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ABSTRACT
Motivation: An important application of microarray technology is
to relate gene expression profiles to various clinical phenotypes of
patients. Success has been demonstrated in molecular classification
of cancer in which the gene expression data serve as predictors and
different types of cancer serve as a categorical outcome variable. How-
ever, there has been less research in linking gene expression profiles
to the censored survival data such as patients’ overall survival time
or time to cancer relapse. It would be desirable to have models with
good prediction accuracy and parsimony property.
Results: We propose to use the L1 penalized estimation for the Cox
model to select genes that are relevant to patients’ survival and to build
a predictive model for future prediction. The computational difficulty
associated with the estimation in the high-dimensional and low-sample
size settings can be efficiently solved by using the recently developed
least-angle regression (LARS) method. Our simulation studies and
application to real datasets on predicting survival after chemotherapy
for patients with diffuse large B-cell lymphoma demonstrate that the
proposed procedure, which we call the LARS–Cox procedure, can be
used for identifying important genes that are related to time to death
due to cancer and for building a parsimonious model for predicting
the survival of future patients. The LARS–Cox regression gives better
predictive performance than the L2 penalized regression and a few
other dimension-reduction based methods.
Conclusions: We conclude that the proposed LARS–Cox procedure
can be very useful in identifying genes relevant to survival pheno-
types and in building a parsimonious predictive model that can be used
for classifying future patients into clinically relevant high- and low-risk
groups based on the gene expression profile and survival times of
previous patients.
Supplementary information: http://dna.ucdavis.edu/∼hli/LARSCox-
Appendix.pdf
Contact: hli@ucdavis.edu

INTRODUCTION
DNA microarray technology permits simultaneous measurements
of expression levels for thousands of genes, which offers the pos-
sibility of a powerful, genome-wide approach to the genetic basis
of different types of tumors. The genome-wide expression profiles
can be used for molecular classification of cancers, for studying
varying levels of drug responses in the area of pharmacogenomics
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and for predicting different patients’ clinical outcomes. The problem
of cancer class prediction using gene expression data, which can
be formulated as predicting binary or multi-category outcomes, has
been studied extensively and has been demonstrated great prom-
ise in recent years (Alon et al., 1999; Golub et al., 1999; Alizadeh
et al., 2000; Garber et al., 2001; Sorlie et al., 2001). However,
there has been less development in relating gene expression pro-
files to other phenotypes, such as quantitative continuous phenotypes
or censored survival phenotypes such as time to cancer recur-
rence or time to death. Due to the large variability in time to
a certain clinical event such as cancer recurrence among cancer
patients, studying possibly censored survival phenotypes can be more
informative than treating the phenotypes as binary or categorical
variables.

The Cox regression model (Cox, 1972) is the most popular
method in regression analysis for censored survival data. How-
ever, due to the very high-dimensional space of the predictors, i.e.
the genes with expression levels measured by microarray experi-
ments, the standard maximum Cox partial likelihood method cannot
be applied directly to obtain the parameter estimates. Besides the
high-dimensionality, the expression levels of some genes are often
highly correlated, which creates the problem of high collinearity. To
deal with the problem of collinearity, the most popular approach
is the penalized partial likelihood, including both the L2 penal-
ized estimation, which is often called the ridge regression, and the
L1 penalized estimation, which was proposed by Tibshirani (1996)
and is called the least absolute shrinkage and selection operator
(Lasso) estimation. Such a Lasso procedure minimizes the negat-
ive log partial likelihood subject to the sum of the absolute value
of the coefficients being less than a constant s. Compared to the
L2 penalized procedure with constraints on the sum of the square
of the coefficients, the Lasso procedure provides a method for
variable selection. These penalized procedures have been invest-
igated mainly in the setting where the sample size is greater than
the number of predictors. Li and Luan (2003) were the first to
investigate the L2 penalized estimation of the Cox model in the
high-dimensional low-sample size settings and applied their method
to relate the gene expression profile to survival data. To avoid
the inversion of large matrices, they used kernel tricks to reduce
the computation to involving only inversion of the matrix of the
size of the sample size. They demonstrated that such a proced-
ure can be applied to build a model for predicting patients’ future
survival times.
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One limitation of the L2 penalized estimation of the Cox model
as presented in Li and Luan (2003) is that it uses all the genes in the
prediction and does not provide a way of selecting relevant genes for
prediction. However, from the biological point of view, one should
expect that only a small subset of the genes are relevant to predict-
ing the phenotypes. Including all the genes in the predictive model
introduces noise and is expected to lead to poor predictive perform-
ance. Due to the high-dimensionality, the standard variable selection
methods such as stepwise and backward selection cannot be applied.
Tibshirani (1997) further extended the Lasso procedure for variable
selection for the Cox proportional hazard models and proposed using
the quadratic programming procedure for maximizing the L1 pen-
alized partial likelihood in order to obtain the parameter estimates.
However, such a quadratic programming procedure cannot be applied
directly to the settings when the sample size is much smaller than the
number of potential predictors, such as in the setting of microarray
data analysis.

