
Penalized classification using Fisher’s linear discriminant

Daniela M. Witten† and

Department of Biostatistics, University of Washington, USA

Robert Tibshirani
Department of Health Research & Policy, and Statistics, Stanford University, USA

Summary

We consider the supervised classification setting, in which the data consist of p features measured
on n observations, each of which belongs to one of K classes. Linear discriminant analysis (LDA)
is a classical method for this problem. However, in the high-dimensional setting where p ≫ n,
LDA is not appropriate for two reasons. First, the standard estimate for the within-class covariance
matrix is singular, and so the usual discriminant rule cannot be applied. Second, when p is large, it
is difficult to interpret the classification rule obtained from LDA, since it involves all p features.
We propose penalized LDA, a general approach for penalizing the discriminant vectors in Fisher’s
discriminant problem in a way that leads to greater interpretability. The discriminant problem is
not convex, so we use a minorization-maximization approach in order to efficiently optimize it
when convex penalties are applied to the discriminant vectors. In particular, we consider the use of
L1 and fused lasso penalties. Our proposal is equivalent to recasting Fisher’s discriminant problem
as a biconvex problem. We evaluate the performances of the resulting methods on a simulation
study, and on three gene expression data sets. We also survey past methods for extending LDA to
the high-dimensional setting, and explore their relationships with our proposal.
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1. Introduction

In this paper, we consider the classification setting. The data consist of a n × p matrix X with
p features measured on n observations, each of which belongs to one of K classes. Linear
discriminant analysis (LDA) is a well-known method for this problem in the classical setting
where n > p. However, in high dimensions (when the number of features is large relative to
the number of observations) LDA faces two problems:

a. The maximum likelihood estimate of the within-class covariance matrix is
approximately singular (if p is almost as large as n) or singular (if p > n). Even if
the estimate is not singular, the resulting classifer can suffer from high variance,
resulting in poor performance.

b. When p is large, the resulting classifier is difficult to interpret, since the
classification rule involves a linear combination of all p features.
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The LDA classifier can be derived in three different ways, which we will refer to as the
normal model, the optimal scoring problem, and Fisher’s discriminant problem (see e.g.
Mardia et al. 1979, Hastie et al. 2009). In recent years, a number of papers have extended
LDA to the high-dimensional setting in such a way that the resulting classifier involves a
sparse linear combination of the features (see e.g. Tibshirani et al. 2002, 2003, Grosenick et
al. 2008, Leng 2008, Clemmensen et al. 2011). These methods involve regularizing or
penalizing the log likelihood for the normal model, or the optimal scoring problem, by
applying an L1 or lasso penalty (Tibshirani 1996).

In this paper, we instead approach the problem through Fisher’s discriminant framework,
which is in our opinion the most natural of the three problems that result in LDA. The
resulting problem is nonconvex. We overcome this difficulty using a minorization-
maximization approach (see e.g. Lange et al. 2000, Hunter & Lange 2004, Lange 2004),
which allows us to solve the problem efficiently when convex penalties are applied to the
discriminant vectors. This is equivalent to recasting Fisher’s discriminant problem as a
biconvex problem that can be optimized using a simple iterative algorithm, and is closely
related to the sparse principal components analysis proposal of Witten et al. (2009).

To our knowledge, our approach to penalized LDA is novel. Clemmensen et al. (2011) state
the same criterion that we use, but then go on to solve instead a closely related optimal
scoring problem. Trendafilov & Jolliffe (2007) consider a closely related problem, but they
propose a specialized algorithm that can be applied only in the case of L1 penalties on the
discriminant vectors; moreover, they do not consider the high-dimensional setting. In this
paper, we take a more general approach that has a number of attractive features:

a. It results from a natural criterion for which a simple optimization strategy is
provided.

b. A reduced rank solution can be obtained.

c. It provides a natural way to enforce a diagonal estimate for the within-class
covariance matrix, which has been shown to yield good results in the high-
dimensional setting (see e.g. Dudoit et al. 2001, Tibshirani et al. 2003, Bickel &
Levina 2004).

d. It yields interpretable discriminant vectors, where the concept of interpretability
can be chosen based on the problem at hand. Interpretability is achieved via
application of convex penalties to the discriminant vectors. For instance, if L1

penalties are used, then the resulting discriminant vectors are sparse.

This paper is organized as follows. We review Fisher’s discriminant problem in Section 2,
we review the principle behind minorization-maximization algorithms in Section 3, and we
propose our approach for penalized classification using Fisher’s linear discriminant in
Section 4. A simulation study and applications to gene expression data are presented in
Section 5. Since many proposals have been made for sparse LDA, we review past work and
discuss the relationships between various approaches in Section 6. In Section 7, we discuss
connections between our proposal and past work. Section 8 contains the Discussion.

