies
against epidermal antigens can be identified (3, 7, 8).

Epidemiology
Epidemiology of Pemphigus Vulgaris
PV is the most common clinical pemphigus variant. The annual
incidence rate has been reported between 0.76 and 16.1 per
million population, depending on the geographical area and
the ethnicity (9, 10), with the highest incidence reported in
Ashkenazi Jews (10, 11). This observation has been related to
the more frequent occurrence of particular Human Leukocyte
Antigen (HLA) class II genes in PV patients of Jewish origin,
particularly HLA-DRB1∗04:02; while HLA-DQB1∗05:03 is more
common in non-Jewish PV patients (12) and was also shown to
have the strongest association with PV in a Chinese study using
next generation sequence analysis (13).

The exact prevalence of pemphigus is unknown. A German
analysis reported a point prevalence of 0.009% (14), while a
Danish analysis estimated the pemphigus prevalence at 0.006%
(15, 16). In addition, in a recent analysis on the US population,
an overall standardized point prevalence of 5.2 cases per 100,000
adults has been reported (17). The age at initial PV presentation
varies from 36.5 and 72.4 years (12). The mean age of PV onset
is 50–60 years, although several cases of PV in children have
been described (12). A female predominance has been globally
reported, with an estimated female to male ratio of 5.0 in the
American PV population (11).

Epidemiology of Pemphigus Foliacues
The annual incidence of sporadic PF in the Caucasian population
is ∼0.04 per 100.000 inhabitants (10, 12). Sporadic PF
corresponding to ∼20% of pemphigus cases (10, 12). People

in the fifth decade are mainly affected, without sex preference
(10, 12). HLA-DRB1∗04:01, HLA-DRB1∗04:06, HLA-DRB1∗14,
DRB1∗01:01, have been associated with a higher risk of PF
(13, 18). No ethnic predisposition has been reported (10, 12).

Endemic PF (fogo selvagem) has been reported in some areas
of Brazil, Colombia, and Tunisia (19). Most of the patients are
young rural workers, who live in forest areas adjacent to rivers
and streams (19). In these areas, some insects including black fly
(simulium species), are though to trigger the disease, leading to
an immune reaction against Dsg1 via molecular mimicry (20, 21).
This hypothesis is supported by high positivity rates of anti-Dsg1
IgG autoantibodies in the sera of healthy individuals living in
endemic regions of fogo selvagem (21). In Brazilian population
HLA-DRB1 alleles ∗04:04, ∗14:02, ∗14:06, and ∗01:02 have been
reported as risk factors for fogo selvagem (22).

Epidemiology of Paraneoplastic Pemphigus
PNP is considered a rare disease, with about 500 cases reported in
the literature (6, 23). Patients between 45 and 70 years of age are
usually affected (6, 23). PNP accounts for 3–5% of all pemphigus
cases (6, 23). Furthermore, PNP can affect also children and
adolescents, particularly in association with Castleman’s disease
(6, 23). In this sub-group of patients, a predisposition in patients
with Hispanic roots was described (24). An association with HLA
class II DRB1∗03 and HLA Cw∗14, respectively, was reported in
Caucasian and in Han Chinese patients (25, 26).

Major Clinical Variants
Pemphigus Vulgaris
More than half of the patients develop flaccid cutaneous blisters
(3, 8, 27) (Figure 1A), which evolve into oozing erosions on
erythematous skin. The entire skin may be affected, although
lesions mostly occurs in areas exposed to increased mechanical
stress (e.g., intertriginous areas) (3, 8, 27) and seborrheic
areas (3, 8, 27). Bacterial or viral superinfections of cutaneous
and mucosal lesions are fairly common. Cutaneous blisters
and erosions usually transform into crusts followed by re-
epithelisation without scars. Post-inflammatory hypo and/or
hyperpigmentation are common.

In most instances, PV initially manifests with extremely
painful erosions of the oral mucosa, particularly the buccal
mucosa, the gingiva, the tongue, and the hard and soft palate
(3, 8, 27) (Figure 1B). These lesions lead impaired food uptake
which results in progressive weight loss. Hoarseness of the voice
may be indicative of laryngeal involvement. In the early stages,
oral lesions may be misinterpreted as recurrent aphthae, herpetic
gingivostomatitis, or erosive lichen planus (3, 8, 27). Other
mucous membranes might be less frequently involved, such
as laryngeal, esophageal, conjunctival, nasal, anal, and genital
mucosa (28).

PV may also involve the nail apparatus. In one study,
nail involvement occurred in circa 13% of PV patients.
Nail alterations included paronychia, nail discoloration,
onychorrhexis, periungual hemorrhages, and onycholysis (29).

Erosions of the intertriginous areas, the scalp and face might
evolve into papillomatous or vegetative lesions characterized
by abnormal growth of keratinocytes (30) (Figure 2). This
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FIGURE 1 | Pemphigus vulgaris: (A) Flaccid cutaneous blisters associated

with erosions; (B) Multiple erosions of the tongue and of the lips;

Paraneoplastic pemphigus: (C) haemorrhagic crusts and erosion of the lips. All

the patients gave written informed consent for the publication of the pictures.

FIGURE 2 | Pemphigus vegetans: vegetative lesions and erosions of the groin

and genitals.

phenomenon represents the clinical hallmark of pemphigus
vegetans (PVe) (30), which accounts for <5% of pemphigus
cases (30).

A substantial number of PV patients shows a transition from
a mucosal dominant to a mucocutaneous phenotype with skin
lesions characteristic of PF as a result of epitope spreading,
a process of diversification of B and/or T-cell responses from
the initial dominant epitope (i.e., Dsg3) to a secondary one
(i.e., Dsg1) (31). Based on the involved area, PV can be

FIGURE 3 | Pemphigus foliaceus: (A) Scaly and crusted erythematous

plaques on the seborrheic areas; (B) Leafy and crusted circumscribed erosion

on the back; (C) Scaly erythematous plaques on the seborrheic areas. All the

patients gave written informed consent for the publication of the pictures.

clinically divided inmucosal dominant, mucocutaneous, and, less
frequently, cutaneous dominant (3, 8, 27).

Pemphigus Foliaceus
Sporadic PF is characterized by the absence of mucosal
involvement (3, 8, 27). It presents with leafy, scaly and crusted
circumscribed erosions on erythematous skin (3, 8, 27)
(Figure 3). Seborrheic areas, including the upper trunk
and the face, are mainly involved. Flaccid, fragile blisters
are rarely seen because of their fragility. Skin lesions can
dramatically progress leading to exfoliative erythroderma. PF
onset is often subtle, with a few scattered crusted lesions that
resembling impetigo. Furthermore, the scaly erythema on
the scalp may be misdiagnosed for seborrheic dermatitis.
The endemic variant of PF (fogo selvagem) is clinically
and pathologically indistinguishable from the sporadic one
(3, 8, 27). Pemphigus erythematosus (Senear-Usher syndrome)
is a rare clinical variant of PF (3, 8, 27), characterized by
malar erythemato-squamous plaques and vesicles involving
the face in a butterfly-like distribution pattern, the trunk
and sun-exposed areas resembling lupus erythematosus
(32). In addition, a diagnosis of psoriasis should be also
ruled out. Pemphigus seborrhoicus is a very superficial
variant of PF with extensive superficial, crusty erosions and
erythematous plaques affecting seborrheic areas, particularly the
face (3, 27).

Paraneoplastic Pemphigus
PNP is a rare pemphigus variant which is always associated
with underlying neoplasms, both malignant and benign. Up to
84% of all PNP cases are secondary to hematologic malignancies
(33), including non-Hodgkin lymphomas (38.6%), chronic
lymphocytic leukemia (18.4%), Castleman’s disease (18.4%),
thymoma (5.5%), Waldenstrom’s macroglobulinemia (1.2%),

Frontiers in Immunology | www.frontiersin.org 3 June 2019 | Volume 10 | Article 1418

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Didona et al. Therapeutic Advances in Pemphigus

Hodgkin lymphoma (0.6%), and monoclonal gammopathy
(0.6%) (6, 33). Less frequently, epithelial carcinomas (8.6%),
sarcomas (6.2%) and gastric cancers have been described in
association with PNP (6, 33–35). Some cases of PNP have been
reported to be triggered by anti-neoplastic drugs, including
fludarabin and bendamustine (36) or radiotherapy (37). PNP
has a polymorphic clinical appearance, probably related to the
variable presence of different IgG autoantibodies in addition to
anti Dsg3/Dsg1 IgG (38). PNP typically presents with a painful
stomatitis, and with extensive erosions of the oral cavity and
oropharynx (Figure 1C). Usually, the vermillion border of the
lips is involved (6). Differential diagnosis includes erythema
multiforme (EM), toxic epidermal necrolysis (TEN) and Stevens-
Johnson’s syndrome; in pediatric cases, oral involvement may be
mistaken for a herpetic stomatitis (6).

The nasopharynx, anogenital region, and esophagus may be
also affected. Ocular involvement occurs in about 70% of cases
(39). Usually, skin lesions, including diffuse erythema, vesicles,
blisters, papules, scaly plaques, exfoliative erythroderma, erosions
or ulcerations, appear after the onset of the mucosal lesions
(38). Moreover, erythema may appear as macular, urticarial,
targetoid or polymorphous lesions and a single patient may
present different types of lesions, that could evolve from one type
to another (40). Lichenoid lesions are also common and occur
more frequently in children (24).

The peculiar clinical features of PNP can be explained by both,
antibody-driven and cell-mediated pathogenetic mechanisms
(41). The first usually determine a PV-like clinical phenotype,
while the second features lead to a lichenoid phenotype.
More than 90% of PNP cases show an involvement of the
respiratory epithelium with dyspnea, obstructive lung disease,
and bronchiolitis obliterans, which is one of the main causes
of death in PNP (6, 42, 43). Recently, a correlation between
bronchiolitis obliterans and anti-epiplakin Ig Abs was found in
Japanese PNP patients (42).

IgA Pemphigus
IgA pemphigus is characterized by intraepidermal pustules or
vesicles with neutrophilic infiltration (3, 7, 8). Acantholysis is
usually absent. Depending on the level of pustule formation,
IgA pemphigus is divided into two major subtypes, namely
subcorneal pustular dermatosis type (IgA-SPD), characterized by
subcorneal pustules in the upper epidermis, and intraepidermal
neutrophilic type (IgA-IEN), characterized by suprabasilar
pustules located at the lower or entire epidermis (3, 7, 8).