Recently, Efron et al. (2004) proposed the least angle regression
(LARS) procedure for variable selection in the linear regression set-
ting. The LARS selects predictors by its current correlation or angle
with the response, where the current correlation is defined as the cor-
relation between the predictor and the current residuals. If the active
set is defined as the set of indices corresponding to covariates with
the greatest absolute current correlations, as the constraint constant
s increases, the predictors are chosen one by one without deletion
into the active set. The special feature of LARS is that before a new
predictor is chosen to the active set as s increases, the corresponding
increment of the coefficients only depends on all predictors in the
active set. Efron et al. (2004) further pointed out the link between
LARS and Lasso, showing that LARS can be modified to provide
solutions for Lasso. Instead of solving Lasso discretely by quadratic
programming, modified LARS can give the whole solution path of
all predictors. With this powerful algorithm, Lasso can be extended
to perform subset selection in the high-dimension and low-sample
settings. We propose in this paper to use the LARS algorithm to
obtain the solutions for the Cox model with L1 penalty in the setting
of very high-dimensional covariates such as the gene expression data
obtained by microarrays. We call such an estimation procedure the
LARS–Cox procedure.

The rest of the paper is organized as follows. We first present
the model and briefly review the Lasso estimation of the regres-
sion coefficients and present a modified LARS procedure for the
Lasso estimation. We then evaluate the LARS–Cox procedure by
simulation studies and applications to a real dataset of diffuse large
B-cell lymphoma (DLBCL) survival times and gene expression data
(Rosenwald et al., 2002). Comparisons of results with methods pro-
posed previously by using simulations and analysis of real datasets
of patients with DLBCL are also presented. Finally, we give a brief
discussion of the methods and conclusions.

STATISTICAL MODELS AND METHODS

Cox proportional hazards model and Lasso estimation
Suppose we have a sample size of n from which to estimate the relationship
between the survival time and the gene expression levels X1, . . . , Xp of p

genes. Due to censoring, for i = 1, . . . , n, the ith datum in the sample is
denoted by (ti , δi , xi1, xi2, . . . , xip), where δi is the censoring indicator and
ti is the survival time if δi = 1 or censoring time if δi = 0, and xi =
{xi1, xi2, . . . , xip}′ is the vector of the gene expression level of p genes for

the ith sample. Our aim is to build the following Cox regression model for
the hazard of cancer recurrence or death at time t :

λ(t) = λ0(t) exp(β1X1 + β2X2 + · · · + βpXp)

= λ0(t) exp(β ′X), (1)

where λ0(t) is an unspecified baseline hazard function, β = {β1, . . . , βp}
is the vector of the regression coefficients and X = {X1, . . . , Xp} is the
vector of gene expression levels with the corresponding sample values of
xi = {xi1, . . . , xip} for the ith sample. We define f (X) = β ′X to be the
linear risk score function.

Based on the available sample data, the Cox’s partial likelihood (Cox,
1972) can be written as

L(β) =
∏
r∈D

exp(β ′xr)∑
j∈Rr

exp(β ′xj )
,

where D is the set of indices of the events (e.g. deaths) and Rr denotes the
set of indices of the individuals at risk at time tr − 0. Let l(β) = log L(β);
then the Lasso estimate of β (Tibshirani, 1996, 1997) can be expressed as

β̂(s) = argmax l(β), subject to
p∑

j=1

|βj | ≤ s,

where s is a tuning parameter determining how many covariates with
coefficients are zero.

Tibshirani (1997) proposed the following iterative procedure to reformulate
this optimization problem with constraints as a Lasso problem for linear
regression models. Specifically, let η = β ′x, µ = ∂l/∂η, A = −∂2l/∂ηηT

and z = η + A−µ, where x = (x1, . . . , xn) is the gene expression matrix.
Here since the sum of all elements in each row (or column) of the matrix A is
0, A is clearly a singular matrix. We can however use the generalized inverse.
Alternatively, Tibshirani proposed replacing the information matrix A with a
diagonal matrix D, which has the same diagonal elements as A. However, in
most of our applications, n is usually small and calculation of the generalized
inverse is computationally feasible. In addition, due the high-dimensionality
of the predictors, it is important to make the algorithm as accurate as possible.
With this reparameterization, a one-term Taylor series expansion for l(β) has
the form of

(z − η)T A(z − η).