2. Fisher’s discriminant problem

2.1. Fisher’s discriminant problem with full rank within-class covariance

Let X be a n × p matrix with observations on the rows and features on the columns. We
assume that the features are centered to have mean zero, and we let Xj denote feature/
column j and xi denote observation/row i. Ck ⊂ {1, …, n} contains the indices of the
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observations in class k, and nk = |Ck|, . The standard estimate for the within-class
covariance matrix Σw is given by

(1)

where μ ̂k is the sample mean vector for class k. In this section, we assume that Σ̂w is non-
singular. Furthermore, the standard estimate for the between-class covariance matrix Σb is
given by

(2)

In later sections, we will make use of the fact that , where Y is a n ×
K matrix with Yik an indicator of whether observation i is in class k.

Fisher’s discriminant problem seeks a low-dimensional projection of the observations such
that the between-class variance is large relative to the within-class variance. That is, we
sequentially solve

(3)

Note that the problem (3) is generally written with the inequality constraint replaced with an
equality constraint, but the two are equivalent if Σ̂w has full rank, as is shown in the
Appendix. We will refer to the solution β ̂k to (3) as the kth discriminant vector. In general,
there are K − 1 nontrivial discriminant vectors.

A classification rule is obtained by computing Xβ ̂1, …, Xβ ̂K − 1 and assigning each
observation to its nearest centroid in this transformed space. Alternatively, one can
transform the observations using only the first k < K − 1 discriminant vectors in order to
perform reduced rank classification. LDA derives its name from the fact that the
classification rule involves a linear combination of the features.

One can solve (3) by substituting , where  is the symmetric matrix square root
of Σ̂w. Then, Fisher’s discriminant problem is reduced to a standard eigenproblem. In fact,
from (2), it is clear that Fisher’s discriminant problem is closely related to principal
components analysis on the class centroid matrix.

2.2. Existing methods for extending Fisher’s discriminant problem to the p > n setting

In high dimensions, there are two reasons that problem (3) does not lead to a suitable
classifier:

a. Σ̂w is singular. Any discriminant vector that is in the null space of Σ̂w but not in the
null space of Σ̂b can result in an arbitrarily large value of the objective.
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b. The resulting classifier is not interpretable when p is very large, because the
discriminant vectors contain p elements that have no particular structure.

A number of modifications to Fisher’s discriminant problem have been proposed to address
the singularity problem. Krzanowski et al. (1995) consider modifying (3) by instead seeking
a unit vector β that maximizes βTΣ̂bβ subject to βTΣ̂wβ = 0, and Tebbens & Schlesinger
(2007) further require that the solution does not lie in the null space of Σ̂b. Others have
proposed modifying (3) by using a positive definite estimate of Σw. For instance, Friedman
(1989), Dudoit et al. (2001), and Bickel & Levina (2004) consider the use of the diagonal
estimate

(4)

where  is the jth diagonal element of Σ̂w (1). Other positive definite estimates for Σw are
suggested in Krzanowski et al. (1995) and Xu et al. (2009). The resulting criterion is

(5)

where Σ̃w is a positive definite estimate for Σw. The criterion (5) addresses the singularity
issue, but not the interpretability issue.

In this paper, we extend (5) so that the resulting discriminant vectors are interpretable. We
will make use of the following proposition, which provides a reformulation of (5) that
results in the same solution:

Proposition 1—The solution β̂k to (5) also solves the problem

(6)

where

(7)

 is defined as follows: , and for k > 1,  is an orthogonal projection matrix into the

space that is orthogonal to  for all i < k.

Throughout this paper, Σ̂w will always refer to the standard maximum likelihood estimate of
Σw (1), whereas Σ̃w will refer to some positive definite estimate of Σw for which the specific
form will depend on the context.
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3. A brief review of minorization algorithms

In this paper, we will make use of a minorization-maximization (or simply minorization)
algorithm, as described for instance in Lange et al. (2000), Hunter & Lange (2004), and
Lange (2004). Consider the problem

(8)

If f is a concave function, then standard tools from convex optimization (see e.g. Boyd &
Vandenberghe 2004) can be used to solve (8). If not, solving (8) can be dificult. (We note
here that minimization of a convex function is a convex problem, as is maximization of a
concave function. Hence, (8) is a convex problem if f(β) is concave in β. For non-concave
f(β) – for instance if f(β) is convex – (8) is not a convex problem.)

Minorization refers to a general strategy for maximizing non-concave functions. The
function g(β|β (m)) is said to minorize the function f(β) at the point β (m) if

(9)

A minorization algorithm for solving (8) initializes β (0), and then iterates:

(10)

Then by (9),

(11)

This means that in each iteration the objective is nondecreasing. However, in general we do
not expect to arrive at the global optimum of (8) using a minorization approach: global
optima for non-convex problems are very hard to obtain, and a local optimum is the best we
can hope for except in specific special cases. Different initial values for β (0) can be tried and
the solution resulting in the largest objective value can be chosen. A good minorization
function is one for which (10) is easily solved. For instance, if g(β|β (m)) is concave in β then
standard convex optimization tools can be applied.

In the next section, we use a minorization approach to develop an algorithm for our proposal
for penalized LDA.