Pathogenesis
Dsg1/Dsg3 Compensation Theory
Because of the different expression of the pemphigus
autoantigens (Dsg1 and Dsg3) in the cornified and non-cornified
epithelium, skin and mucosae are differentially affected by anti-
Dsg IgG autoantibodies. PF patients show only anti-Dsg1 IgG
autoantibodies; whilst, patients affected by mucosal-dominant
PV have only anti-Dsg3 IgG autoantibodies. Furthermore, in
patients with mucocutaneous PV both anti-Dsg3 and anti-Dsg1
IgG autoantibodies are detected (44). In the skin and mucosae,
the expression of Dsg1 and Dsg3 is different: cutaneous Dsg1

is expressed in the entire epidermis, but more strongly in the
superficial layers; cutaneous Dsg3 is expressed in the lower
epidermis, mainly in the basal and parabasal layers. On the
contrary, mucosal Dsg1 and Dsg3 are expressed in the entire
squamous layer, but the expression of Dsg3 is much higher.

Therefore, sera with only anti-Dsg1 IgG lead to superficial
blisters and only in the skin, as in PF, because Dsg3 compensates
for the loss of Dsg1. In contrast, anti-Dsg3 IgG lead to
impairment of mucosal epidermal adhesion because of the low
expression of Dsg1, that is not adequate to compensate the loss
of Dsg3 adhesion. When anti-Dsg1 and anti-Dsg3 IgG is present,
skin and mucous membranes are affected (45).

Blister Formation and Acantholysis: Auto-Antibody

Dependent Factors
Ig autoantibodies directed against Dsg antigens lead to
epithelial acantholysis presumably through several synergistic
mechanisms. A model in which acantholysis is produced by
interference through antibodies in desmosome adhesion and/or
assembly has been proposed. Furthermore, an altered outside-in-
signaling caused by antibodies has been thought to cooperate in
damaging the desmosomal integrity (46).

The pivotal role of antibodies in pemphigus has been
extensively reported (47). Furthermore, it has been highlighted
that the sole monovalent antibody fragments can lead to skin
lesions (48). In addition, IgG4 antibodies have been mainly
reported in pemphigus, which do not involve the complement
cascade (49).

The most important targets for Ig antibodies in pemphigus
are extracellular domains of Dsg. Dsg show five extracellular
cadherin repeats domains (EC1-EC5); the amino-terminal EC1
and EC2 domains, which play a pivotal role in adhesive
interactions, are usually targeted by pemphigus antibodies.
Indeed, anti-Dsg3 autoantibodies form PV patients and model
mice bind directly to residues involved in trans-adhesion
(50) and cis-adhesion (51). Thus, antibodies to the NH2-
terminal cadherin domains likely compete with or block cellular
cohesion. Di Zenzo et al. (51) propose that human anti-Dsg3
autoantibodies bind to the cis-adhesive Dsg3 interface inducing
acantholysis. Furthermore, in contrast to IgG autoantibodies
directed against other epitopes of Dsg1 and Dsg3, the
serum concentrations of these IgG Abs correlate with disease
activity (52, 53).

Depletion of Dsg results from several steps: desmosomes lose
adhesive properties, probably through a direct interference of
trans-interaction of Dsg; further, different signaling pathways
cause Dsg endocytosis and depletion, leading to loss of
demosomal integrity and adhesion (45). Moreover, the depletion
of extradesmosomal Dsg located in association with lipid raft
components may affect the ex novo expression of desmosomes
(54). Furthermore, it has been reported that polyclonal IgG
antibodies from PV patients can directly inhibit homophilic Dsg3
trans-interactions. These evidences provide support for the steric
hindrance model of pemphigus pathogenesis (52, 53).

Further mechanisms have been thought to be involved in
pemphigus acantholysis. Dsg endocytosis and desmosome
disassembly have been reported as triggered by both
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IgG autoantibodies from PV patients and recombinant
monovalent human anti-Dsg3 autoantibodies (55, 56). In
addition, intercellular widening at non-acantholytic cell layers
induced by pathogenic pemphigus antibodies have been
detected by both immunofluorescence and electron microscopy
findings (57, 58).

Autoantibody-triggered cellular signaling pathways have been
also reported as pathogenetic co-mechanisms in pemphigus.
Specifically, it has been shown that polyclonal IgG antibodies
from serum of PF patients can lead to dissociation of Dsg1
junctions without blocking homophilic Dsg1 trans-interactions
(59). In addition, several molecules and signaling pathways have
been reported as playing a role in pemphigus acantholysis,
including p38 mitogen-activated protein kinase (MAPK) and
MAPK-activated protein kinase 2 (MK2) (60, 61). p38MAPK
directly modulates intermediate filament formation and the
maintenance of the desmosomal structure. It was recently
reported that p38 MAPK signaling and Dsg3 internalization
play a pivotal role in pemphigus acantholysis (62); however, it
has been also highlighted that blisters induced by monoclonal
autoantibodies from PV patients are not affected by p38 or MK2
inhibition, indicating that this mechanism of blisters formation
might be mainly related to steric hindrance (60, 61, 63).

Furthermore, Saito et al. (63) demonstrated that monoclonal
and polyclonal autoantibodies are both complementary involved
in acantholysis; indeed, an inducible Dsg clustering has been
reported with polyclonal serum IgG, but not with monoclonal
antibodies. Furthermore, several other signaling molecules
and pathways have been reported as altered by anti-Dsg
autoantibodies in pemphigus acantholysis, such as EGFR,
caspases (64), and MYC (65). However, none of these events can
solely induce acantholysis.

Blister Formation and Acantholysis:

IgG-Independent Factors
Beside of the Abs role in acantholysis, several autoantibody-
independent factors have been thought to be involved in
acantholysis. However, the distinct role of these factors is not
completely understood.

An increment of Th2 cytokines, such as interleukin (IL)-4, IL-
6, and IL-10, has been extensively reported in sera of PV patients,
while a reduction of Th1 cytokines, such as IL-2 and Interferon-
gamma (IFN-γ) has been also reported (66). In addition, an
increase of IL-17a, produced by Th17-cells, and IL-21 and IL-
27, synthesized by T follicular helper cell, has been detected (67).
Of note, IL-17a was also shown in PV blisters (67). Furthermore,
complement activation, cytotoxic proteases and high levels of IL-
4 and IL-10 were observed (66, 68). In addition, Tumor Necrosis
Factor-alpha (TNF-α) RNA is widely expressed in PV skin lesions
and TNF-α serum concentrations correlate with disease activity
and IgG autoantibody titers (69, 70).

The importance of apoptosis of epidermal keratinocytes
in acantholysis is still under debate. Indeed, some groups
considered this process a downstream event after loss of cell–
cell adhesion (71), while others suggested it as an upstream event
(72). Caspase 8 activation induced by Fas ligand (FasL) detected
in PV sera was described to induce apoptosis in keratinocytes.

TABLE 1 | Diagnostic algorithm in pemphigus [adapted from Witte et al. (76)].

HISTOPATHOLOGY

Suprabasal acantholysis (IgA-IEN, PNP, PV)

Subcorneal acantholysis (IgA-SPD, PF)

Interface dermatitis with vacuolization of the basal cells and

lichenoid infiltrate at the DEJ (PNP)

DIF

Reticular binding of IgG and/or C3 to the surface of epidermal

keratinocytes (PF, PV)

Reticular binding of IgA and/or C3 to the surface of epidermal

keratinocytes (IgA-IEN, IgA-SPD)

Linear deposits of IgG and/or C3 at the BMZ (PNP)

Net-like IgG and/or C3 deposits on the surface of epidermal

keratinocytes and along the DEJ (PNP)

IIF

Reticular pattern of cell surface reactivity of IgG antibodies on the

epithelium of monkey esophagus (PF, PNP, PV)

Reticular pattern of cell surface reactivity of IgA antibodies on the

epithelium of monkey esophagus (IgA-IEN, IgA-SPD)

Net-like pattern of cell surface reactivity of IgG antibodies on

monkey esophagus epithelia, normal human skin, and plakin-rich

urinary bladder (PNP)

ELISA

Alpha-2-macroglobulin-like-1 (PNP)

BP230 (PNP)

Desmocollin 1 (IgA-SPD)

Desmocollin 3 (IgA-SPD, PNP)

Desmoglein 1 (IgA-IEN, PF, PNP, PV)

Desmoglein 3 (IgA-IEN, PV, PNP)

Periplakin/Envoplakin (PNP)

BMZ, Basal membrane zone; DEJ, dermo-epidermal junction; DIF, direct

immunofluorescence; ELISA, enzyme-linked immunosorbent assay; IgA-IEN,

intraepidermal neutrophilic type of IgA pemphigus; IgA-SPD, subcorneal pustular

dermatosis type of IgA pemphigus; IIF, indirect immunofluorescence; PF, pemphigus

foliaceus; PNP, paraneoplastic pemphigus; PV, pemphigus vulgaris.

It has been reported in vitro and in vivo that hindrance of FasL
protein causes an inhibition of PV IgG-induced apoptosis of
epidermal keratinocytes, suggesting a pivotal role of that FasL in
PV pathogenesis (73, 74). Moreover, Lotti et al. (73) highlighted
that apoptosis precedes acantholysis, as Fas overexpression,
caspase activation before cell detachment in vivo.

Furthermore, it was reported that the secretion of cytokines
from keratinocytes could be stimulated by PV-IgG (75). Indeed,
the expression of the transcription factor ST18 in keratinocytes
was reported in response to PV-IgG, leading to both secretion
of cytokines and loss of keratinocyte cohesion; therefore, it
has been concluded that that cytokines contribute to blistering
downstream of autoantibodies (75).

Diagnostics
The proper diagnosis of pemphigus is based on four criteria,
namely clinics, histopathology of the lesional skin, direct
immunofluorescence microscopy (DIF) of perilesional
skin, and detection of serum autoantibodies by indirect
immunofluorescence microscopy (IIF), enzyme-linked
immunosorbent assay (ELISA) and/or additional techniques
such as Biochip, immunoblot analysis or immunoprecipitation
(7, 76) (Table 1).
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Histopathologically, PV is characterized by intraepidermal
acantholysis (7) (Figure 4A), with basal keratinocytes still
attached to the basement membrane zone assuming a
characteristic tombstone-like morphology. In contrast to PV,
PF lesions show a more superficial, subcorneal acantholysis
(Figure 4B). In PNP, the histopathological features are
polymorphic. Bullous lesions show suprabasal acantholysis
with dyskeratosis and a scattered inflammatory infiltrate (6).
In maculopapular lesions, a lichenoid interface dermatitis is
more frequently observed (6). Clinically mixed maculopapular
and bullous lesions show both acantholysis and lichenoid
interface dermatitis (23). IgA pemphigus is characterized by
intraepidermal pustules or vesicles with neutrophilic infiltration
whereas acantholysis is usually absent (7).

In all pemphigus variants, DIF of perilesional skin shows
reticular binding of IgG and/or C3 to the surface of epidermal
keratinocytes (7, 77) (Figure 4C). In IgA pemphigus, DIF detects
IgA instead of IgG (7, 77). In PNP, net-like IgG and/or C3
deposits on the surface of epidermal keratinocytes and along the
dermo-epidermal junction can be detected in <50% of cases (6).
In contrast to PV and PF, PNP lesions show linear deposits of IgG
and/or C3 at the basal membrane zone by DIF (6).