Although there are multiple choices ofA−, it is easy to show that if rank(A) =
n−1, for any A− that satisfies AA−A = A and z = η+A−µ, (z−η)T A(z−η)

is invariant to the choice of the generalized inverse of A.
The iterative procedure of Tibshirani (1997) involves the following four

steps:

(1) Fix s and initialize β̂ = 0.

(2) Compute η, µ, A and z based on the current value of β̂.

(3) Minimize (z − β ′x)T A(z − β ′x) subject to
∑ |βj | ≤ s.

(4) Repeat step 2 and 3 until β̂ does not change.

Tibshirani (1997) proposed using quadratic programming for solving Step 3.
However, in the high-dimension and low-sample size setting, i.e. in the
case when p � n, the quadratic programming algorithm cannot be directly
applied. We propose in the next section a simple modification of the LARS
algorithm of Efron et al. (2004) for Step 3.

A LARS–Cox procedure for obtaining the Lasso for the
Cox model
We propose an efficient algorithm called LARS–Cox to solve Step 3 of the
algorithm, which is based on the recently proposed LARS algorithm (Efron
et al., 2004). In their paper, Efron et al. (2004) proved that for the linear
regression models, starting from zero, the Lasso solution paths grow piece-
wise linearly in a predictable way and they also proposed the LARS algorithm
to efficiently solve the entire Lasso solution path using the same order of com-
putations as a single ordinary least square fit. We propose applying the LARS
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algorithm for solving Step 3 of the Lasso algorithm. To do so, we first apply
the Cholesky decomposition to obtain T = A1/2 such that T ′T = A, and
define y = T z and x̂ = T x; then Step 3 of the iterative procedure presented
in the previous section can be rewritten as

Step 3: minimize (y − β ′x̂)T (y − β ′x̂)

subject to
∑

|βj | ≤ s,

which is precisely the Lasso of y on x̂ and can be efficiently solved by the
LARS algorithm for a given s.

To determine the value of the tuning parameter s or the number of genes
to be used in the final model, one can choose s which minimizes the cross-
validated partial likelihood (CVPL) (Verwij and Van Houwelingen, 1993;
Huang and Harrington, 2002), which is defined as

CVPL(s) = − 1

n

n∑
i=1

[
l(f̂ (−i)(s)) − l(−i)(f̂ (−i)(s))

]
,

where f̂ (−i)(s) is the estimate of the score function based on the LARS–Cox
procedure with tuning parameter s from the data without the ith subject. The
terms l(f ) and l(−i)(f ) are the log partial likelihoods with all the subjects
and without the ith subject, respectively. The optimal value of s is chosen
to maximize the sum of the contributions of each subject to the log partial
likelihood. This CVPL is a special case of a more general cross-validated
likelihood approach for model selections (Smyth, 2001; Van der Laan et al.,
2003) and has been demonstrated to perform well in prediction in the context
of the penalized Cox regression (Huang and Harrington, 2002).

Evaluation of the predictive performance:
time-dependent ROC curves and area under the curves
In order to assess how well the model predicts the outcome, we pro-
pose employing the idea of time-dependent receiver-operator characteristics
(ROC) curves for censored data and area under the curve (AUC) as our cri-
teria. These methods were recently developed by Heagerty et al. (2000) in
the context of the medical diagnosis. For a given score function f (X), we
can define time-dependent sensitivity and specificity functions as

sensitivity(c, t |f (X)) = Pr{f (X) > c|δ(t) = 1},
specificity(c, t |f (X)) = Pr{f (X) ≤ c|δ(t) = 0},

and define the corresponding ROC(t |f (X)) curve for any time t as the plot of
sensitivity(c, t |f (X)) versus 1 − specificity(c, t |f (X)) with the cutoff point
c varying, and the AUC as the area under the ROC(t |f (X)) curve, denoted by
AUC(t |f (X)). Here δ(t) is the event indicator at time t . A nearest neighbor
estimator for the bivariate distribution function is used for estimating these
conditional probabilities accounting for possible censoring (Akritas, 1994).
Note that a larger AUC at time t based on a score function f (X) indicates
better predictability of time to event at time t as measured by sensitivity and
specificity evaluated at time t . In our application presented in the next section,
we study several different methods of constructing the score function f (X)

in the Cox model (1) and compare their predictive performance based on
the AUCs.