4. The penalized LDA proposal

4.1. The general form of penalized LDA

We would like to modify the problem (5) by imposing penalty functions on the discriminant
vectors. We define the first penalized discriminant vector β ̂1 to be the solution to the
problem
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(12)

where Σ̃w is a positive definite estimate for Σw and where P1 is a convex penalty function. In
this paper, we will be most interested in the case where Σ̃w is the diagonal estimate (4), since
it has been shown that using a diagonal estimate for Σw can lead to good classification
results when p ≫ n (see e.g. Tibshirani et al. 2002, Bickel & Levina 2004). Note that (12) is
closely related to penalized principal components analysis, as described for instance in
Jolliffe et al. (2003) and Witten et al. (2009) – in fact, it would be exactly penalized
principal components analysis if Σ̃w were the identity.

To obtain multiple discriminant vectors, rather than requiring that subsequent discriminant
vectors be orthogonal with respect to Σ̃w - a difficult task for a general convex penalty
function - we instead make use of Proposition 1. We define the kth penalized discriminant
vector β ̂k to be the solution to

(13)

where  is given by (7), with  an orthogonal projection matrix into the space that is

orthogonal to  for all i < k, and . Here Pk is a convex penalty function on
the kth discriminant vector. Note that (12) follows from (13) with k = 1.

In general, the problem (13) cannot be solved using tools from convex optimization, because
it involves maximizing an objective function that is not concave. We apply a minorization
algorithm to solve it. For any positive semidefinite matrix A, f(β) = βTAβ is convex in β.
Thus, for a fixed value of β (m),

(14)

for any β, and equality holds when β = β (m). Therefore,

(15)

minorizes the objective of (13) at β (m). Moreover, since Pk is a convex function, g(βk|β(m))
is concave in βk and hence can be maximized using convex optimization tools. We can use
(15) as the basis for a minorization algorithm to find the kth penalized discriminant vector.
The algorithm assumes that the first k − 1 penalized discriminant vectors have already been
computed.

Algorithm 1: Obtaining the kth penalized discriminant vector

a. If k > 1, define an orthogonal projection matrix  that projects onto the space that

is orthogonal to  for all i < k. Let .
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b.

Let . Note that .

c.

Let  be the first eigenvector of .

d.
For m = 1, 2, … until convergence: let  be the solution to

(16)

Let β ̂k denote the solution at convergence.

Of course, the solution to (16) will depend on the form of the convex function Pk. In the next
section, we will consider two specific forms for Pk.

Once the penalized discriminant vectors have been computed, classification is
straightforward: as in the case of classical LDA, we compute Xβ ̂1, …, Xβ ̂K − 1 and assign
each observation to its nearest centroid in this transformed space. To perform reduced rank
classification, we transform the observations using only the first k < K − 1 penalized
discriminant vectors.

4.2. Penalized LDA-L1 and penalized LDA-FL

4.2.1. Penalized LDA-L1—We define penalized LDA-L1 to be the solution to (13) with an
L1 penalty,

(17)

When the tuning parameter λk is large, some elements of the solution β ̂k will be exactly
equal to zero. In (17), σ ̂j is the within-class standard deviation for feature j; the inclusion of
σ ̂j in the penalty has the effect that features that vary more within each class undergo greater
penalization. Penalized LDA-L1 is appropriate if we want to obtain a sparse classifier - that
is, a classifier for which the decision rule involves only a subset of the features. In particular,
the resulting discriminant vectors are sparse, so penalized LDA-L1 amounts to projecting the
data onto a low-dimensional subspace that involves only a subset of the features.

To solve (17), we use the minorization approach outlined in Algorithm 1. Step (d) can be
written as

(18)

The solution to (18) is given in Proposition 2 in Section 4.2.3.

4.2.2. Penalized LDA-FL—We define penalized LDA-FL to be the solution to the
problem (13) with a fused lasso penalty (Tibshirani et al. 2005):
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(19)

When the nonnegative tuning parameter λk is large then the resulting discriminant vector
will be sparse in the features, and when the nonnegative tuning parameter γk is large then the
discriminant vector will be piecewise constant. This classifier is appropriate if the features
are ordered on a line, and one believes that the true underlying signal is sparse and piecewise
constant.

To solve (13), we again apply Algorithm 1. Step (d) can be written as

(20)

Proposition 2 in Section 4.2.3 provides the solution to (20).

4.2.3. The minorization step for penalized LDA-L1 and penalized LDA-FL—Now
we present Proposition 2, which provides a solution to (18) and (20). In other words,
Proposition 2 provides details for performing Step (d) in Algorithm 1 for penalized LDA-L1

and penalized LDA-FL.

Proposition 2

a. To solve (18), we first solve the problem

(21)

If d ̂ = 0 then β̂k = 0. Otherwise, .

b. To solve (20), we first solve the problem

(22)

If d ̂= 0 then β̂k = 0. Otherwise, .

The proof is given in the Appendix. Some comments on Proposition 2 are as follows:

• If Σ̃w is the diagonal estimate (4), then the solution to (21) is
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(23)

where S is the soft-thresholding operator, defined as

(24)

and applied component wise. To see why, note that differentiating (21) with respect
to dj indicates that the solution will satisfy

(25)

where Γj is the subgradient of |dj|, defined as

(26)

where a is some number between 1 and −1. Then (23) follows from (25).