In IIF routine diagnostics, monkey esophagus is used as the
major tissue substrate. A reticular pattern of cell surface reactivity
of IgG antibodies with epithelial cells is characteristic (7, 77). In
IgA pemphigus, intercellular deposits of IgA directed against Dsg
1 and Dsg 3 (IgA-IEN), as well as against Dsc 1 and Dsc 3 (IgA-
SPD) are detected by IIF (7, 77). IgA autoantibodies in IgA-SPD
may be detected by IIF on Dsc1-transfected COS-7 cells (78).

In PNP, IgG antibodies directed against plakins can be
detected; among those, IgG against envoplakin and periplakin are
the most common (23). In PNP, IIF also shows a net-like staining
pattern with normal human skin and plakin-rich urinary bladder,
the latter being the substrate of choice since it shows for the
detection of plakin-reactive IgG autoantibodies (83%) (6, 23, 76).

In PV, IgG autoantibodies against Dsg 1 and Dsg 3 can be
detected by ELISA. Patients affected by dominant cutaneous
PV show only or preferentially anti-Dsg 1 autoantibodies, while
patients withmucosal dominant PV show only or preferably anti-
Dsg 3 IgG autoantibodies. In muco-cutaneous PV, both anti-Dsg
1 and anti-Dsg 3 autoantibodies can be detected. In contrast to
PV, patients with PF show only IgG against Dsg 1 in the vast
majority of cases (7, 77). In general, anti-Dsg 1 and anti-Dsg
3 serum antibody concentrations correlate with disease activity
(7, 77). However, in case of atypical pemphigus, autoantibodies
against Dscs are detected, while reactivity against Dsg 3 and/or
Dsg 1 lacks. In atypical pemphigus, both IgA and IgG against
different Dscs are detected (79). However, routine evaluation of
serum IgG and IgA against Dscs does not play a significant role
in making the diagnosis of PV and PF (79).

Depending on the subtype, different IgA autoantibodies are
detected in IgA pemphigus by ELISA, including IgA against Dsc
1, Dsg 1, and Dsg 3.

The spectrum of IgG autoantibodies is more diverse in
PNP, including IgG autoantibodies against Dsg 1, Dsg 3,
desmoplakin 1, desmoplakin 2, Dsc 1, Dsc 3, envoplakin,
periplakin, plectin, BP180, BP230, and the protease inhibitor,

alpha-2-macroglobulin-like-1 (6, 80). However, ELISA lacks
sensitivity in PNP patients due to the wide range of autoantigens
targeted by Ig autoantibodies (81).

Immunoblotting and immunoprecipitation are considered
useful techniques for diagnosing PNP and can show IgG
antibodies against several antigens, including plakins, periplakin,
desmoplakin, BP180, BP230, and alpha-2-macroglobulin-like-
1 (6, 80). Indeed, IgG autoantibodies against envoplakin and
periplakin and/or alpha-2 macroglobulin-like-1 confirm the
diagnosis of PNP. Therefore, in PNP patients two of three
serological techniques (IIF on rat bladder, immunoblot and
immunoprecipitation) should be performed to establish the
correct diagnosis (76).

Immunoblot analysis is performed with recombinant proteins
or extracts of dermis, epidermis, bovine gingiva, amnion
membrane or cultured keratinocytes (76). They can be used for
the detection of several autoantibodies, such as anti-envoplakin,
anti-periplakin, anti-desmoplakin, anti-BP180, and anti-BP230
Ig (76).

Recently, a novel lateral flow immunoassay (LFIA) was
developed (82). It detects anti-Dsg 3 IgG in human sera. In
contrast to other diagnostic procedures, the assay is simpler and
faster. LFIA was validated on a collection of 200 sera and showed
a sensitivity and specificity of 78.1 and 97.1%, respectively (82).

TREATMENT

Since the advent of targeted therapies, the management
of pemphigus has gradually changed. Until now, systemic
corticosteroids (CS) and immunosuppressants have been the
mainstay of pemphigus therapy. Among conventional adjuvant
immunosuppressants, both EADV and BAD guidelines suggest
azathioprine (AZA) and mycophenolate mofetil (MMF) as a first
line steroid-sparing agent (83, 84). However, different variables,
including patients’ comorbidities, single institutional experience
and costs have to be taken into account, and other drugs, such as
methotrexate and cyclophosphamide, also demonstrate efficacy.
Notably, these drugs have mainly a CS-sparing rather than a
morbostatic effect (85–87). Accordingly, they do not lead to
an improvement in achieving remission, but reduce the risk
of relapse by 29% in comparison to CS alone (85). A recent
prospective multicentre study by Joly et al. (88), now supports
using RTX as a first line adjuvant therapy for pemphigus, showing
superior efficacy compared to CS alone and reduced incidence
of CS-related serious adverse events and overall mortality.
The administration of intravenous immunoglobulin (IVIg) or
immunoadsorption (IA) is a therapeutic option in patients with
severe/refractory PV. Proposed algorithms for the induction and
maintenance therapy as well as therapy of relapse are summarized
in Figures 5–7.

Corticosteroids and Immunosuppressants
Corticosteroids
In pemphigus, prednisolone is recommended as a first-line
therapy in combination with an immunosuppressive agent, such
as azathioprine (AZA) and mycophenolate mofetil (MMF), or
RTX (83, 84). In addition, prednisolone alone at a dose of
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FIGURE 4 | Diagnostic of pemphigus: (A) Intraepidermal acantholysis in pemphigus vulgaris; (B) Subcorneal loss of adhesion in pemphigus foliaceus; (C) Reticular

binding of IgG in pemphigus vulgaris.

FIGURE 5 | Induction therapy in pemphigus. (A) mild pemphigus; (B) severe pemphigus. AZA, azathioprine; GC, glucocorticoids; MMF, mycophenolate mofetil;

moAb, monoclonal antibody.

1–1.5 mg/kg/day is still recommended as first line therapy in
patients who are not eligible for treatment with RTX or other
immunosuppressive adjuvants.

Higher CS doses (up to 1.5 mg/kg) may be administered,
if disease control is not achieved within 3 weeks. As soon as
disease control is reached, the doses should be tapered by a 25%
reduction every other week. If lesions reappear, CS should be
increased until two steps back at the previous dose to lead to
disease control (84). However, the optimal dose has not been
validated by randomized clinical trials RCT.

No significant differences regarding the duration of
remissions and relapse rates have been reported in PV
patients receiving low-dose oral prednisolone (45–60
mg/day) or high-dose oral prednisolone (120–180 mg/day)
(89). In the maintenance period of PV, no advantages
in terms of remission, death, relapse or withdrawal
rates have been reported in patients on a pulsed CS
therapy in comparison to conventional oral CS therapy.
Indeed, the two RCTs about this topic reported opposite
results (90, 91).
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FIGURE 6 | Maintenance therapy in pemphigus. (A) without anti-CD20 moAb; (B) with anti-CD20 moAb. GC, glucocorticoids; moAb, monoclonal antibody.

If the required CS dose is higher than 100 mg/day, a
pulse therapy should be considered, in order to reduce the
risk of adverse effects (92). Still, the advantage of combined
oral CS pulses and immunosuppressive adjuvants is under
debate (90, 93).

CS increase the expression of anti-inflammatory proteins
and inhibit the production of pro-inflammatory proteins
interacting with the cytoplasmic corticosteroid receptor (94).
Indeed, the corticosteroid receptor reduces the expression of
transcription factors as well as their co-activator molecules,
such as NF-κB and activator protein 1 (94). In addition, CS
induce the downregulation of IL-2, leading to a reduction
in both B-cell clone expansion and autoantibodies synthesis
(94). Furthermore, the reduction IL-2 expression inhibits
the cell-mediated immunity and reduces T-cell proliferation
(95). Therefore, CS lead to multiple signal transduction
pathways producing anti-inflammatory, immunosuppressive,
antiproliferative, and vasoconstrictive effects.

Several adverse effects have been described in patients
undergoing long-time CS therapy, including increased
overall susceptibility to infections and infestations, secondary
adrenal insufficiency, osteoporosis, transient hyperglycaemia,
hypertension, and posterior subcapsular cataract (96). In

addition, cutaneous adverse effects have been described,
including purpura, telangiectasias, atrophy, striae rubrae,
acneiform or rosacea-like eruptions, infections, stern obesity and
facial oedema.

Immunosuppressive Adjuvants

Azathioprine
AZA is a prodrug that converts to 6-mercaptopurine after oral
administration. AZA down-regulates purine metabolism leading
to a block of DNA, RNA and proteins synthesis. Furthermore,
AZA inhibits mitosis and leads to immunosuppression in
several ways (97). AZA reduces the number of monocytes and
Langerhans cells, decreases γ-globulin production, and lower
T-cell as well as suppressor B cell activity. Furthermore, it
blocks T-helper-cell dependent responses of B cells (97, 98). 6-
mercaptopurine can be inactivated to 6-methyl-mercaptopurine
by thiopurine methyltransferase (TPMT) enzyme (96).

AZA is a safe CS-sparing agent, recommended as a first-
line adjuvant immunosuppressant (83). The dosage of AZA
is adapted to the TPMT activity and measurement of TPMT
activity should be performed before AZA administration (99).
Usually, 2.0mg AZA kg/day are recommended by normal TPMT
activity, while 1mg AZA kg/day is recommended for patients
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FIGURE 7 | Therapy of relapse. (A) with corticosteroids only; (B) systemic corticosteroids combined with anti CD20 moAb; (C) systemic corticosteroids combined

with other immunosuppressive agents. moAb, monoclonal antibody.

with TPMT enzyme mutations (84). A dose of 50mg AZA per
day is recommended as initial therapy; the dose can be increased
to the optimal dose based on TPMT activity (84). Adverse effects
have been reported in 15–30% of patients. Severe adverse effects
include myelosuppression and pancytopenia, and hepatotoxicity
(99). However, myelosuppression may occur despite normal
TPMT. Therefore, despite normal TPMT activity, a routine
complete blood count including liver enzymes throughout the
treatment period should be performed (99). In addition, long-
term immunosuppression raises the risk of infections and cancer
(100). Indeed, AZA shows a mutagenic potential that might
provoke hematologic malignancies (100). Therefore, AZA is
not recommended in pregnancy and breastfeeding (101). Other
adverse effects include nausea, pancreatitis, diarrhea, aphthous
stomatitis, maculopapular rashes, and anaphylaxis (99).

In a RCT involving 120 PV patients, a combined therapy of CS
and adjuvant AZA (2.5 mg/kg daily) showed a higher CS-sparing
effect than CS alone and a combination therapy with MMF (102).
Furthermore, in a previous RCT study, adjuvant AZA (2.5 mg/kg
daily) was compared to CS alone (103). During 1-year follow-up,
a significant CS-sparing effect has been shown only in the last 3
months. Furthermore, disease activity was also significantly lower
in the AZA group only in the last 3 months in comparison to the
CS only. In addition, in a non-randomized study on PV patients,

high-dose oral prednisone daily (1.5mg/kg/day) vs. low-dose oral
prednisone (40mg every other day) plus AZA (100 mg/day) have
been compared. It was shown a shorter main time to remission
in high-dose oral prednisone monotherapy group, although the
rate of adverse effects was higher (104). In summary, there is
good evidence for a higher CS-sparing effect of AZA than CS
monotherapy and MMF (83).