EVALUATION OF THE METHODS BY SIMULATION
STUDIES
We performed simulation studies to evaluate how well the LARS–
Cox procedure performs in the high-dimensional and low-sample
size settings. We focus on whether the important covariates that are
related to survival endpoints can be selected by the LARS–Cox pro-
cedure and how well the model can be used for predicting the survival
time for future patients.

In our simulation studies, we assume that 20 out of a total of
500 genes are related to time to cancer recurrence through a Cox

regression model with 10 coefficients generated from a uniform
U(−1, −0.1) distribution and 10 coefficients generated from a uni-
form U(0.1, 1) distribution (see first column of Table 1 for the
coefficients generated). A Weibull distribution with the shape para-
meter of 5 and the scale parameter of 2 is used for the baseline hazard
function, and a uniform U(2, 10) is used for simulating the censoring
times. Based on this setting, we would expect about 40% censoring.

In order to generate gene expression data for 500 predictors
(genes), we first generate a 100 × 500 dataset X from a uniform
U(−1.5, 1.5) distribution. We assume that the first 20 genes with
expression levels X1, X2, . . . , X20 are related to patients’ risk can-
cer recurrence through a Cox model. In order to generate gene
expression data for the rest of the 480 genes which are not related
to the survival but of which some may be correlated with the 20
relevant genes, we first use Gram–Schmidt orthonormalization to
construct its normalized orthogonal basis {α1, . . . , α20, γ1, . . . , γ80},
where α = {α1, α2, . . . , α20} is an orthogonal basis of the linear
space A expanded by X1, X2, . . . , X20 and γ = {γ1, γ2, . . . , γ80}
is a set of orthogonal basis of B, which is the orthogonal comple-
ment space of A. By Cauchy’s inequality, it is easy to show that
if {α1, . . . , α20, γ1, . . . , γ80} is a set of normalized orthogonal bases,
then for any 20 × 80 matrix T , we have corr(αy, (γ + αT )x) ≤
λ/

√
1 + λ2, for ∀x ∈ R80, y ∈ R20, where λ2 is the largest eigen-

value of T ′T . Based on this result, we can generate the expression
levels of genes which are unrelated to survival from the linear space
C = {γ+αT }with an appropriate choice of the maximum eigenvalue
of T ′T in order to control the maximum possible correlation between
vectors in spaces A and C. We considered the maximum possible cor-
relation of 0, 0.71, 0.82 and 0.87 in our simulations. These numbers
are chosen to assess how gradual changes in correlations between
irrelevant and non-irrelevant genes affect the LARS–Cox procedure
in identifying relevant genes. Note that the actual observed possible
correlations between the relevant (to the risk of event) 20 genes and
the irrelevant genes are much smaller than these values, and for most
simulated datasets, the observed maximum of the pair-wise sample
correlations between genes is smaller than half of the theoretical
maximum correlation.

Effects of between-gene correlations on identifying
relevant genes
For each chosen maximum possible correlation between the relev-
ant genes and non-relevant genes, we generated 100 datasets with
a sample size of 100 individuals. For each replication, we applied
the LARS–Cox procedure to build a model which included 20 genes
by selecting an appropriate s value in the LARS–Cox estimation.
Table 1 summarizes the frequencies that the 20 relevant genes are
among the first 20 genes that are selected by the LARS–Cox proced-
ure. We observe the following interesting results. First, as expected,
the predictors with larger coefficients are more likely to be selected
by the LARS–Cox procedure. Second, it is interesting to observe
that when the maximum possible correlation between the relevant
and non-relevant genes increases, i.e. when the linear space spanned
by the non-relevant genes gets close to the linear space expanded
by those relevant genes, the chance of the relevant genes with smal-
ler coefficients being selected gets smaller. This is because that at
each step, the LARS–Cox procedure only selects the gene with the
largest absolute correlation in the model. Of course, the chance of
these relevant genes being selected also depends on the sample size.
For example, for the maximum possible correlation of 0.85, more
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Table 1. Simulation results based on 100 replicationsa

Coefficient Maximum correlationb

0(SS = 100) 0.71(SS = 100) 0.82(SS = 100) 0.87
(SS = 100) (SS = 200)