• On the other hand, if Σ̃w is a non-diagonal positive definite estimate of Σw, then
one can solve (21) by coordinate descent (see e.g. Friedman et al. 2007). (21) is in
that case closely related to the lasso, but may involve more demanding
computations. This is due to the fact that when p ≫ n the standard lasso can be
implemented by storing the n × p matrix X rather than the entire p × p matrix XTX.
But if Σ̃w is a p × p matrix without special structure then one must store it in full in
order to solve (21).

• If Σ̃w is a diagonal estimate for Σw then (22) is a diagonal fused lasso problem, for
which fast algorithms have been proposed (see e.g. Hoefling 2009, Johnson 2010).

4.2.4. Comments on tuning parameter selection—We now consider the problem of
selecting the tuning parameter λk for the penalized LDA-L1 problem (17). The simplest
approach would be to take λk = λ, i.e. the same tuning parameter value for all components.
However, this results in effectively penalizing each component more than the previous
components, since the unpenalized objective value of (17), which is equal to the largest

eigenvalue of , is nonincreasing in k. So instead, we take the following

approach. We first fix a nonnegative constant λ, and then we take 
where ||·|| indicates the largest eigenvalue. Note that when p ≫ n, this largest eigenvalue can

be quickly computed using the fact that  has low rank. The value of λ can be chosen by
cross-validation.
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In the case of the penalized LDA-FL problem (19), instead of choosing λk and λk directly,

we instead fix nonnegative constants λ and γ. Then, we take  and

. λ and γ can be chosen by cross-validation.

4.2.5. Timing results for penalized LDA—We now comment on the computations
involved in the algorithms proposed earlier in this section. We used a very simple simulation
corresponding to no signal in the data: Xij ~ N (0, 1) and there were four equally-sized
classes. Table 1 summarizes the computational times required to perform penalized LDA-L1

and penalized LDA-FL with the diagonal estimate (4) used for Σ̃w. The R library penalized
LDA was used. Timing depends critically on the convergence criterion used; we determine
that the algorithm has “converged” when subsequent iterations lead to a relative
improvement in the objective of no more than 10−6; that is, |ri − ri+1|/ri+1 < 10−6 where ri is
the objective obtained at the ith iteration. Of course, computational times will be shorter if a
less strict convergence threshold is used. All timings were carried out on a AMD Opteron
848 2.20 GHz processor.

4.3. Recasting penalized LDA as a biconvex problem

Rather than using a minorization approach to solve the nonconvex problem (12), one could
instead recast it as a biconvex problem. Consider the problem

(27)

Partially optimizing (27) with respect to u reveals that the β that solves it also solves (12).
Moreover, (27) is a biconvex problem (see e.g. Gorski et al. 2007): that is, with β held fixed,
it is convex in u, and with u held fixed, it is convex in β. This suggests a a simple iterative
approach for solving it.

Algorithm 4: A biconvex formulation for penalized LDA

a.
Let β (0) be the first eigenvector of .

b. For m = 1, 2, … until convergence:

i. Let u(m) solve

(28)

ii. Let β (m) solve

(29)

Combining Steps (b)(i) and (b)(ii), we see that β (m) solves
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(30)

Comparing (30) to (16), we see that the biconvex formulation (27) results in the same update
step as the minorization approach outlined in Algorithm 1. This biconvex formulation is
very closely related to the sparse principal components analysis proposal of Witten et al.
(2009), which corresponds to the case where Σ̃w = I and a bound form is used for the penalty

P (β). Since  is a weighted version of the class centroid matrix, our penalized
LDA proposal is closely related to performing sparse principal components analysis on the
class centroids matrix.

5. Examples

5.1. Methods included in comparisons

In the examples that follow, penalized LDA-L1 and penalized LDA-FL were performed
using the diagonal estimate (4) for Σ̃w, as implemented in the R package penalized LDA.
The nearest shrunken centroids (NSC; Tibshirani et al. 2002, 2003) method was performed
using the R package pamr, and the shrunken centroids regularized discriminant analysis
(RDA; Guo et al. 2007) method was performed using the rda R package. Briefly, NSC
results from using a diagonal estimate of Σw and imposing L1 penalties on the class mean
vectors under the normal model, and RDA combines a ridge-type penalty in estimating Σw

with soft-thresholding of . These methods are discussed further in Section 6.

The tuning parameters for each of the methods considered were as follows. For penalized
LDA-L1, λ described in Section 4.2.4 was a tuning parameter. For penalized LDA-FL, we
treated λ = γ (see Section 4.2.4) as a single tuning parameter in order to avoid performing
tuning parameter selection on a two-dimensional grid. Moreover, penalized LDA had an
additional tuning parameter, the number of discriminant vectors to include in the classifier.
NSC has a single tuning parameter, which corresponds to the amount of soft-thresholding
performed. RDA has two tuning parameters, one of which controls the number of features
used and the other controls the ridge penalty used to regularize the estimate of Σw.

