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Abstract

We propose a general strategy for variable selection in semiparametric regression models by
penalizing appropriate estimating functions. Important applications include semiparametric linear
regression with censored responses and semiparametric regression with missing predictors. Unlike
the existing penalized maximum likelihood estimators, the proposed penalized estimating
functions may not pertain to the derivatives of any objective functions and may be discrete in the
regression coefficients. We establish a general asymptotic theory for penalized estimating
functions and present suitable numerical algorithms to implement the proposed estimators. In
addition, we develop a resampling technique to estimate the variances of the estimated regression
coefficients when the asymptotic variances cannot be evaluated directly. Simulation studies
demonstrate that the proposed methods perform well in variable selection and variance estimation.
We illustrate our methods using data from the Paul Coverdell Stroke Registry.
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1. INTRODUCTION

A major challenge in regression analysis is to decide which predictors among many potential
ones are to be included in the model. It is customary to use stepwise selection and subset
selection. But these procedures are unstable and ignore the stochastic errors introduced by
the selection process. Several methods, including bridge regression (Frank and Friedman
1993), least absolute shrinkage and selection operator (LASSO) (Tibshirani 1996), smoothly
clipped absolute deviation (SCAD) (Fan and Li 2001), elastic net (EN) (Zou and Hastie
2005), and adaptive lasso (ALASSO) (Zou 2006), have been proposed to select variables
and estimate their regression coefficients simultaneously. These methods can be cast in the
framework of penalized least squares and likelihood.

Consider the linear regression model
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(1)

where Yi is the response variable, xi is a d-vector of predictors for the ith subject, β is a d-
vector of regression coefficients, and (ε1, …, εn) are independent and identically distributed
errors. For simplicity, assume that the εi’s have means 0. Define l(β) = ||y − Xβ||2, where y =
(Y1, …, Yn)T and X = (x1, …, xn)T. Then the penalized least squares estimator of β is the
minimizer of the objective function

(2)

where pλ(·) is a penalty function. Appropriate choices of pλ (detailed in Sec. 2) yield the
aforementioned variable selection procedures. For likelihood-based models, the penalized
maximum likelihood estimator is obtained by setting l(β) to the minus log-likelihood.

For many semiparametric problems, the estimation of regression coefficients (without the
task of variable selection) does not pertain to the minimization of any objective function.
Important examples include weighted estimating equations for missing data (Robins,
Rotnitzky, and Zhao 1994; Tsiatis 2006) and the Buckley–James estimator for
semiparametric linear regression with censored responses (Buckley and James 1979).
Another example arises from Lin and Ying’s (2001) semiparametric regression analysis of
longitudinal data. For this example, Fan and Li (2004) proposed a variable selection method
by incorporating the SCAD penalty into Lin and Ying’s estimator. They noted that their
estimator may be cast in the form of (2), so that their earlier results (Fan and Li 2001) for
penalized least squares could be applied. In this article we go beyond specific problems and
provide a very general theory for a broad class of penalized estimating functions. In this
regard, only Fu’s (2003) work on generalized estimating equations (GEEs) (Liang and Zeger
1986) with bridge penalty (Frank and Friedman 1993; Knight and Fu 2000) is similar. That
work deals only with smooth estimating functions, whereas our theory applies to very
general, possibly discrete estimating functions. In addition, we present general
computational strategies.

The remainder of the article is organized as follows. We present our penalized estimating
functions in Section 2, paying special attention to the aforementioned missing-data and
censored-data problems. We state the asymptotic results in Section 3 and address
implementation issues in Section 4. We report the results of our simulation studies in
Section 5 and apply the methods to real data in Section 6.

2. PENALIZED ESTIMATING FUNCTIONS

2.1 General Setting

Suppose that U(β) ≡ (U1(β), …, Ud (β))T is an estimating function for β ≡ (β1, …, βd)T

based on a random sample of size n. For maximum likelihood estimation, U(β) is simply the
score function. We are interested mainly in the situations in which U(β) is not a score
function or the derivative of any objective function. A penalized estimating function is
defined as
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where qλ (|β|) = (qλ,1(|β1|), …, qλ,d (|βd|))T, qλ,j (·), j = 1, …, d, are coefficient-dependent
continuous functions and the second term is the componentwise product of qλ and sgn(β). In

most cases,  for some penalty function pλ,j, and the functions qλ,j, j = 1, …, d, are
the same for all d components of qλ (|β|), that is, qλ,j = qλ,k, j ≠ k. When the functions qλ,j, j =
1, …, d, do not vary with j, we drop the subscript for simplicity and ease of notation.