β1 = 0.19 50 15 3 0 3
β2 = 0.95 100 100 92 75 91
β3 = 0.96 100 100 95 80 94
β4 = 0.91 100 99 87 71 92
β5 = 0.19 53 15 2 0 7
β6 = 0.25 60 23 2 0 5
β7 = 0.69 100 95 67 45 56
β8 = 0.33 88 42 6 4 13
β9 = 0.34 88 50 16 6 2
β10 = 0.33 91 53 13 1 4
β11 = −0.92 100 100 92 61 84
β12 = −0.16 40 7 5 1 0
β13 = −0.83 100 98 86 59 84
β14 = −0.62 100 91 58 26 44
β15 = −0.65 100 96 60 32 46
β16 = −0.47 98 76 38 11 22
β17 = −0.72 100 95 70 39 62
β18 = −0.24 66 19 6 5 8
β19 = −0.41 100 68 24 5 14
β20 = −0.23 64 23 3 4 4

aThe first column shows the true coefficients of the 20 genes which are related to the risk of cancer recurrence. Columns 2–5 show the frequency of each of these 20 relevant genes
being selected by the LARS–Cox procedure under four different correlation structures. The sample sizes are 100 patients for all the simulations. For the maximum possible correlation
of 0.87, a sample size of 200 patients was also considered and the results are presented in the last column.
bSS = sample size.

relevant genes are selected if the sample size is increased to 200 (see
the last column of Table 1).

Predictive performance and comparison with other
methods
We then examined the predictive performance of the proposed
method. We simulated a sample size of 100 patients as the training
dataset to build the predictive model and evaluated the predictive per-
formance based on another new dataset of 100 patients (test dataset).
For each simulation, we generated 500 gene expression levels for
each patients with the maximum possible between-gene correlation
of 0.82. For each replication, we built a predictive model based on
the training set. We applied the CVPL to choose the tuning parameter
s used in the model. We also considered three other methods, includ-
ing the L2 penalized procedure proposed by Li and Luan (2003),
the principal-components based partial Cox regression (PC-PCR)
procedure proposed by Li and Gui (2004) and the supervised prin-
cipal components (SPCA) procedure proposed in Bair and Tibshirani
(2004). For each method, we build the model based on the training
dataset, and predict the risk scores for the 100 patients in the test set.
We repeated this procedure 100 times. We used the time-dependent
AUC as a criterion to assess the predictive performance.

Figure 1(a)–(d) shows the averages of the estimated AUCs over
100 replications using the predictive score for the test sets for each
method together with the estimated 95% point-wise confidence inter-
vals. The plot indicates a very good predictive performance of the
LARS–Cox procedure. The AUC is over 75% at the beginning of the
follow-ups and remains high even at later times. As a comparison,

the other three procedures did not perform as well as indicated by
the estimated AUCs [Fig. 1(b)–(d)]. It should however be noted that
due to the small sample sizes we simulated, the comparisons are
not statistically significant as indicated by the slight overlaps of the
95% confidence intervals. Note that both the L2 penalized procedure
and the PC-PCR procedure use all the genes in building the pre-
dictive models. Clearly, neither of these procedures performed as
well as the LARS–Cox procedure in predicting the survival times
for future patients as measured by the AUCs. We also performed
the L2 procedure and the PC-PCR procedure using genes selected
based on univariate Cox regression analysis and did not observe any
improvement in their predictive performances. The SPCA procedure,
although it performs gene selection by univariate analysis, did not
perform as well as the LARS–Cox procedure. These results indicate
that selecting genes by performing univariate analysis may not be the
best choice in building predictive models. In contrast, the LARS–Cox
procedure selects genes by considering all the genes together.

As another way of comparing these three different methods, for
each replication, we divided the patients in the test set into high-
and low-risk groups based on having positive or negative predictive
risk scores and tested the statistical significance in the risk of cancer
recurrence between the two groups. We observed that for a p-value
of <10−5, all 100 replications showed significant differences in risk
between the high- and low-risk groups defined by the LARS–Cox
predicted scores, as compared to only 38, 22 and 36 replications
showing significant differences in risk between the high- and low-
risk groups defined by the risk scores predicted by the L2 penalized
procedure, the PC-PCR procedure and the SPCA procedure.
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Fig. 1. Results of simulations: AUCs for the test samples based on the LARS–
Cox procedure (a), the L2 penalized estimation (b), the PC-PCR procedure
(c) and the SPCA procedure (d). For each plot, the three lines are the average
AUCs over 100 replications together with 95% confidence intervals.

In summary, the results from our simulation studies indicate that
the LARS–Cox procedure can indeed select genes that are related to
censored phenotypes, especially those genes with relatively strong
effects, although genes with smaller effects on survival are diffi-
cult to identify, especially when the correlations between the gene
expression levels are high. When the correlations between the gene
expression levels of the relevant genes and non-relevant genes are
high, the CVPL procedure tends to select more genes in building
the predictive models. However, we observed a better predictive
performance of the LARS–Cox procedure than other procedures.