5.2. A simulation study

We compare penalized LDA to NSC and RDA in a simulation study. Four simulations were
considered. In each simulation, there are 1200 observations, equally split between the
classes. Of these 1200 observations, 100 belong to the training set, 100 belong to the
validation set, and 1000 are in the test set. Each simulation consists of measurements on 500
features, of which 100 differ between classes.

Simulation 1. Mean shift with independent features—There are four classes. If
observation i is in class k, then xi ~ N (μk, I), where μ1j = 0.7 × 1(1≤j≤25), μ2j = 0.7 ×
1(26≤j≤50), μ3j = 0.7×1(51≤j≤75), μ4j = 0.7×1(75≤j≤100).

Simulation 2. Mean shift with dependent features—There are two classes. For i ∈
C1, xi ~ N(0, Σ) and for i ∈ C2, xi ~ N(μ, Σ), μj = 0.6 × 1(j≤200). The covariance structure is
block diagonal, with 5 blocks each of dimension 100 × 100. The blocks have (j, j′) element
0.6|j−j′|. This covariance structure is intended to mimic gene expression data, in which genes
are positively correlated within a pathway and independent between pathways.
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Simulation 3. One-dimensional mean shift with independent features—There

are four classes, and the features are independent. For i ∈ Ck,  if j ≤ 100, and
Xij ~ N(0, 1) otherwise. Note that a one-dimensional projection of the data fully captures the
class structure.

Simulation 4. Mean shift with independent features and no linear ordering—
There are four classes. If observation i is in class k, then xi ~ N(μk, I). The mean vectors are
defined as follows: μ1j ~ N (0, 0.32) if 1 ≤ j ≤ 25 and μ1j = 0 otherwise, μ2j ~ N (0, 0.32) if 26
≤ j ≤ 50 and μ2j = 0 otherwise, μ3j ~ N(0, 0.32) if 51 ≤ j ≤ 75 and μ3j = 0 otherwise, μ4j ~
N(0, 0.32) if 75 ≤ j ≤ 100 and μ4j = 0 otherwise.

Figure 1 displays the class mean vectors for each simulation.

For each method, models were fit on the training set using a range of tuning parameter
values. Tuning parameter values were then selected to minimize the validation set error.
Finally, the training set models with appropriate tuning parameter values were evaluated on
the test set. Penalized LDA-FL was performed in Simulations 1–3 but not in Simulation 4,
since in Simulation 4 the features do not have a linear ordering as assumed by the fused
lasso penalty (see Figure 1).

Test set errors and the numbers of nonzero features used are reported in Table 2. For
penalized LDA, the numbers of discriminant vectors used are also reported. Penalized LDA-
FL has by far the best performance in the first three simulations, since it exploits the fact
that the important features have a linear ordering. Of course, in real data applications,
penalized LDA-FL can only be applied if such an ordering is present. Note that penalized
LDA tends to use fewer than three components in Simulation 3, in which a one-dimensional
projection is sufficient to explain the class structure.

5.3. Application to gene expression data

We compare penalized LDA-L1, NSC, and RDA on three gene expression data sets:

Ramaswamy data—A data set consisting of 16,063 gene expression measurements and
198 samples belonging to 14 distinct cancer subtypes (Ramaswamy et al. 2001). The data set
has been studied in a number of papers (see e.g. Zhu & Hastie 2004, Guo et al. 2007, Witten
& Tibshirani 2009) and is available from
http://www-stat.stanford.edu/~hastie/glmnet/glmnetData/.

Nakayama data—A data set consisting of 105 samples from 10 types of soft tissue
tumors, each with 22,283 gene expression measurements (Nakayama et al. 2007). We
limited the analysis to five tumor types for which at least 15 samples were present in the
data; the resulting subset of the data contained 86 samples. The data are available on Gene
Expression Omnibus (Barrett et al. 2005) with accession number GDS2736.

Sun data—A data set consisting of 180 samples and 54,613 expression measurements (Sun
et al. 2006). The samples fall into four classes: one non-tumor class and three types of
glioma. The data are available on Gene Expression Omnibus with accession number
GDS1962.

Each data set was split into a training set containing 75% of the samples and a test set
containing 25% of the samples. Cross-validation was performed on the training set and test
set error rates were evaluated. The process was repeated ten times, each with a random
choice of training set and test set. Results are reported in Table 3. The results suggest that
the three methods tend to have roughly comparable performance. A reviewer pointed out
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that there is substantial variability in the number of features used by each classifier across
each training/test set split. Indeed, this instability in the set of genes selected likely reflects
the fact that in the analysis of many real data types, sparsity is simply an approximation,
rather than a property that we expect to hold exactly.

Penalized LDA-L1 has the added advantage over RDA and NSC of yielding penalized
discriminant vectors that can be used to visualize the observations, as in Figure 2.

6. The normal model, optimal scoring, and extensions to high dimensions

In this section, we review the normal model and the optimal scoring problem, which lead to
the same classification rule as Fisher’s discriminant problem. We also review past
extensions of LDA to the high-dimensional setting.