When , we consider five penalty functions: (a) the LASSO penalty (Tibshirani 1996,
1997), pλ (|θ|) = λ|θ|; (b) the hard thresholding penalty, pλ (|θ|) = λ2 − (|θ| − λ)2I(|θ|<λ); (c)
the SCAD penalty (Fan and Li 2001, 2002, 2004), defined by

for a > 2; (d) the EN penalty (Zou and Hastie 2005), pλ (|θ|) = λ1|θ| + λ2θ2; and (e) the
ALASSO penalty (Zou 2006), pλ,j (|θ|) = λ|θ|ωj, for a known data-driven weight ωj. In our

applications we use the weight , j = 1, …, d, where  refers to the d-
vector of regression coefficient estimates obtained from solving the original estimating
equation, U(β) = 0.

The hard thresholding penalty is important because it corresponds to best subset selection
and stepwise deletion in certain cases. The LASSO (Tibshirani 1996, 1997) is one of the
most popular shrinkage estimators, but it has some deficiencies; in particular, it is
inconsistent for certain designs (Meinshausen and Bühlmann 2006; Zou 2006). Fan and Li
(2001, 2002) attempted to avoid such deficiencies by constructing a new penalty function
(SCAD) that results in an estimator that achieves an oracle property: that is, the estimator
has the same limiting distribution as an estimator that knows the true model a priori.
Recently, Zou (2006) introduced ALASSO, which, like SCAD, achieves the oracle property
and may have numerical advantages for some problems. Finally, Zou and Hastie (2005)
introduced the mixture penalty EN to effectively select “grouped” variables; this penalty is
popular in the statistical analysis of large data sets.

2.2 Application to Censored Data

Censoring is a common phenomenon in scientific studies (see Kalbfleisch and Prentice
2002, p. 12). The presence of censoring causes major complications in implementation of
the penalized least squares approach, because the values of the Yi are unknown for the
censored observations. The problem is much simpler for the proportional hazards regression
because the partial likelihood (Cox 1972) plays essentially the same role as the standard
likelihood (Tibshirani 1997; Fan and Li 2002; Cai, Fan, and Zhou 2005). However, the
proportional hazards model may not be appropriate in some applications, especially when
the response variable does not pertain to failure time.

Let Yi and Ci denote the response variable and censoring variable for the ith subject, i = 1,
…, n. The data consist of (Ỹi, Δi, xi), i = 1, …, n, where Ỹi = min(Yi, Ci), Δi = I (Yi ≤ Ci) and
xi is a d-vector of predictors. We relate Yi to xi through the semiparametric linear regression
model given in (1), where εi are independent and identically distributed with an unspecified
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distribution function F (·). We assume that Yi is independent of Ci conditional on xi. When
the response variable pertains to failure time, both Yi and Ci are commonly measured on the
log scale, and model (1) is called the accelerated failure time model (Kalbfleisch and
Prentice 2002, p. 44).

Clearly,

and

where α = E(εi) and ei (β) = Ỹi − βTxi. Thus Buckley and James (1979) proposed the
estimating function for β,

(3)

where

and F̂(t; β) is the Kaplan–Meier estimator of F (t) based on {ei (β), Δi}, i = 1, …, n. If Δi = 1
for all i, then the penalized estimating function UP (β) corresponding to (3) becomes the
penalized least squares estimating function arising from (2). Thus the penalized Buckley–
James estimator is a direct generalization of the penalized least squares estimator to
censored data.

2.3 Application to Missing Data

It often is difficult to have complete data on all study subjects. Let Ri be the missingness
indicator for the ith subject, with the event {Ri = ∞} indicating that the ith subject has
complete data. The observed data for the ith subject are Gr (Zi), where Gr (·) is the
missingness operator acting on the full data Zi of the ith subject when Ri = r. In simple linear
regression, for example, we may consider only Ri ∈ {1, 2, ∞} corresponding to G1(Zi) =
{Yi}, G2(Zi) = {xi}, and G∞(Zi) = {Yi, xi} = Zi. The observed data are represented as {Ri,
GRi

 (Zi), i = 1, …, n}. We focus on monotone missingness and make two assumptions: (a) P
(Ri = ∞|Zi = z) > κ > 0 and (b) P (Ri = r|Zi = z) = P (Ri = r |Gr (z) = gr).