APPLICATION TO PREDICTION OF SURVIVAL
TIME OF PATIENTS WITH DLBCL
To further demonstrate the utility of the LARS–Cox procedure in
relating microarray gene expression data to censored survival phen-
otypes, we re-analyzed a recently published dataset of DLBCL by
Rosenwald et al. (2002). This dataset includes a total of 240 patients
with DLBCL, including 138 patient deaths during the follow-ups
with a median death time of 2.8 years. Rosenwald et al. (2002)
divided the 240 patients into a training set of 160 patients and a valid-
ation set or test set of 80 patients and built a multivariate Cox model.
The variables in the Cox model included the average gene expression
levels of smaller sets of genes in four different gene expression sig-
natures together with the gene expression level of BMP6. It should
be noted that in order to select the gene expression signatures, they
performed a hierarchical clustering analysis for genes across all the
samples (including both test and training samples). In order to com-
pare our results with those in Rosenwald et al. (2002), we used the
same training and test datasets in our analysis.

The gene expression measurements of 7399 genes are available
for analysis. However, there are a large number of missing gene
expression values in the dataset. Among the 7399 genes, only 434
genes have no missing values. We first applied a nearest neighbor
technique (Troyanskaya et al., 2001) to estimate those missing val-
ues. Specifically, for each gene, we first identified eight genes which

Table 2. GenBank ID and descriptions of the top 10 genes selected by the
LARS–Cox procedure based on the 160 patients in the training dataseta

GenBank ID Signature Description

AA760674 Cytochrome oxidase assembly protein
(yeast)

X00452 MHC Major histocompatibility complex, class II,
DQ alpha 1

AA729055 MHC Major histocompatibility complex, class II,
DR alpha

AA714513 MHC Major histocompatibility complex, class II,
DR beta 5

AA729003 T-cell leukemia/lymphoma 1A
AA805575 Germ Thyroxine-binding globulin precursor
AA598653 Lymph Osteoblast specific factor 2 (fasciclin I-like)
LC_29222 Lymph
X59812 Lymph Cytochrome P450, subfamily XXVIIA

polypeptide 1
L19872 Hydrocarbon receptor

aGerm = Germinal-center B-cell signature, MHC = MHC class II signature, Lymph =
Lymph-node signature. Genes AA760674, AA729003 and L19872 do not belong to
these signature groups. No description was provided for gene LC_29222 by Rosenwald
et al. (2002).

are the nearest neighbors according to Euclidean distance. We then
filled the remaining with the average of the nearest neighbors. Our
method is slightly different from that of Troyanskaya et al. (2001)
in that the nearest neighbors are not restricted to those 434 genes
with no missing data. We also tried the method of Troyanskaya et al.
(2001) for filling the missing value, and the results of survival time
prediction with the two methods were very close.

Selection of genes related to risk of death
We applied the LARS–Cox procedure to first build a predictive model
using the training data of 160 patients and all the 7399 features. As
the tuning parameter increases, more genes are selected and these
genes are chosen in order of their relevances in predicting survival.
The genes entered first in the model would provide a good list of can-
didate genes for further investigation. Table 2 shows the GenBank ID
and a brief description of the first 10 genes selected. It is interesting
to note that seven of these genes belong to the three gene expression
signature groups defined in Rosenwald et al. (2002). These three sig-
nature groups include Germinal-center B-cell signature, MHC class
II signature and Lymph-node signature. No genes in the proliferation
signature group defined by Rosenwald et al. (2002) were among the
top 10 genes selected by LARS–Cox. However, ribosomal protein
S12 from the proliferation group was among the top 20 gene selected
by our method.

The other three genes which do not belong to the signature groups
of Rosenwald et al. (2002) may also be related to lymphoma or risk
of death from lymphoma; however, evidence for their direct involve-
ment in any mechanism is currently lacking. It should also be noted
that there is always a possibility that genes are selected because of
coexpression with other genes, or for reasons that cannot be explained
mechanistically. Among these three genes, AA729003 is a protein
coding TCL1A gene which has been demonstrated to be a power-
ful oncogene and when it is over-expressed in both B and T cells,
it predominantly yields mature B cell lymphomas (Pekarsky et al.,

3005



J.Gui and H.Li

1999). The gene L19872 is a Aryl hydrocarbon receptor (AHR),
which is a ligand-activated transcription factor involved in the regu-
lation of biological responses to planar aromatic hydrocarbons. The
AHR has been shown to regulate xenobiotic-metabolizing enzymes
such as cytochrome P450, which belongs to the lymph-node signa-
ture group. Finally, the gene AA760674 is a COX15 homolog, which
is the terminal component of the mitochondrial respiratory chain that
catalyzes the electron transfer from reduced cytochrome c to oxy-
gen (Petruzzella et al., 1998). It has been reported that mutation in
the COX15 gene can cause Leigh syndrome (Oquendo et al., 2004);
however, its involvement in cancers is not clear.