6.1. The normal model

Suppose that the observations are independent and normally distributed with a common
within-class covariance matrix Σw ∈ ℝp×p and a class-specific mean vector μk ∈ ℝp. The log
likelihood under this model is

(31)

where c is a constant. If the classes have equal prior probabilities, then by Bayes’ theorem, a
new observation x is assigned to the class for which the discriminant function

(32)

is maximal. One can show that this is the same as the classification rule obtained from
Fisher’s discriminant problem.

6.2. The optimal scoring problem

Let Y be a n × K matrix, with Yik = 1i∈Ck. Then, optimal scoring involves sequentially
solving

(33)

for k = 1, …, K − 1. This amounts to recasting the classification problem as a regression
problem, where a quantitative coding θk of the K classes must be chosen along with the
regression coefficient vector βk. The solution β ̂k to (33) is proportional to the solution to (3).
Somewhat involved proofs of this fact are given in Breiman & Ihaka (1984) and Hastie et al.
(1995). We present a simpler proof in the Appendix.

6.3. LDA in high dimensions

In recent years, a number of authors have proposed extensions of LDA to the high-
dimensional setting in order to achieve sparsity (Tibshirani et al. 2002, 2003, Guo et al.
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2007, Trendafilov & Jolliffe 2007, Grosenick et al. 2008, Leng 2008, Fan & Fan 2008, Shao
et al. 2011, Clemmensen et al. 2011). In Section 4, we proposed penalizing Fisher’s
discriminant problem. Here we briefly review some past proposals that have involved
penalizing the log likelihood under the normal model, and the optimal scoring problem.

The nearest shrunken centroids (NSC) proposal (Tibshirani et al. 2002, 2003) assigns an
observation x* to the class that minimizes

(34)

where , S is the soft-thresholding operator (24), and we have assumed
equal prior probabilities for each class. This classification rule approximately follows from
estimating the class mean vectors via maximization of an L1-penalized version of the log
likelihood (31), and assuming independence of the features (Hastie et al. 2009). The
shrunken centroids regularized discriminant analysis (RDA) proposal (Guo et al. 2007)
arises instead from applying the normal model approach with covariance matrix Σ̃w = Σ̂w +
ρI and performing soft-thresholding in order to obtain a classifier that is sparse in the
features.

Several authors have proposed penalizing the optimal scoring criterion (33) by imposing
penalties on βk (see e.g. Grosenick et al. 2008, Leng 2008). For instance, the sparse
discriminant analysis (SDA) proposal (Clemmensen et al. 2011) involves sequentially
solving

(35)

where λ is a nonnegative tuning parameter and Ω is a positive definite penalization matrix. If
Ω = γI for γ > 0, then this is an elastic net penalty (Zou & Hastie 2005). The resulting
discriminant vectors will be sparse if λ is sufficiently large. If λ = 0, then this reduces to the
penalized discriminant analysis proposal of Hastie et al. (1995). The criterion (35) can be
optimized in a simple iterative fashion: we optimize with respect to βk holding θk fixed, and
we optimize with respect to θk holding βk fixed. In fact, if any convex penalties are applied
to the discriminant vectors in the optimal scoring criterion (33), then an iterative approach
can be developed that decreases the objective at each step. However, the optimal scoring
problem is a somewhat indirect formulation for LDA.

Our penalized LDA proposal is instead a direct extension of Fisher’s discriminant problem
(3). Trendafilov & Jolliffe (2007) consider a problem very similar to penalized LDA-L1. But
they discuss only the p < n case. Their algorithm is more complex than ours, and does not
extend to general convex penalty functions.

A summary of proposals that extend LDA to the high-dimensional setting through the use of
L1 penalties is given in Table 4. In the next section, we will explore how our penalized
LDA-L1 proposal relates to the NSC and SDA methods.

Witten and Tibshirani Page 14

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2012 November 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



7. Connections with existing methods

7.1. Connection with sparse discriminant analysis

Consider the SDA criterion (35) with k = 1. We drop the subscripts on β1 and θ1 for
convenience. Partially optimizing (35) with respect to θ reveals that for any β for which

YTXβ ≠ 0, the optimal θ equals . So (35) can be rewritten as

(36)

Assume that each feature has been standardized to have within-class standard deviation
equal to 1. Take Σ̃w = Σ̂w + Ω, where Ω is chosen so that Σ̃w is positive definite. Then, the
following proposition holds.

Proposition 3—Consider the penalized LDA-L1 problem (17) where λ1 > 0 and k = 1.
Suppose that at the solution β* to (17), the objective is positive. Then, there exists a positive
tuning parameterλ2 and a positive scalar c such that cβ* corresponds to a zero of the
generalized gradient of the SDA objective (36).

A proof is given in the Appendix. Note that the assumption that the objective is positive at
the solution β* is not very taxing - it simply means that β* results in a higher value of the
objective than does a vector of zeros. Proposition 3 states that if the same positive definite
estimate for Σw is used for both problems, then the solution of the penalized LDA-L1

problem corresponds to a point where the generalized gradient of the SDA problem is zero.
But since the SDA problem is not convex, this does not imply that there is a correspondence
between the solutions of the two problems. Penalized LDA-L1 has some advantages over
SDA. Unlike SDA, penalized LDA-L1 has a clear relationship with Fisher’s discriminant
problem. Moreover, unlike SDA, it provides a natural way to enforce a diagonal estimate of
Σw.