Mycophenolate mofetil
MMF is a prodrug that converts to mycophenolic acid (MPA)
upon oral administration. MPA downregulates the immune
system by selective impairment of inosine monophosphate
dehydrogenase, leading to a blockade of the de novo pathway
of purine synthesis in T and B cells, affecting both cellular and
humoral immunity. Because lymphocytes are mainly dependent
on the de novo pathway for purine biosynthesis, lymphocytes
are the primary target of MPA. Because this target profile,
MMF shows a safer profile in comparison to other less selective
immunosuppressants, such as AZA (105).

As AZA, MMF is also recommended as a first-line adjuvant
immunosuppressant (83, 84). The recommended dose of 2 g/day
divided in two doses. In patients with a reduced renal function
a reduced dosage should be administered (106). Initially, a dose
of 500mg MMF/day should be administered and an increase by
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500mgmay be possible. A final dose of 2 g/day has been proposed
in order to reach a better gastrointestinal tolerance (97).

Severe adverse effects have been rarely reported. Mild
gastrointestinal symptoms, such as nausea, vomiting, and
diarrhea are commonly seen. Rare are opportunistic infections,
hematologic abnormalities, esophagitis, and gastritis (107).
Studies on transplant recipients in therapy with MMF have
demonstrated an increased risk of developing lymphomas and
skin cancer (86). MMF is not recommended in pregnancy
and breastfeeding, because of an increased risk of spontaneous
abortion and congenital malformations (101).

Beissert et al. (108) compared CS plus MMF with CS plus
placebo in PV patients. It has been highlighted that the MMF
group showed a faster response to therapy, a longer disease-
free interval, and a statistically significant CS-sparing. However,
adjuvantMMFwas not superior to CS in inducing disease control
(108). Furthermore, no significant differences in cumulative CS
dose, efficacy, or adverse effects were reported between AZA plus
oral methylprednisolone andMMF plus oral methylprednisolone
(109). In addition, Chams-Davatchi et al. (102) showed no
significant difference in efficacy or safety between a combination
therapy of prednisolone plus MMF (2 g/day) and prednisolone
plus AZA. Regarding the CS-sparing effect, MMF was superior
to prednisolone alone, but inferior to AZA, while compared to
Cyclophosphamide (CYP), non-conclusive data were reported
(102). The optimal MMF dose in PV has not yet been found.
In a multicentric randomized controlled trial (RCT), no clear
conclusions regarding the use of standard MMF dose (2 g daily)
vs. a high one (3 g daily) were reported (108).

Cyclophosphamide
CYP is an alkylating prodrug with antineoplastic and
immunosuppressive properties. CYP is converted in the
liver into two active metabolites, phosphoramide mustard
and aldophosphamide, which downregulate DNA replication
and induce cell death. CYP shows also a blocking activity on
proliferation, cytokine production, and lymphocyte-induced
inflammation (85, 92).

The recommended oral dose is 2 mg/kg/day (97). Because of
its rather unfavorable safety profile, CYP is not recommended as
a first-line CS-sparing agent but rather as a rescue drug.

Several frequent adverse effects have been reported, including
nausea, vomiting, diarrhea, hyperpigmentation of the skin/nails,
and alopecia. Leukopenia, anemia, and thrombocytopenia may
also occur. A severe complication is haemorrhagic cystitis, which
may be prevented by adequate fluid intake and sodium 2-
mercaptoethane sulfonate.

CYP shows a carcinogenic and teratogenic activity (86). As
a result CYP administration is not allowed in pregnancy and
breastfeeding (101). Moreover, temporary or permanent gonadal
dysfunction has been described.

Three RCTs evaluated the CS-sparing effect of CYP.
Chrysomallis et al. (110) compared oral CS monotherapy with
a combined therapy of oral CYP and CS as well as a combined
therapy of cyclosporine and CS. No difference in efficacy between
these treatments were observed, but adverse events were higher
in patients on combination treatment. An RCT comparing

intravenous CYP pulse therapy (15 mg/kg monthly) plus CS
vs. CS alone showed no conclusive difference in remission and
relapse rates, cumulative steroid doses, and adverse events (111).
Moreover, RCT regarding CYP pulse therapy (1 g monthly for
6 months, then 1 g every 2 months) plus CS in comparison
to prednisolone alone and in combination with adjuvant AZA
or MMF showed inconclusive results regarding efficacy and
CS-sparing effect (102). Finally, oral methylprednisolone (2
mg/kg/day) combined with AZA (2–2.5 mg/kg/day) and a
pulse CYP treatment protocol (500mg intravenous CYP in
combination with 100mg intravenous dexamethasone for 3
consecutive days) were evaluated in a multicentric prospective
RCT and did not show significant differences (112).

Different dexamethasone–CYP pulse therapy regimens were
evaluated in two RCTs. In the first study, a combination of
dexamethasone i.v. (100mg on three consecutive days per
months), CYP i.v. (500mg once a month), and oral CYP (50
mg/day) was compared with CYP pulse therapy (15 mg/kg
monthly) and prednisolone. In the first group a cutaneous,
but not mucosal, response was faster achieved, while in the
second group, the remission was seen earlier, but more severe
CS-related adverse effects were reported (113). In the second
study, patients under oral CYP alone (50mg daily) and under a
combination of dexamethasone i.v. (100mg on three consecutive
days monthly) with CYP i.v. (500mg monthly) or oral CYP
(50mg daily on days between the pulses) were evaluated. No
significant differences were reported regarding relapse rate, anti-
Dsg1 and anti-Dsg3 autoantibodies titres, and the presence of
tissue-binding autoantibodies by DIF (114).

Dapsone
Dapsone is used alone or in combination with topical clobetasol
as first-line therapy in mild PF. Evaluation of serum glucose-6-
phosphate dehydrogenase (G6PD) activity is mandatory before
administration. The role of DA in the maintenance phase of
PV has been evaluated only in one RCT, showing no statistical
significance (115).

Methotrexate
Methotrexate (MTX) (10–20 mg/week) is considered a third-
line CS-sparing drug in PV (83). In a retrospective single-center
study, it has been reported that >80% of PV patients were able
to reduce CS after 6 months on adjuvant MTX (15 mg/week)
(116). Furthermore, Tran et al. (117) reported in a retrospective
single-center study that 70% of PV patients stopped completely
CS, mainly after 18 months. These findings support the concept
that MTX has a CS-sparing effect in PV.

Cyclosporine
There are only limited data regarding the adjuvant use of
cyclosporine in PV. Chrysomallis et al. (110) reported an
inconclusive effect of adjuvant cyclosporine and a higher
incidence of toxicities in combination treatment with
prednisolone. Ioannides et al. (118) showed no advantage
of this adjuvant drug over treatment with CS alone. Based on this
data, CS is not recommended as adjuvant therapy in PV by the
EADV or BAD guidelines (83, 84).
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Rituximab
Rituximab—Mode of Action
The putative mode of action of RTX in pemphigus is shown
in Figure 8. RTX is a chimeric type I monoclonal anti
CD20 antibody, consisting of a human Fc portion and a
murine variable region which serve as CD20 binding site
(119). RTX was first licensed for use in B-cell malignancies
(120), however, it is currently used in several autoimmune
disorders, and has been recently licensed as first-line treatment
in pemphigus (121–124). RTX target, CD20, is a transmembrane
receptor, that is expressed across various developmental stages
of the B-cell, from the pre-B cell to the mature; while,
early precursor pro-B cells and antibody-producing plasma
cells do not express it (125). Probably, it functions as a
Ca2+ channel, that regulates intracellular Ca2+ influx through
interaction between the intracytoplasmic domain and the
activated B-cell receptor (119, 126). Noteworthy, CD20−/−

mice display normal B-cell development and function, and
no enhanced susceptibility to infections (127). RTX binds
near the large extracellular loop of CD20 (128). RTX binding
to CD20 induces B-cell depletion by, at least, four different
mechanisms: (i) direct induction of programmed cell death,
which is dependent on activation of caspases and involves
intracellular molecules, including Src kinases, p38 MAPK
and NFkB (129–131); (ii) complement-dependent cytotoxicity,
that happens when C1s binds to RTX opsonized cells
and triggers complement activation and formation of the
membrane attack complex (MAC), which eventually induces
cell lysis (132); (iii) antibody-dependent cytotoxicity, which
consists of activation of NK cells through binding the
human Fc portion of RTX to the FcRIII receptor: this
activates NK cells to release cytotoxic mediators, including
perforins and granzyme B, which induces caspases-dependent
cell death in the target lymphocyte (133); (iv) antibody-
dependent phagocytosis, in which neutrophils, monocytes and
macrophages bind RTX opsonized B-cells through the Fcγ
Receptor (132). Recently, a new mechanism, referred to as
trogocytosis, or shaving, has been characterized. In trogocytosis,
macrophages remove RTX-CD20 complexes by transferring
plasma membrane; this triggers cell death through a yet-to-be
identified mechanism (134).

RTX is a highly effective therapy in pemphigus (1). By
depleting B-cells, RTX leads to marked decrease of circulating
anti-Dsg autoantibodies, and, since the pathogenic role of such
autoantibodies, significant amelioration of the lesions (135).
Multiple lines of evidence, however, suggest that RTX exerts
a deep modulation of both humoral and acquired immune
function in pemphigus, explaining the fact that, in many cases,
disease amelioration lasts longer than B-cell re-appearance in
the peripheral blood of the patients (136). First, it should
be noted that RTX, in parallel with a drastic decrease of
pathogenic autoantibodies, induces drop of total serum IgM, but
does not modify total serum IgG, thus suggesting that long-
lived plasmablasts accounting for antibody production against
microbes are not affected (137). Previously, we showed that
in PV patients, RTX induced elevation of B-cell activating
factor (BAFF) in parallel with decreasing pathogenic antibody

levels and increased IgG titer against Varicella Zoster virus
and Epstein Barr virus: thus elevation of BAFF may at
least partly exerts a stimulatory role on long-lived plasma
blasts (124). Likewise, one study recently showed that while
autoimmune blistering disease patients receiving RTX showed
reduced circulating memory B-cells against the influenza virus
compared to healthy people, they showed comparable recall
response to vaccination, suggesting the existence of a memory
B-cell compartment, probably resident in lymphoid tissues,
which is not depleted by RTX (138). Interestingly, when B-
cells re-appear following RTX treatment, there is a substantial
increase in the proportion of naive and transitional B-cells
and an increased naive/memory B-cell ratio (137). Patients in
complete clinical response also display increased number of IL-
10-producing regulatory B-cells and absence of Dsg3-IgG+ B-
cells (136). Altogether, these findings suggest that RTX induces
a complete reset of the B-cell repertoire in pemphigus, favoring
early appearance of immature B-cells and anti-inflammatory
regulatory B (Breg) cells, and delayed reappearance of Dsg-
specific memory B-cells, which eventually account for disease
relapse (136, 139).