Evaluation of the predictive performance
We also examined how well the model built by the LARS–Cox pro-
cedure predicts the survival of a future patient. Using the training set
of 160 patients, we built a predictive Cox model with the LARS–
Cox procedure using the CVPL to select the optimal tuning value s.
The minimum CVPL was obtained when s = 0.28, which corres-
ponds to selecting four genes in the model. We also observed that
the CVPL value increases by only 0.001 when the tuning parameter
s increases from 0.28 to 0.33, which corresponds to nine genes in the
model. As a matter of fact, for s ranging from 0.28 to 0.33, the pre-
dictive performances of the resulting models are very comparable.
We chose the most parsimonious model with four genes. These four
genes are AA805575, LC_29222, X00452 and X59812 (see Table 2
for a description of these four genes), belonging to three of the four
signature groups defined in Rosenwald et al. (2002).

We obtained the estimates of the coefficients of these four genes
using the LARS–Cox procedure, denoted by vector β̂. The estimated
coefficients for all four genes were negative, indicating that high
expression levels of these genes reduce the risk of death among the
patients with DLBCL. This agrees with what Rosenwald et al. (2002)
has found (see Table 2 of their paper). Based on the estimated model
with four genes, we estimated the risk scores (f (X) = β̂ ′X) for
the 80 patients in the test dataset based on their gene expression
levels of the four genes in the predictive model. The time-dependent
AUCs for 1–20 years after diagnosis based on the estimated scores
for the patients in the test set are around 0.67 in the first 10 years of
follow-up, indicating a reasonable predictive performance.

To further examine whether clinically relevant groups can be iden-
tified by the model, we used zero as a cutoff point of the risk scores
and divided the test patients into two groups based on whether they
have positive or negative risk scores. Figure 2(b) shows the Kaplan–
Meier curves for the two groups of patients, showing very signific-
ant differences (p-value = 0.0004) in overall survival between the
high-risk group (36 patients) and the low-risk group (44 patients).

A comparison with other methods
As a comparison, we also analyzed the lymphoma dataset using
three other methods, the PCR method of Li and Gui (2004), the
L2 penalized method of Li and Luan (2003) and the SPCA method
of Bair and Tibshirani (2004). Figure 2(b)–(d) shows the survival
curves of the two groups of patients in the test dataset defined by the
scores estimated by each of the three methods. We observe that the
two risk groups defined by the LARS–Cox estimated model showed
more significant difference in risk of death than the groups defined
by the other three models (p-value of 0.0004 versus 0.003, 0.003
and 0.034). Finally, the AUCs based on the risk scores estimated by
the LARS–Cox procedure are also higher than those from the other

three procedures; however, the results are not statistically significant
(the time-dependent AUCs and their 95% confidence intervals are
provided in the Supplemental material).

As another evaluation of the methods, we performed another
set of analyses using the training and testing datasets as defined
in Bair and Tibshirani (2004); (data available from http://www-
stat.stanford.edu/∼tibs/superpc/staudt.html) for the lymphoma
dataset. Again, if we used zero as the cutoff point of the predicted
scores to divide the 80 patients in the test set into high- and low-
risk groups, we observed that the LARS–Cox procedure gives a
slightly more significant difference in risk between the two groups.
The log-rank test p-values are 0.007, 0.06, 0.007 and 0.015 for the
LARS–Cox, L2 penalized procedure, PC-PCR procedure and the
SPCA procedure, respectively, again indicating that the LARS–Cox
procedure performs well on this new training/testing partition of the
lymphoma dataset. The corresponding survival curves are provided
in the Supplemental material.