7.2. Connection with nearest shrunken centroids

The following proposition indicates that in the case of two equally-sized classes, NSC is
closely related to the penalized LDA-L1 problem with the diagonal estimate (4) for Σw.

Proposition 4—Suppose that K = 2 and . Let β̂ denote the solution to the problem

(37)

where Σ̃w is the diagonal estimate (4). Consider the classification rule obtained by
computing Xβ ̂ and assigning each observation to its nearest centroid in this transformed
space. This is the same as the NSC classification rule (34).

Note that (37) is simply a modified version of the penalized LDA-L1 criterion, in which the
between-class variance term has been replaced with its square root. Therefore, penalized
LDA-L1 with a diagonal estimate of Σw and NSC are closely connected when K = 2. This
connection does not hold for larger values of K, since NSC penalizes the elements of the p ×
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K class centroid matrix, whereas penalized LDA-L1 penalizes the eigenvectors of this
matrix. A proof of Proposition 4 is given in the Appendix.

8. Discussion

We have extended Fisher’s discriminant problem to the high-dimensional setting by
imposing penalties on the discriminant vectors. The penalty function is chosen based on the
problem at hand, and can result in an interpretable classifier. A potentially useful but
unexplored area of application for our proposal is fMRI data, for which one could use a
penalty that incorporates the spatial structure of the voxels.

There is a strong connection between our penalized LDA proposal and previous work on
penalized principal components analysis (PCA). When Pk is an L1 penalty, (12) is closely
related to the SCoTLASS proposal for sparse PCA (Jolliffe et al. 2003). The criterion (12)
and Algorithm 1 for optimizing it are closely related to the penalized principal components
algorithms considered by a number of authors (see e.g. Zou et al. 2006, Shen & Huang 2008,
Witten et al. 2009). This connection stems from the fact that Fisher’s discriminant problem
is simply a generalized eigenproblem.

The R language software package penalized LDA implementing penalized LDA-L1 and
penalized LDA-FL will be made available on CRAN, http://cran.r-project.org/.
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Appendix

Equivalence between (3) and standard formulation for LDA

We have stated Fisher’s discriminant problem as (3), but a more standard formulation is

(38)

We now show that (3) and (38) are equivalent, provided that the solution is not in the null
space of Σ̂b. It suffices to show that if α solves (3), then αTΣ̂wα = 1.

We proceed with a proof by contradiction. Suppose that α solves (3) and αTΣ̂wα < 1, αTΣ̂bα

> 0. Let . Since c > 1, it follows that (cα)TΣ̂b(cα) > αTΣ̂bα. And cα is in the
feasible set for (3). This contradicts the assumption that α solves (3). Hence, any solution to
(3) that is not in the null space of Σ̂b also solves (38).

Note that we do not concern ourselves with solutions that are in the null space of Σ̂b, as
these are not useful for the purpose of discrimination and will arise only if too many
discriminant vectors are used.

Proof of Proposition 1

Proof

Letting  denote the symmetric matrix square root of Σ̃w and , (6) becomes

(39)

which is equivalent to

(40)
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where . Equivalence of (40) and (39) can be seen from partially
optimizing (40) with respect to uk.

We claim that β̃k and uk that solve (40) are the kth left and right singular vectors of A. By
inspection, the claim holds when k = 1. Now, suppose that the claim holds for all i < k,
where k > 1. Partially optimizing (40) with respect to β̃k yields

(41)

By definition,  is an orthogonal projection matrix into the space orthogonal to

(42)

for all i < k, where proportionality follows from the fact that β̃i and ui are the ith singular

vectors of A for all i < k. Hence, . Therefore, by (41), uk is the kth
eigenvector of ATA, or equivalently the kth right singular vector of A. So by (40), β̃k is the

kth left singular vector of A, or equivalently the kth eigenvector of .
Therefore, the solution to (6) is the kth discriminant vector.

Proof of Proposition 2

For (18), the Karush-Kuhn-Tucker (KKT) conditions (Boyd & Vandenberghe 2004) are
given by

(43)

where we have dropped the “k” subscripts and superscripts for ease of notation, and where Γ

is a p-vector of which the jth element is the subgradient of  with respect to βj; i.e.
Γj = σ ̂j if βj > 0, Γj = −σ ̂j if βj < 0, and Γj is in between σ ̂j and − σ ̂j if βj = 0.

First, suppose that for some j, |(2Σ̂bβ(m−1))j| > λσ ̂j. Then it must be the case that 2δΣ̃wβ ≠ 0.
So δ > 0 and βTΣ̃wβ = 1. Then the KKT conditions simplify to

(44)

Substituting d = δβ, this is equivalent to solving (21) and then dividing the solution d ̂ by

.
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Now, suppose instead that |(2Σ̂bβ(m−1))j| ≤ λσ ̂j for all j. Then, by (43), it follows that β ̂ = 0
solves (18). By inspection of the subgradient equation for (21), we see that in this case d ̂ = 0
solves (21) as well. Therefore, the solution to (18) is as given in Proposition 2.