Our group demonstrated that, besides pleiotropic effects
on B-cells, RTX inhibits auto-reactive Th1 and Th2 cells, by
interfering with the T-B cell cross-talk, in which Dsg-specific
B-cells probably serve as antigen presenting cells. Decreasing
Th1 and Th2 functions occurred early following RTX and
lasted around 6 and 12 months, respectively. Conversely, we
did not observe inhibition of Dsg-specific regulatory T (Treg)-
cells, which account for maintaining peripheral tolerance against
Dsg antigens. Finally, we demonstrated that T-cells specific for
the tetanus toxoid as well as the total count of CD3+CD4+

T cells were not decreased by RTX (140). Similar results were
found in a subsequent study by Leshem et al. (141), confirming
that RTX impairs autoreactive, rather than global T-cell function
in pemphigus.

RTX side effects mostly include infections and infusion-
related adverse events. In fact, while single RTX infusions
may not impair significantly memory responses against
previously encountered pathogens (138), patients mounts
a defective immune reactions against newly encountered
pathogens and serious and life-threatening infections, including
sepsis, following RTX treatment have been variously reported
(120, 142–147). Opportunistic infections can also occur,
including cytomegalovirus and Pneumocytic jiroveci infections
(148–153). In this regard, it is not known yet whether pemphigus
patients receiving RTX may benefit from prophylaxis against
Pneumocystis jiroveci infection (154). A theoretical risk of
reactivation of hepatitis B and C viruses as well as tuberculosis
should be also taken into account (138, 155–157). Infusion-
related adverse events mostly occur during the time of infusion
and include type I hypersensitivity reaction and anaphylaxis,
and cytokine release syndrome (158–162), although the latter
has never been reported in pemphigus patients (142, 163).
Delayed reactions include serum sickness, vasculitis and
Steven Johnson syndrome (164–167). Interestingly, there have
been some cases of paradoxical pemphigus flares following
RTX treatment. In one case, paradoxical pemphigus flare
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FIGURE 8 | Mode of action of RTX in pemphigus. RTX induces depletion of B-cells and lymphoid resident memory B-cells by different mechanisms, including direct

cell apoptosis, complement-dependent cytotoxicity and antibody-dependent cytotoxicity. The latter consists of the phagocytosis of opsonized B-cells by neutrophils,

monocytes and macrophages, which express the Fcγ Receptor. Moreover, RTX significantly decreases T-cell function, by depleting antigen presenting B cells.

Patients achieving durable responses have an increased naïve/memory B-cell ratio. Regulatory B-cells (B-regs) and regulatory T-cells (T-regs) are also increased, and

are inhibitory on Dsg3-specific memory B-cells. On the contrary, patients with early relapses following B-cell repopulation have a decreased naïve/memory B-cell ratio.

Reappearance of auto-reactive, Dsg3-specific T-cells contributes to activation of autoreactive B-cells and subsequent anti-Dsg IgG production.

was accompanied by increased serum concentrations of anti-
Dsg3 IgG autoantibodies (168). In any case, disease flare
predicted treatment failure. Suggested underlying mechanisms
include increased cytokine release from apoptotic B-cells,
immediate depletion of regulatory B-cells or a transient
lymphocyte activation following RTX-CD20 interaction
(141, 163, 168–171).

There is much controversy about the optimal RTX dose
in pemphigus. Two main protocols are used: the rheumatoid
arthritis protocol, which consists of two 1,000mg infusions 2
weeks apart, and the lymphoma protocol, which consists of
four 500mg infusions once a week (135). There are not yet
randomized trials assessing which protocol is better in terms
of efficacy and safety. On the other hand, high dose regimens
should be preferred instead of low-dose regimens, due to longer
disease response (163). Nowadays, one study recently reported
on a pemphigus patient achieving successful disease remission
with an ultra-low dose of RTX (200mg in a single infusion),
with persistent B-cell depletion after 6-month follow-up (172,

173). This highlights the need of further investigating individual
factors that may influence RTX efficacy in an effort to personalize
treatment schedules and optimize the safety.

Rituximab in Pemphigus Vulgaris and

Pemphigus Foliaceus
RTX was initially shown to be effective for pemphigus patients
resistant to standard immunosuppressive therapies. In one study
in 2006, Ahmed et al. (174) reported complete clinical remission,
allowing successful tapering of immunosuppressive therapies,
in 9 out of 11 patients with refractory pemphigus following
a protocol combining IVIg and 10 RTX infusions over a 6
months period (Table 1). After 10-year follow-up most patients
were shown to maintain clinical remission (175). In 2007, in a
larger clinical series, Joly et al. (176) reported durable clinical
response with significant corticosteroid sparing effects in 86% of
21 patients with refractory pemphigus following a single cycle of
RTX. Similar results were reported in a series of 42 patients by
Cianchini et al. (177), they also observed that a recall infusion
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of 500mg was effective for patients who relapsed following
initial disease control. One study including 136 patients with
refractory pemphigus from four different European countries
reported a 95% overall response rate, with two third of patients
achieving complete remission (178). Likewise, review articles and
meta-analysis estimated complete clinical remission occurring
in 76–90% of patients within a median time of ∼6 months
(146, 163). Mean remission duration ranged from 15 to 17
months, although only a small percentage of patients maintained
remission off therapy (146, 163). In two studies, RTX use early
in the disease course resulted in significantly higher and longer
clinical response (136, 179). The same finding emerged also
in a study by Amber and Hertl, reviewing clinical outcomes
of 155 pemphigus patients treated with a single cycle of RTX
(179, 180). These preliminary observations have lead different
research groups to investigate the potential benefit of RTX
applied as a first line therapy in pemphigus. Indeed, first-line
therapy with RTX, combined either with high potency topical
corticosteroids or IVIg, was shown to be effective in pemphigus
patients with contraindication to systemic steroids (181, 182).
One retrospective study found significantly higher rate of
complete remission off immunosuppressive therapy in patients
who were administered RTX as a first-line steroid sparing
agent compared to patients who received RTX after failing
other immunosuppressants (183). In 2017 a large prospective
randomized trial, comparing RTX combined with a short
course of prednisone vs. prednisone alone in patients with
newly diagnosed pemphigus, demonstrated significantly higher
complete remission rate off therapy in patients receiving RTX,
resulting in a dramatic decrease of the cumulative steroid
dose and significantly fewer adverse events. Furthermore, re-
treatment with a single RTX dose of 500mg after 12 and 18
months was highly effective and well-tolerated in achieving long-
term clinical remissions (88). Interestingly, also patients with
PF, in whom the rate of remission with RTX was estimated
around 50% in the refractory setting, were shown to respond
well to RTX when applied as a first line therapy (88, 184–
186). In summary, while RTX was initially recommended
as a third line therapy in patients without adequate disease
control with standard immunosuppressants, several studies have
definitively demonstrated that patients may benefit from early
RTX treatment, in terms of both clinical efficacy and safety,
leading current guidelines to recommend it as the gold standard
for new onset pemphigus (187, 188).

Rituximab in Paraneoplastic Pemphigus
PNP usually occurs secondary to B-cell neoplasms, hence
RTX appears to be a reasonable treatment, targeting both
autoreactive and malignant B-cells (189–191). Several cases
in the literature have shown remarkable responses in B-cell
malignancies-associated PNP using RTX either alone or in
combination with immunosuppressants or chemotherapy (192–
195). However, the overall efficacy of RTX in PNP is much less
consistent than PV and PF (196); mucosal lesions were shown
to be particularly resistant to RTX treatment (197). Moreover,
some authors pointed out that RTX treatment of the underlying
malignancy may paradoxically trigger PNP (198).

PNP combines clinical and histologic features of PV and
lichenoid/interface dermatitis, reflecting a mixed B- and T-cell
response against epidermal autoantigens. Indeed, while declining
B-cells autoreactivity, RTX may be ineffective against clinical
manifestations secondary to auto-reactive T-cells activation
(199). Indeed, RTX use to treat the underlying malignancy may
lead to overlook the diagnosis of PNP in patients presenting with
lichenoid dermatitis or toxic epidermal necrolysis-like lesions
without detectable circulating autoantibodies and negative DIF.
This was recently hypothesized in an interesting study by Kwatra
et al. where the authors observed a significant reduction in the
cases of B-cell lymphoma-associated PNP from 2011 to 2017
compared to the period from 2003 to 2010. All the patients
diagnosed with PNP during or after 2011 had already received
RTX; whereas, most of the cases before 2011 did not (199).

Is There Evidence for a Maintenance
Therapy With Rituximab in Pemphigus?
Relapse following RTX occurs in about 40–80% of the patients
(163), within a mean time ranging from 6 to 24 months (153,
200). Additional cycles of RTX were shown to be effective in
relapsed patients, suggesting that patients may benefit from
maintenance with RTX (88, 176, 177). However, the exact timing
of RTX re-treatment to prevent relapse is uncertain (187). Re-
treatment at 6 months has been adopted empirically, but it is
not currently validated in the setting of randomized trials (201).
Noteworthy, there is a subset of patients who achieves long-
lasting remission even with a single cycle of RTX (136, 176, 202).
In these patients, additional prophylactic cycles of RTX not only
result in unneeded costs, but also substantially increase the risk
of adverse events. Developing biomarkers that could identify
patients at higher risk of relapse following RTX is therefore an
urgent need.

Relapse following RTX can be attributed to persistence of
autoreactive B-cells, because of incomplete B-cell depletion,
or re-appearance of Dsg-specific B-cell clones during B-cell
repopulation. Thus, monitoring the B-cell repertoire appears to
be a suitable tool to predict the risk of relapse following RTX.
In one study, shorter time to relapse was found in patients
receiving adjuvant immunosuppressants during and following
RTX treatment, suggesting a possible effect of prolonged
immunosuppression on immunosurveillance, favoring an early
re-appearance of autoreactive B-cells (203). In 2008, a consensus
of German experts recommended checking the number of
CD19+ B-cells in the blood at baseline and after RTX treatment
(204). In one retrospective study by Albers et al. (200) including
62 pemphigus patients treated with a total of 99 RTX cycles, the
number of CD19+ B-cells were shown to be a useful predictor
of relapse. A time to B-cell repopulation lower than 12 months
also correlated with the risk of relapse. However, relapse has
reportedly occurred even before B-cell re-population (205). In
these cases, it is conceivable that lymphoid tissues served as a
reservoir for autoreactive B-cells and protected them from RTX.