DISCUSSION AND CONCLUSIONS
It is clinically relevant and very important to predict patients’ time
to cancer relapse or time to death due to cancer after treatment
using gene expression profiles of the cancerous cells prior to the
treatment. Powerful statistical methods for such prediction allow
microarray gene expression data to be used most efficiently. In this
paper, we have proposed and studied the LARS–Cox procedure for
censored survival data in order to identify important predictive genes
for survival using microarray gene expression data. To solve the
computational difficulty, we modified the recently developed LARS
procedure (Efron et al., 2004) to obtain the solutions for the Lasso
estimation of the Cox model. Since the risk of cancer recurrence
or death due to cancer may result from the interplay between many
genes, methods which can utilize the data of many genes, as in the
case of our proposed procedure, are expected to show better per-
formance in predicting risk. Our simulation studies demonstrated
that the procedure can indeed be used to identify genes which are
related to censored survival outcomes and to built a parsimonious
model for predicting future patients’ survival. We have also demon-
strated the applicability of our methods by analyzing time to death of
the diffuse large B-cell lymphoma patients and obtained satisfactory
results, as evaluated by both applying the model to the test dataset
and time-dependent ROC curves.

While we did not compare the new procedure with all the other
procedures available, we did compare the LARS–Cox procedure with
several other previously proposed methods in predictive perform-
ance and found that the new procedure performed better than the L2

penalized procedure, PC-PCR procedure and the SPCA procedure
(Li and Luan, 2003; Li and Gui, 2004; Bair and Tibshirani, 2004)
in predicting the future patients’ survival. We would however expect
that the LARS–Cox procedure performs better than other dimension-
reduction based procedures such as the partial least squares (Park
et al., 2002) or the principal components Cox regression because
the LARS–Cox procedure automatically selects and utilizes only
the relevant genes in building the predictive model. A comprehens-
ive comparison of different methods warrants further research. It is
worth mentioning that the L1 penalized regression was also demon-
strated to perform better than other procedures in the settings of
microarray gene expression data and linear models (Segal et al.,
2003).
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Penalized Cox regression analysis
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Fig. 2. Results of analyses of the lymphoma dataset: the Kaplan–Meier curves for the high- and low-risk groups defined by the estimated scores with zero
as the cutoff for the 80 patients in the test dataset. The scores are estimated based on the models estimated by the LARS–Cox procedure (a), L2 penalized
procedure (b), the PC-PCR procedure (c) and the SPCA procedure (d). The number of patients in the high-risk groups are 36, 35, 31 and 32 respectively.

The proposed LARS–Cox procedure has no computational or
methodological limitation in terms of the number of genes that can
potentially be used in building models for the prediction of patients’
time to clinical event. The method can in principle select n−1 genes,
where n is the sample size, although the cross-validation procedure
often results in a much smaller number of predictors in the model.
However, when the number of predictors is close to the sample size,
there is a risk of over-fitting. In addition, as pointed out by Osborne
et al. (1998), as s increases, when the number of nonzero coeffi-
cients gets close to the number of observations, Lasso may not have
a unique solution. This implies that the number of genes selected

by the procedure cannot be more than the sample size. In addition,
the LARS–Cox tends to select only one variable from a group of
highly correlated genes. These points have also been pointed out by
Zou and Hastie (2003) for the Lasso. If the LARS–Cox procedure
is used mainly for selecting important and relevant genes, one may
want to include all these highly correlated genes, if one of them is
selected. However, if the goal is to build a model with a good pre-
dictive accuracy, this should not be a problem since simple models
are preferred for the scientific insight into the relationship between
survival and gene expressions. One way to extend the LARS–Cox
procedure in order to identify correlated genes is that at each LARS
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variable selection step, we selected not only one single gene with the
largest absolute current inner product, but a group of such genes with
similar current inner products. An alternative is to use the elastic net
penalty as recently proposed by Zou and Hastie (2004) for the pen-
alized estimation. How well such extensions perform in prediction
of future survival time deserves further investigation.

The LARS–Cox procedure assumes the Cox proportional hazards
model, which is the most popular model for censored survival data.
However, the proportional hazards assumption may not hold for gene
expression data or for all diseases. It is possible to develop robust
procedures under mis-specified proportional hazards models along
the lines of Lin and Wei (1989). In addition, model checking tech-
niques analogous to those of Lin et al. (1993) can be derived. As
an alternative, we can consider similar L1 penalized estimation for
the accelerated failure time models (Wei, 1992) or more general
semi-parametric transformation models (Cheng et al., 1995). We are
currently pursuing these alternative models.

In summary, an important application of microarray technology is
to relate gene expression profiles to various clinical phenotypes of
patients such as time to cancer recurrence or overall survival time.
The statistical model built to relate gene expression profiles to the
censored survival time should have the property of high predictive
accuracy and parsimony. The proposed LARS–Cox procedure in
this paper can be very useful in building a parsimonious predictive
model that can be used for classifying future patients into clinically
relevant high- and low-risk groups based on the gene expression
profile and survival times of previous patients. The procedure can
also be applied to select important genes which are related to patients’
survival outcome.
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