The same set of arguments applied to (20) lead to Proposition 2(b).

Proof of Proposition 3

Proof

Consider (17) with tuning parameter λ1 and k = 1. Then by Theorem 6.1.1 of Clarke (1990),
if there is a nonzero solution β*, then there exists μ ≥ 0 such that

(45)

where Γ(β) is the subdifferential of ||β||1. The subdifferential is the set of subgradients of ||
β||1; the jth element of a subgradient equals sign(βj) if βj ≠ 0 and is between −1 and 1 if βj =
0. Left-multiplying (45) by β* yields 0 = 2β*TΣ̂bβ* − λ1 ||β*||1 − 2μβ*TΣ̃wβ* Since the sum
of the first two terms is positive (since β* is a nonzero solution), it follows that μ > 0.

Now, define a new vector that is proportional to β*:

(46)

where . By inspection, a ≠ 0, since otherwise β* would not be a nonzero

solution. Also, let . Note that , so λ2 > 0.

The generalized gradient of (36) with tuning parameter λ2 evaluated at β ̂ is proportional to

(47)

or equivalently,

(48)

Comparing (45) to (48), we see that 0 is contained in the generalized gradient of the SDA
objective evaluated at β ̂.
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Proof of Proposition 4

Proof

Since n1 = n2, NSC assigns an observation x ∈ ℝp to the class that maximizes

(49)

where X ̄kj is the mean of feature j in class k, and the soft-thresholding operator S is given by
(24). On the other hand, the classification rule resulting from (37) assigns x to the class that
minimizes

(50)

This follows from the fact that (37) reduces to

(51)

since  and .

Since the first term in (50) is positive if k = 1 and negative if k = 2, (37) classifies to class 1

if  and classifies to class 2 if . Because X ̄1j = −X ̄2j, by
inspection of (49), the two methods result in the same classification rule.

Proof of equivalence of Fisher’s LDA and optimal scoring

Proof

Consider the following two problems:

(52)

and

(53)

In Hastie et al. (1995), a somewhat challenging proof is given of the fact that the solutions β ̂
to the two problems are proportional to each other. Here, we present a more direct argument.
In (52) and (53), Ω is a matrix such that Σ̂w + Ω is positive definite; if Ω = 0 then these two
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problems reduce to Fisher’s LDA and optimal scoring. Optimizing (53) with respect to θ, we
see that the β that solves (53) also solves

(54)

For notational convenience, let  and . Then,
the problems become

(55)

and

(56)

It is easy to see that the solution to (55) is the first eigenvector of Σ̃b. Let β ̂ denote the
solution to (56). Consequently, β ̂TΣ̃bβ ̂ > 0. So β ̂ satisfies

(57)

and therefore . Now (57) indicates that β ̂ is an eigenvector of Σ̃b with

eigenvalue ; it remains to show that β ̂ is in fact the first eigenvector.

Notice that if we let w = β ̂Tβ ̂ then , and so . Then the objective of (56)
evaluated at β ̂ equals

(58)

The minimum occurs when λ is large. So the solution to (56) is the largest eigenvector of Σ̃b.

This argument can be extended to show that subsequent solutions to Fisher’s discriminant
problem and the optimal scoring problem are proportional to each other.
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Fig. 1.

Class mean vectors for each simulation.
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Fig. 2.

For the Nakayama and Sun data, the samples were projected onto the first two penalized
discriminant vectors. The samples in each class are shown using a distinct symbol.
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Table 3

Results obtained on gene expression data over 10 training/test set splits. Quantities reported are the mean (and
standard deviation) of test set errors and nonzero coefficients.

NSC Penalized LDA-L1 RDA

Ramaswamy
Errors 16.3 (4.16) 18.8 (3.05) 24 (17.45)

Features 2336.9 (2292.03) 14873.5 (720.29) 5022.5 (2503.35)

Nakayama
Errors 4.2 (2.15) 4.4 (1.51) 2.8 (1.23)

Features 5908 (7131.5) 10478.7 (2116.27) 22283 (0)

Sun
Errors 15 (4.29) 15.2 (3.29) 15.7 (4.52)

Features 30004.9 (18557.68) 21634.8 (7443.21) 54183.4 (693.23)
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Table 4

Advantages and disadvantages of using the normal model (NM), optimal scoring (OS), and Fisher’s
discriminant analysis (FD) as the basis for penalized LDA with an L1 penalty

Advantages Disadvantages Citation

NM Sparse class means if diagonal estimate of Σw used.
Computations are fast.

Does not give sparse discriminant vectors. No
reduced-rank classification. Tibshirani et al. (2002)

OS Sparse discriminant vectors. Dificult to enforce diagonal estimate for Σw,
which is useful if p > n. Computations can be
slow.

Grosenick et al. (2008)
Leng (2008)

Clemmensen et al. (2011)

FD Sparse discriminant vectors. Simple to en-force
diagonal estimate of Σw. Computations are fast using
diagonal estimate of Σw.

Computations can be slow when p is large,
unless diagonal estimate of Σw is used. This work.
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