Longitudinal analysis of the naïve/memory B-cells ratio and
the number of B-regs may also provide useful information (206).
Interestingly, Albers et al. (200) found an inverted correlation
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between CD4+ T-cell counts following RTX and the risk of
relapse. Autoreactive T-cells are essential in pemphigus to
orchestrate the B-cell responses and autoantibody production
against Dsgs. RTX also is effective in decreasing peripheral
T-cell response against Dsgs (140). Thus, high CD4+ T-cells
count would be expected to predict relapse. However, Albers
et al. (200) speculated that the protective role of CD4+ T-
cells could be attributed to Treg cells, which prevented further
expansion of autoreactive B-cell clones. Levels of circulating
anti-Dsg autoantibodies were also shown to be involved in the
relapse of patients with pemphigus (207). In Albers et al. (200),
levels of anti-Dsg3 IgG were predictive of relapse in patients
with mucocutaneous and mucosal disease, whereas anti-Dsg1
IgG were predictive for the subset of mucosal PV patients with
cutaneous involvement. However, in other studies, elevation of
anti-Dsg3 IgG was also noted in patients maintaining a clinical
remission, suggesting that in some cases anti-Dsg3 IgG may
target non-pathogenic epitopes of the Dsg3 ectodomain (208).
Mouquet et al. (137) found that elevation of Dsg1 autoantibodies
was associated with early relapse following RTX.

In a prospective study, a high baseline index of anti-Dsg1 IgG
was found in early relapsing patients compared to late relapsing
patients following RTX. Baseline anti-Dsg1 IgG, but not Dsg3-
IgG, indeed showed a significant positive correlation with a risk
of relapse within 12 months after RTX treatment, thus suggesting
that patients with high anti-Dsg1 IgG before treatment deserve
a close monitoring during the 12 months following treatment,
or at least may benefit from a prophylactic RTX dose during
the first 12 months. Also in this study, later B-cell repopulation
was found in patients experiencing a late relapse compared to
patients experiencing an early relapse (209). By contrast, in a
retrospective study including 40 pemphigus patients treated with
RTX, mucosal involvement was found to be associated with a
poor clinical outcome and relapse (210).

Intravenous Immunoglobulin
IVIg consist of human plasma-derived IgG, sugars, salts
and solvents. IVIg derived from large plasma pools. Albeit
not immunosuppressive, they exerts various anti-inflammatory
effects, including Fc receptor blockade, stimulation of antibodies
production against different subclasses of T lymphocytes,
inhibition of different T-cell functions, complement hindrance
via inactivating C3 precursors, dendritic cell downregulation, B-
lymphocyte apoptosis, inhibition of phagocytosis, and increment
of response to steroids (211). However, the main mode of action
is an increased catabolism of immunoglobulins via binding to the
neonatal Fc receptor (FcRn) (211).

A dose of 2 g per kg body weight per treatment cycle is
recommended. High-dose IVIg was shown to independently
increase disease control in pemphigus (85). IVIg is mostly used
as an adjuvant therapy to CS and immunosuppressive drugs in
recalcitrant PV. Indeed, Amagai et al. (212) reported that high
dose IVIg (0.4 g/kg per day) over 5 days resulted in significantly
reduced disease activity and autoantibody titres in 51 patients
with CS-resistant PV. Furthermore, Svecova et al. (213) reported
a significant improvement in Pemphigus Disease Area Index
(PDAI) and a reduction of 90% of the CS dose in a cohort

of 10 CS-resistant PV. Combination of IVIg and RTX also
demonstrated efficacy (Table 2).

Adverse effects have been reported in < 5% of patients
and occur more often in patients who are IVIg-naive or at
risk of bacterial infections (217, 218). Immediate adverse
effects (occurring within the first hour of infusion) include
headache, nausea, fever, tachycardia, malaise, arthralgia, and
dyspnoea. Delayed reactions include headache, acute renal
failure, thromboembolic events, and pseudohyponatremia
(218). Myocardial infarction, thrombosis, pulmonary embolus
and Stevens–Johnson syndrome, have been also described.
Thrombosis can be provoked by hypercoagulability due to
increased blood viscosity, augmented fibrinogen production,
and raised platelet activity (219). Therefore, high-risk patients,
such as elderly or people affected by hypertension or coronary
heart disease, should be screened appropriately and prophylactic
anticoagulation need to be considered. In a series of 54 patients
on IVIg treatment, an incidence of aseptic meningitis of 11% has
been reported. Risk factors were a previous history of migraine
and high-dose IVIg regimen (220). Finally transient acute kidney
injury has been also described (221).

Immunoadsorption
IA consists of the passive removal of IgG from the patient’s
systemic circulation. In IA, the blood is passed through adsorber
columns, in which molecules with high affinity for IgG, i.g.
protein A (Immunosorba R©) or the synthetic peptide PGAM146
(Globaffin R©), function as a ligand (135, 222). Basic principles
of IA are, indeed, similar to plasmapheresis, but, compared to
the latter, IA does not remove plasma proteins, such as albumin
and clotting factors. The use of plasmapheresis in pemphigus has
been largely abandoned due to significant incidence of serious
adverse events, such as sepsis (223). The fact that IA does
not require replacement of fresh frozen plasma and albumins
allows processing higher plasma volume per treatment session,
resulting in a lower, albeit not abolished, risk of adverse events.
Nevertheless, infections are still the most frequently encountered
complication and can occur either secondary to the IA procedure,
i.g. cathether-associated infections, or secondary to decreased
serum concentrations of protective antibodies (224–226).

IA is an ideal treatment for pemphigus patients with
severe and extensive disease at baseline. Combining IA with
immunosuppressive therapies provides faster clinical responses
compared to the immunosuppressive therapy alone, since IA
allows immediate removal of pathogenic antibodies, whose
serum concentration reflects both disease activity and severity.
Once circulating antibodies are removed, a positive gradient
between the skin and blood leads skin-bound autoantibodies to
move into the systemic circulation. To avoid a rebound increase
of the autoantibody titer, IA is therefore performed on 3 or 4
consecutive days, and then repeated on a monthly base based
on the disease response, autoantibody serum concentrations and
treatment tolerability (227).

Current guidelines indicate IA as a reliable first-line treatment
in pemphigus patients, in whom lesions cover (1) > 30% of the
body surface or (2) > 25% of oral or genital mucous membranes
or involve (3) the conjunctiva or (4) the esophagus; it can
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TABLE 2 | Combination therapy of rituximab with intravenous immunoglobulins (IVIg) or immunoadsorption (IA).

Study Study design Synopsis Adverse events

RTX PLUS IVIg

Ahmed et al. (174) Prospective, including 11 refractory PV patients,

treated with 2 cycles of RTX 375 mg/Kg/m2 once a

week for 3 weeks followed by a cycle of IVIg 2 g/Kg

in the fourth week. Maintenance with RTX and IVIg

infusions once a month for 4 months

9 out of 11 patients achieved a complete remission

in parallel with a rapid decreasing of the serum

concentrations of anti-Dsg autoantibodies, which

allowed successful discontinuation of steroids and

adjuvant immunosuppressants. Clinical responses

lasted 22–37 months (follow-up after

discontinuation of RTX: 15–37 months). In 2

patients experiencing a relapse, retreatment with

RTX was effective

No relevant side effects

reported, including

infections or

infusion-related

reactions

Ahmed et al. (175) 10-year follow-up study of Ahmed et al. (174) All the 10 patients previously treated with RTX and

IVIg retained clinical remission after 10 years from

the last RTX infusion

Not observed

Feldman et al. (205) Retrospective, including 19 patients with refractory

pemphigus. RTX was given at week 1, 2, 3, 4, 5, 6,

7, 8, 12, 16, 20, 24. IVIg were given at week 0, 4, 8,

12, 16, 20, 24

11 patients achieved long-term remission, allowing

discontinuation of corticosteroids and other

immunosuppressants. 8 suffered at total of 15

relapses. Re-treatment with RTX and IVIg was

effective in achieving a long-term remission. Relapse

was associated with incomplete B-cell depletion,

B-cell repopulation and raise of serum anti-Dsg

autoantibodies

Not reported

RTX PLUS IA

Behzad et al. (208) Retrospective, including 10 patients with refractory

PV. IA was administered at 4-week intervals,

followed by RTX according to either the lymphoma

protocol or the RA protocol

8 out of 10 patients obtained a complete remission

on therapy at 6 months following the first IA

treatment. In 6 of them complete remission on

therapy persisted at 12 months. Treatment with IA

and RTX leads to a successful tapering of oral

prednisone

No serious adverse

events reported

Kasperkiewicz et al. (214) Clinical series including 23 consecutive patients. IA

was given on 3 consecutive days and repeated at

initially 3 and then 4 weeks until lesions clearance of

90%. RTX 1,000mg was infused at weeks 1 and 3.

Patients also received intravenous dexamethasone

pulses and oral azathioprine or mycophenolic acid

19 patients achieved long-term complete remission.

Over a period of a mean of 29-month follow-up, 6

patients suffered a relapse

A Staphylococcus

aureus sepsis

associated with an

infected central

intravenous line and an

episode of extensive

herpes simplex

infection

Kolesnik et al. (215) Retrospective, including 4 patients with PV and 2

with PF. The treatment protocol included a

combination of protein A IA and RTX (375 mg/m2

once a week the day after each IA session)

(Magdeburg treatment protocol). Patients with

sub-epidermal blistering dermatoses were also

included

Complete or partial remission was observed in 88

and 12% of patients, respectively, within an average

follow-up of 22 months. Relapse occurred in one

patient with PF. Treatment was associated with a

substantial decrease of serum autoantibody

concentrations

Erysipelas at the lower

leg of one patient due

to trauma

RTX PLUS IVIg PLUS IA

Shimanovich et al. (216) Clinical series, including 5 patients with PV and 2

with PF. Treatment included a combination of

protein A IA and RTX (375 mg/m2 once a week per

4 consecutive weeks). All patients received adjuvant

immunosuppressive therapies. IVIg were given in

non-responder patients

Long-term remission was achieved by 3 patients.

Partial remission was induced in 1. Three refractory

patients achieved long-term disease control

following IVIg therapy

Staphylococcus aureus

bacteremia, deep

venous thrombosis and

P. carinii pneumonia

RTX, rituximab; IA, immunoadsorption; IVIG, intravenous immunoglobulins; PV, pemphigus vulgaris; PF, pemphigus foliaceus; RA, rheumatoid arthritis.

be also recommended in refractory patients with more than 3
months of active disease despite at least two immunosuppressive
therapies (84, 187, 188).

Possibly, IA may also exert immunomodulating properties,
which account for its synergistic effect in combination with
RTX (Table 2). Accordingly, in a study by Amber and Hertl,
IA was the only adjuvant treatment resulting in a lower

risk of relapse following RTX (180). Indeed two studies,
including one by our group, demonstrated rapid and durable
clinical response combining RTX and IA with or without oral
immunosuppressants (208, 214). Moreover, a yet unpublished
German multicentric prospective randomized trial comparing
IA plus the best medical therapy vs. the best medical therapy
alone found that the adjunct of IA resulted in faster withdrawing
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prednisone and reduced cumulative steroid dose to achieve
pemphigus remission (DRKS 00000566).