Consider the semiparametric linear regression model given in (1). The weighted complete-
case estimating function takes the form
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where si (β) = xi (Yi − α − βT xi) and π(r, Gr (z)) = P (Ri = r|Gr (z) = gr). To improve
efficiency, we adopt the strategy of Robins et al. (1994) and propose the estimating function

where λ̃r {Gr (Zi), η} = {1 + exp[−μr {Gr (Zi), η}]}−1, μr {Gr (Zi), η} is a linear predictor

based on Gr (Zi) and η, , and Ẽ{si (β)|Gr (Zi)} is the
conditional expectation of si (β) given Gr (Zi) under a posited parametric submodel for the
full data-generating process.

3. ASYMPTOTIC RESULTS

Fan and Li (2001) showed that the penalized least squares estimator minimizing (2), or more
generally the penalized maximum likelihood estimator, with the SCAD or hard thresholding
penalty behaves asymptotically as if the true model is known a priori—the so-called oracle

property. We show that this property holds for a very broad class of penalized estimating
functions, of which the Buckley–James and weighted estimating functions with the SCAD
and hard thresholding penalty functions are special cases.

Let β0 ≡ (β01, …, β0d)T denote the true value of β. Without loss of generality, suppose that
β0j ≠ 0 for j ≤ s and β0j = 0 for j > s. We impose the following conditions:

C.1. There exists a nonsingular matrix A such that for any given constant M,

Furthermore, n−1/2U(β0) → d N(0, V) for V a d × d matrix.

C.2. The penalty function qλn(·) has the following properties:

a.
For nonzero fixed θ, lim n1/2qλn (|θ|) = 0 and .

b.
For any M > 0, .

Remark 1

Condition C.1 is not unusual and is satisfied by many commonly used estimating functions.
This condition is implied by standard conditions for Z-estimators (van der Vaart and
Wellner 1996, thm. 3.3).
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Remark 2

Condition C.2 pertains to the choices of the penalty function and regularization parameter.
This condition is key to obtaining the oracle property. In particular, condition C.2a prevents
the j th element of the penalized estimating function from being dominated by the penalty

term, qλn (|βj|) sgn(βj), for βj0 ≠ 0, because  vanishes. But if βj0 = 0, then

condition C.2b implies that  diverges to +∞ or −∞, depending on the sign
of βj in the small neighborhood of βj0. Thus the j -element of the penalized estimating
function is dominated by the penalty term, so that any consistent solution, say β ̂, to the
estimating equation UP (β) = 0 must satisfy β ̂j = 0.

Remark 3

Condition C.2 is satisfied by several commonly used penalties with proper choices of the
regularization parameter λn:

a. Under the hard penalty [i.e., qλn (|θ|) = 2(λn − |θ|)I (|θ| < λn)], it is straightforward to

verify that condition C.2 holds if λn → 0 and .

b. Under the SCAD penalty, that is,

with a > 2, it is easy to see that if we choose λn → 0 and , then condition

C.2 holds because  for θ ≠ 0 and .

c. For the ALASSO penalty, we assume that , nλn → ∞ and qλn (|θ|) = λnŵ

for some data-dependent weight ŵ. First, n1/2 qλn (|θ|) = n1/2λnŵ → 0 and 
for |ŵ| < ∞ and θ ≠ 0. Second, to obtain sparsity, we require that the weights be
sufficiently large for θ sufficiently small, say |θ| < Mn−1/2. For simplicity, suppose
that the data-dependent weights are defined as ŵ = |θ̃|−γ for some γ > 0 and θ̃
pertaining to the solutions to the unpenalized estimating equations. Then, trivially,

, which implies that , as desired. In
this article we chose γ = 1 but Zou (2006, remarks 1 and 2) noted that other weights
may be useful.

d. When qλn(|θ|) = λn/|θ|, condition C.2 is satisfied if  and nλn →∞. To see

this, note that  for θ ≠ 0, and

. An anonymous referee pointed out that qλn(|θ|) =
λn/|θ| pertains to pλn(|θ|) =λn log(|θ|) on the original scale.

e. Condition C.2 does not hold for the LASSO and EN penalty functions.

To accommodate discrete estimating functions such as (3), we provide a formal definition of
the solution to the penalized estimating equation. An estimator β ̂= (β ̂1, …, β̂d)T is called a
zero-crossing to the penalized estimating equation if, for j =1, …, d,
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where ej is the j th canonical unit vector. In addition, an estimator β ̂ is called an approximate
zero-crossing if

If UP is continuous, then the zero-crossing is an exact solution to the penalized estimating
equation.

The following theorem states the main theoretical results regarding the proposed penalized
estimators, including the existence of a root-n–consistent estimator, the sparsity of the
estimator, and the asymptotic normality of the estimator.