Langenhan et al. (228) developed specific adsorbers using
Dsg1 and Dsg3 ectodomains as a ligand which were shown to
efficiently remove pathogenic autoantibodies by 25 and 21%,
respectively, without significant variation of anti-EBNA 1 IgG.
The same group demonstrated that Dsg3/Dsg1 specific IA
eliminated the capacity of PV sera to induce Dsg3 internalization
in vitro and blistering in neonatal mice (229). Hopefully, future
clinical application of these absorbers would lead to increase
the safety of IA, reducing the incidence of infections secondary
to hypogammaglobulinemia.

Double filtration plasmapheresis (DFPP) is a relatively
new procedure that, similar to IA, removes selectively
immunoglobulins, while minimizing the loss of albumin.
In small case series and one retrospective study DFPP also
demonstrated efficacy in drug resistant pemphigus (230–232).

EMERGING THERAPIES

B-Cell Therapies Other Than Rituximab
Although RTX has dramatically improved the overall prognosis
of pemphigus, treatment failure or early relapse may be
observed. RTX is a chimeric monoclonal antibody, whosemurine
component is thought to be responsible for the observed allergic
reactions during the infusion. However, it also accounts for
the appearance of human anti-chimeric antibodies (HACAT),
which may potentially limit the efficacy of the drug (233).
Over the recent years, different monoclonal antibodies targeting
CD20 have been developed. Second generation anti-CD20 mAb
differ from RTX in that they are humanized or fully human,
taking advantage of being less immunogenic (234) (Figure 9).
Amongst second-generation anti-CD20 monoclonal antibodies,
ofatumumab has been the first to be approved. It is a type I
anti-CD20 monoclonal antibodies that targets the extracellular
portion of CD20 close to the B-cell membrane, resulting in
a more potent complement-dependent cytotoxicity compared
to RTX (235). Ofatumumab demonstrated efficacy in a patient
with pemphigus, in whom RTX loses efficacy presumably
because of the appearance of HACAT (236). Unfortunately,
a randomized controlled trial of ofatumumab in pemphigus
has been prematurely terminated due to financial restrictions
(186). Similarly, Ellebrecht et al. (237) described successful
treatment with subcutaneous veltuzmab in a pemphigus patient
who only achieved a partial remission with RTX. Veltuzumab
is a type I humanized anti CD20 monoclonal antibody that
has similar complementary-determining regions of RTX, but
a 2.7-fold greater binding avidity and effect on complement-
dependent cytotoxicity than RTX. It can be also administered
subcutaneously, resulting in lower side effects than intravenous
RTX (234).

Obinutuzumab is a third generation glycoenginereed type II
humanized anti-CD20 monoclonal antibody. Differently from
type I monoclonal antibodies, obinutuzumab shows enhanced
capacity to induce direct apoptosis (via a caspase-independent
factor) and antibody-dependent cytotoxicity, whereas it does
not induce complement-dependent cytotoxicity (238–240).

Obinutuzumab has shown to induce superior B-cell depletion
compared to RTX in blood samples from patients with
rheumatoid arthritis and systemic lupus erythematosus. More
intriguingly, it has been shown to induce significant cytotoxicicty
also in naive and class-switched memory B-cells, a high number
of which may be implicated in early relapse following RTX
treatment in pemphigus (241). Other therapies of interest
include belimumab and atacicept, a monoclonal human IgG1
antibody and a fully human recombinant fusion protein, which
respectively, target BAFF and a proliferating-induced ligand
(APRIL), which are involved in B-cell differentiation in antibody
producing plasma cells (242, 243). It is worth mentioning that
a monoclonal anti-BAFF-receptor antibody (VAY736) is being
investigated in a randomized, partial-blind, placebo- controlled
multicentre trial (NCT01930175) (125).

Bruton kinase (BTK) inhibitors are also a promising B-cell
targeting therapy in pemphigus. BTK is a member of the Tec
family of kinases, which is mainly expressed on B-cells, excluding
antibody-producing plasma cells. Activation of BTK following
antigen-recognition by the BCR activates different downstream
molecules including p38MAPK, MEK/ERK, and NFkB, whose
related signals are key regulator of B-cells survival, proliferation,
maturation and antigen-presentation (244, 245). BTK inhibitors
such as ibrutinib have shown impressive clinical responses in
patients with B-cell malignancies, but also hold promise for
the treatment of autoimmune disorders. In particular, over-
activation of BTK have been shown to drive autoimmunity
by enhancing autoantibody production and class switching,
promoting B-T cell cross talk and peripheral B-cell loss of
tolerance (244). Furthermore, enhanced expression of BTK in
B-cells induces differentiation of T follicular helper cells, which
have been shown to be involved in the pathogenesis of pemphigus
(67, 246). Interestingly, ibrutinib has been successfully used in
two cases of PNP associated with B-cell malignancies (247, 248).
The efficacy of PRN1008, an oral inhibitor of BTK is currently
being evaluated in a clinical trial (NCT02704429) (125, 249).

Monoclonal antibodies targeting CD19+ (a B-cell surface
molecule which is also expressed on antibody producing plasma
cells) such as inebilizumab, would be an effective strategy
in pemphigus, since persistence of long-lived plasmablasts
producing anti-Dsg IgG autoantibodies is presumably amongst
the mechanisms of disease resistance to RTX treatment (125).
Figure 9 summarizes how emerging anti-B-cell therapies works
in pemphigus.

Chimeric Autoantibody Receptor (CAAR)-T
Cell: A Most Promising Treatment
Approach in Pemphigus
Chimeric antigen receptor (CAR)-T-cell therapy has shown
remarkable efficacy in otherwise untreatable hematologic
malignancies (250). Currently, two CD19-directed CAR-T-cell
therapy, tisagenlecleucel and axicabtagene ciloleucel have been
approved for treatment of heavily refractory/relapsed acute
lymphoblastic leukemia and B-cell aggressive lymphomas
(251–254). The noteworthy antitumor activity of CAR-
T cells in hematologic malignancies has recently led to
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FIGURE 9 | Emerging therapies targeting auto-reactive B and T-cells in pemphigus. Ofatumumab, veltuzumab, and obinutuzumab are fully human or humanized

monoclonal antibodies targeting CD20. Ofatumumab and veltuzumab are class I anti-CD20 monoclonal antibody, with a higher capacity of binding CD20 and inducing

complement-dependent cytotoxicity compared to RTX. Obinutuzumab is a class II anti-CD20 monoclonal antibody, that has an increased affinity to the FcγIII receptor,

resulting in a more potent antibody-dependent cytotoxicity. Bruton kinase (BTK) inhibitors interfere with B cell activation. BCR signaling induces migration of BTK from

the cytosol to the cell membrane, though the interaction with phosphatidylinositol 3,4,5-triphosfate generated by phosphoinositide 3-kinase (PI3K). BTK is activated

by Lyn and Syk and then actives downstream molecules including phospholipase C gamma 2 (PLCγ2) and Protein kinase C. The latter in turns activate different

pro-inflammatory pathways including mitogen associated protein kinases (MAPK) and Nuclear Factor k B (NFkB). Chimeric autoantibody receptor (CAAR)-T-cells are

engineered T-lymphocytes which express Dsg3 ectodomain, which allows recognition and subsequent killing of B-cells targeting Dsg3. Belimumab and atacicept

target B-cell derived B-cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL), respectively, which promote differentiation toward

autoantibody-producing plasma cells. Inebilizumab is a monoclonal antibody targeting CD19 which is not only expressed on B cells but also plasma cells.

Dupilumamb is a monoclonal antibody targeting interleukin (IL-4), which is one the main cytokine produced by T helper 2 cells and T follicular helper cell which induces

autoantibody production by autoreactive B-cells.

investigate potential clinical application of such a therapy
in solid tumors (255–257); an intriguing scenario has been
also opened with regard to autoimmune diseases (258).
CAR-T cell therapy represents an example of adoptive cell
transfer therapy: patient’s derived T-cells are modified ex-
vivo to express a CAR, which allows selective recognition
of the antigen of interest and consequent killing, via
an MHC-unrestricted manner, of the antigen-bearing
cells (259–261).

CARs are fusion proteins whose structure comprises three
domains: (i) the extracellular domain, which consists of
a single chain variable fragment and serves as antigen
recognition domain; (ii) the transmembrane domain; and (iii)
the intracellular domain, which consists of the zeta (ζ) chain
of the CD3, a component of the endogenous T-cell receptor
(262). In second and third-generation CARs, the intracellular

domain is linked to co-stimulatory molecules, specifically 4-
IBB and CD28, which promote survival and proliferation of
CAR-T cells following antigen recognition, resulting in higher
clinical efficacy (263). Production of CAR-T-cells requires
different steps. Briefly, the CAR protein is cloned into lentiviral
or retroviral plasmids. Viral vectors are then transfected to
packaging cell lines, such as HEK293 cells, in order to obtain
large amounts of the CAR-bearing plasmids. Patient’s T-cells,
which are obtained by leukapheresis, are incubated with the
viral vector, which enters into the cells and introduces the CAR
encoding-RNA. The latter is reverse-transcribed in DNA and
stably integrates into the T-cell genome. The CAR protein can
be then transcribed and translated and eventually expressed
on the T-cell surface. CAR T-cells are finally expanded,
concentrated and cryopreserved to be then re-infused into the
patient (263, 264).
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Recently, Ellebrecht et al. (265) created a “chimeric
autoantibody receptor” (CAAR), whose extracellular domain
consisted of Dsg3 fragments. T-cells engineered to express
Dsg3 CAAR were shown to selectively target human anti-Dsg3
B-cells in vitro. Anti-Dsg3 antibodies derived from patients’
sera did not abolish CAAR-T cells activity. In a PV murine
model, CAAR-T cells reduced pathogenic IgG antibodies and
ameliorated disease severity. Interestingly CAAR-T-cells were
shown to target B-cells bearing antibodies against different
Dsg3 epitopes, providing support for their efficacy in a disease
typically characterized by oligo-clonality (265, 266). Apart from
the possibility that Dsg3-CAAR T-cells could potentially target
keratinocytes expressing desmocollins and desmogleins, which
physiologically binds to Dsg3, the authors did not observe any
significant toxicity (the so-called off-target toxicity) against
keratinocytes. Finally, the authors reported similar activity
against anti-Dsg3 B-cells between CAAR-T-cells and CD19+

CAR T-cells, hence suggesting that selective target of self-
reactive B-lymphocytes does not result in reduced treatment
efficacy (265).

A major advantage of CAAR-T cell therapy in PV
involves the possibility to target memory B cells, which
still accounts for the observed relapse following anti CD20
therapies (136, 267). Moreover, since part of CAAR-T-cells
differentiates toward memory cells (267), this may prevent
future formation and expansion of Dsg 3-reactive B-cells,
conferring such a kind of “immunity against autoimmunity.”
A second advantage of CAAR-T-cell therapy is reduced
immunosuppression, since normal B-cells are not expected to be
killed (265).

Since auto-reactive B-cells in pemphigus account for only a
minor subset of total B-cells, it is unlikely that CAAR-T-cell
therapy may lead to serious adverse events as has been observed
in the onco-hematologic setting (265, 268).

One potential limitation of Dsg3 CAAR-T-cell therapy in
pemphigus IgG-driven autoimmunity not only against Dsg3
but also against Dsg1. Moreover, patients with Dsg3 mucosal
dominant-PV were shown to possibly relapse as PF (or vice
versa), probably via intermolecular epitope spreading (269,
270). These findings highlight the importance of targeting
simultaneously both Dsg1 and Dsg3 reactive B-cells. A major
challenge of CAR-T cell therapy in cancer is the ability of
neoplastic cells to escape by down-regulating the expression
of the target antigen. A novel strategy to overcome tumor
antigen loss is modifying individual T cells with two distinct
CAR molecules (dual-signaling CAR) or with one CAR molecule
containing two different binding domains, referred to as Tandem
CAR (271, 272). A similar strategy could be adopted to develop
CAAR-T-cells targeting at the same time Dsg1 and Dsg3
reactive B-cells.

Also, another intriguing therapeutic perspective would be
developing CAR-Treg cells to down-regulate ongoing immune
reaction against Dsg (273, 274). In this regard, of interest
is a study by Fransson et al. involving a murine model of
autoimmune encephalitis, in which mouse CD4+ T cells were
modified to express a CAR targeting myelin oligodendrocyte
glycoprotein (MOG) in trans with the murine FoxP3 gene

promoting Treg differentiation. Myelin targeting Treg cells
successfully suppressed inflammation and improved symptoms
in the treated mice (275).

Another potential limitation of CAAR-T-cell therapy
in pemphigus includes prohibitive costs. For example,
one single infusion of the CD19 CAR T-cell products
costs around $ 373,000–475,000 (276). However, taking
into account the economic impact of a virtually life-long
immunosuppressive therapy, if the aim of pemphigus cure
with front-line CAAR T-cell therapy were to be realized,
reductions in cumulative spending may conceivably
occur. Figure 9 represents how CAAR-T cells works
in pemphigus.

Targeting the Neonatal Fc Receptor
in Pemphigus
FcRn is a heterodimer including the MHC class I-like H
chain and the β2-microglobulin L chain (277). This receptor is
involved in the transport of IgG from mother to fetus; different
studies however have shown that FcRn also plays a critical role
in regulating IgG homeostasis; accordingly, when IgG enter
into FcRn-expressing cells, the IgG-FcRn binding in acidified
endosomes avoids degradation of IgG and allows subsequent
recycle and release of IgG in the extracellular space at a near-
neutral pH. IgM and IgA do not bind to FcRn and consequently
have a reduced half-life compared to IgG (278, 279). Blocking
the interaction between FcRn and pathogenic autoantibodies
in autoimmune diseases may thereby accelerate pathogenic
autoantibody catabolism (280). Interestingly, keratinocytes have
been shown to express FcRn (281). Indeed, different studies
have demonstrated a critical role of FcRn in pemphigus. Knock-
out mouse lacking FcRn do not develop acantholysis by passive
transfer of anti-Dsg antibodies (282). Therapeutic efficacy of
IVIg can be at least in part attributed to saturation of FcRn,
allowing faster degradation of anti-Dsg autoantibodies (282).
In vitro, an excess of normal IgG accordingly protects cultured
keratinocytes from anti-Dsg autoantibodies-induced apoptolysis
(283). One recent study demonstrated that FcRn induces enter
of anti-mitochondrial antibodies, which are also found in
pemphigus sera and contribute to keratinocyte shrinkage due to
mithocondial damage. In this study, blocking of FcRn abolished
the capacity of PV sera to cause detachment of keratinocytes
in vitro (284). In another study, Recke et al. (285) found
that an allelic variant harboring an amino acid replacement
of His435 to Arg favoring high affinity of IgG3 to FcRn was
associated with an increase risk of PV. Altogether these studies
raise evidence for a potential benefit of targeting FcRn in
pemphigus. In 2018, the results of a randomized double-blind
placebo-controlled first in-human study on efgartigimod, an
antagonist of FcRN, including 62 healthy volunteers showed
that the drug was effective in reducing IgG levels by about
75% on after multiple dosing (286). The treatment was
well-tolerated and no serious adverse events were recorded
(286). A phase II study evaluating the safety and efficacy
of ARGX-113, a human IgG1-derived Fc fragments binding
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to FcRn in patients with PV and PF is currently ongoing
(NCT03334058) (287).

Targeting T-Cells and the T-B Cell Cross
Talk in Pemphigus
Autoreactive T-cells are critically involved in the pathogenesis
of pemphigus (288). Both Th1 and Th2 cells reacting against
Dsg were detected in patients with pemphigus at different
stages of the disease. However, while Dsg3-reactive Th1 cells
can be found in healthy individuals carrying PV predisposing
HLA class II alleles, Dsg3-reactive Th2 cells are restricted to
pemphigus patients (289, 290). In a recent study by our group,
we demonstrated that patients with PV developed a predominant
Th2-type response against Dsg3, in contrast to patients with
lichen planus, who developed a Th1-type response against the
identical autoantigen (291). Indeed, high amount of serum
IL-4 sustaining autoantibody production by autoreactive B-
cells have been found in pemphigus patients (292). Our group
demonstrated the presence of IgE targeting Dsg3 in patients with
pemphigus, which further supports the critical role of Th2 cells
in orchestrating the inflammatory response and autoantibody
production in pemphigus (293). Interestingly, dupilumab, a
monoclonal antibody targeting IL-4 has been recently shown to
be effective in bullous pemphigoid, a disease in which Th2 cells
targeting BP180 and both IgG and IgE against BP180 have also
a prominent pathogenic role (294, 295). As far as we are aware,
no studies have yet investigated the efficacy of dupilumab in
pemphigus. However, pathogenic evidence suggests that the drug
may be of potential benefit (Figure 6). In parallel to activation
of Th2 cells, in pemphigus there is a marked down-regulation
of Dsg-specific Foxp3-expressing Treg cells (289). In mouse
experiments, Treg cells created in Dsg3−/− mice and transferred
into mice with PV were able to reduce autoantibody production
(296). Thus, enhancing Treg functions in pemphigus appears to
be a promising strategy to restore the lost immune tolerance
against Dsg. Infusion of autologous polyclonal regulatory T cells
is currently being studied in a phase 1 open-label multicenter
trial in patients with active pemphigus vulgaris and pemphigus
foliaceus (NCT03239470) (135, 296).

Current work of our group aims at restoring immune
tolerance to Dsg3 via targeting of autoreactive T cells.
Specifically, we observed in a preclinical mouse model
of pemphigus that injections of immunodominant HLA-
DRß1

∗
04:02-binding T cell epitopes of Dsg3 conjugated either to

antigen-presenting cells lacking a second co-stimulatory signal
or to nanoparticles prevented the production of pathogenic
anti-Dsg3 IgG.

As previously mentioned, RTX has an inhibitory effect on
the co-stimulation of autoreactive B and T-cells in pemphigus
by depletion B cells which act as antigen presenting cells (140).
In this process, the interaction between CD40 expressed on the
surface of B-cells and CD40 L expressed on the surface of T-
cells is thought to play an essential role (297). Interestingly,
targeting CD40 L demonstrated efficacy in an active mouse
PV model. Specifically, Rag2-deficient mice expressing Dsg3
and treated with a monoclonal antibody targeting CD40L

did not develop PV after having received splenocytes from
Dsg3 deficient mice. However, this preventive effect did not
occur when the monoclonal antibody was given after the
adoptive cell transfer suggesting that targeting T-B-cell cross-
talk may be an effective tool to prevent disease recurrences
in patients who have already achieved disease remission
(Figure 9) (297–299).

Is There a Possibility for a Local Targeted
Therapy in Pemphigus?
Vinaj et al. (300) reported on 3 patients with oral PV lesions
refractory to immunosuppressants, including intravenous RTX,
in whom intralesional RTX injections led to meaningful clinical
improvement, suggesting a local immunomodulating effect of
the drug. A landmark paper by Yuan et al. (301) demonstrated
an accumulation of Dsg-3 and Dsg-1 specific B-cells in the skin
of pemphigus lesions. Additionally they showed that the skin
in pemphigus serves as a tertiary lymphoid organ in which a
close interaction between IL-21- and IL17A-producing CD4+

T cells leads to in loco production of anti-Dsg autoantibodies
by auto-reactive B-cells. It is possible that the formation of
this tertiary lymphoid organ in the skin may contribute to
the resistance of pemphigus lesions to immunosuppressive
treatments, including RTX. The discovery by Yuan et al. (301)
may also provide a plausible explanation for the successful
use of intralesional RTX in oral pemphigus lesions observed
by Vinaj et al. (300). It is interesting to note that secretion
of IL-21 is associated with activation of JAK1 and JAK3.
Tofacinib, an inhibitor of both JAK1 and JAK3, was suggested
as a possible therapeutic in pemphigus (302). Interestingly,
tofacinib has been successfully applied in different autoimmune
disorders (303, 304). Moreover, a topical preparation of tofacinib
was shown to be effective in alopecia areata (305). Based on
these findings, it would be intriguing to evaluate the potential
benefit of topical JAK inhibitors as a local adjuvant therapy
in pemphigus.

We have previously shown that mechanisms of acantholysis in
pemphigus require activation of different intracellular signaling,
including p38MAPK. In vitro studies showed that inhibition
of p38MAPK eliminated PV IgG-induced blister formation in
human skin biopsies (306). Oral p38MAPK inhibitors have
been tried in clinical trials in rheumatoid arthritis, Crohn’s
disease and psoriasis, as well as in pemphigus, but had
resulted in severe adverse events (1). Nevertheless, topical
p38MAPK inhibitors have been shown to exert potent anti-
inflammatory effects in the skin of mice following burn injury
(307). Indeed, topical p38MAPK inhibitors may represent a
therapeutic strategy in pemphigus to overcome the significant
toxicity observed with the systemic counterpart. Finally in
a study by Mao et al. (308), inhibition of STAT3 by
hydrocortisone, rapamicin, an inhibitor of mTOR, or Stat3
inhibitor XVIII prevented blister formation in a passive
transfer PV mouse model by up-regulating the expression of
Dsg3. Interestingly, sirolimus, a systemic inhibitor of mTOR,
was shown to be effective in PV, whereas topical rapamicin
did not (309, 310). Notably, intratumoral injection of Stat3
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oligonucletide decoy demonstrated mild efficacy in a trial
including patients with head and neck tumors (311). Due to
its pivotal implication in the mechanisms of acantholysis in
pemphigus, Pharmacologic inhibition of Stat3 through topical
drugs may also hold promise in the field of targeted therapy
in pemphigus.
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