Theorem 1

Define the number of nonzero coefficients s = #{j |βj0 ≠ 0}. Under conditions C.1 and C.2,
the following results hold:

a. There exists a root-n–consistent approximate zero-crossing of UP (β), that is, β ̂ = β0

+ Op (n−1/2), such that β ̂ is an approximate zero-crossing of UP (β).

b. For any root-n–consistent approximate zero-crossing of UP (β), denoted by β ̂ ≡ (β ̂1,
…, βd)T, limn P (β ̂j = 0 for j > s) = 1. Moreover, if we write β ̂1 = (β ̂1, …, β ̂s)T and
β01 = (β01, …, β0s)

T, then

where A11, Σ11, and V11 are the first s × s submatrices of A, ,
and V, and bn = −(qλn(|β01|) × sgn(β01),…, qλn(|β0s|) sgn(β0s))

T.

c. Let  and U1(β) denote the first s-components of UP(β) and U(β), and let

, where β1 denotes the first s-components of β and β2 denote the second

(d −s)-components of β; that is, without loss of generality, β2 = 0. If 
is continuous in β1, then there exists β ̂1 such that

that is, the solution is exact.

The proof of Theorem 1 is relegated to Appendix A. The asymptotic results for penalized
weighted estimators readily follow from this theorem. Applying this theorem to the
penalized Buckley–James estimators, we obtain the following result.

Corollary 1

Assume that condition C.2 holds in addition to the following three conditions:

D.1. There exists a constant c0 such that P(Ỹ − βT x < c0) < 1 for all β in some
neighborhood of β0.
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D.2. The random variable x has compact support.

D.3. F has finite Fisher information for location.

Then the conclusions of Theorem 1 follow.

Remark 4

Corollary 1 implies that the penalized Buckley–James estimators with the penalty functions
satisfying condition C.2 have the oracle property. Conditions D.1–D.3 are the regularity
conditions given by Ritov (1990, p. 306) to ensure that condition C.1 holds. The expressions
for A and V were given by Ritov (1990) and Lai and Ying (1991a). The matrix V is directly
estimable from the data, whereas A is not, because the latter involves the unknown density
of the error term ε.

Remark 5

A result similar to Corollary 1 exists for the adaptive estimators presented in Section 2.3—
namely, the penalized weighted estimators with SCAD, hard thresholding, and ALASSO
penalties also have an oracle property. Technical conditions needed to obtain a strongly
consistent estimator sequence and hence establish condition C.1 are given by Robins et al.
(1994). Such technical conditions are assumed throughout the text of Tsiatis (2006), for
example. The matrices A and V may be calculated directly; examples were given by Tsiatis
(2006, chaps. 10 and 11).

Theorem 1 implies that the asymptotic covariance matrix of β ̂1 is

and that a consistent estimator is given by

Other authors (e.g., Fu 2003) used the following alternative estimator for cov(β ̂1):

Using the sandwich matrix Ω̃ actually produces a standard error estimate for the entire
vector β ̂, that is, both nonzero and zero coefficient estimates. On the other hand, Ω̂11

implicitly sets , its asymptotic value. In this article we useΩ̂11, in agreement with
earlier work on variable selection by Fan and Li (2001, 2002, 2004), Cai et al. (2005), and
Zou (2006). Note the matrix Ω̂11 can be readily calculated when A and V can be evaluated
directly. For discrete estimating functions such as the Buckley–James estimating function, A
cannot be estimated reliably from the data. To solve this problem, we propose a re-sampling
procedure.
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Let  denote the components of UP(β) corresponding to the regression coefficients with

nonzero penalized estimating function estimates, and define  as the solution to the
estimating equation

(4)

where (G1, …, Gn) are independent standard normal variables and (W11, …, W1n) are as
given in Appendix B. In Appendix B we show that the conditional distribution of

 given the observed data is the same in the limit as the unconditional
distribution of n1/2(β ̂−β01) Thus we may estimate the covariance matrix of β ̂1 and construct
confidence intervals for individual regression coefficients using the empirical distribution of

.

4. IMPLEMENTATION

In this article we use a majorize-minorize (MM) algorithm to estimate the penalized
regression coefficients (Hunter and Li 2005). The MM algorithm may be viewed as a Fisher
scoring (or Newton–Raphson) type algorithm for solving a perturbed penalized estimating
equation and is closely related to the local quadratic algorithm (Tibshirani 1996; Fan and Li
2001). Using condition C.1 and the local quadratic approximations for penalty functions
(Fan and Li 2001, sec. 3.3), the MM algorithm is

where β ̂(0) is the solution to U(β) = 0 and

for ∊ a small number (∊= 10−6 in our examples). This algorithm requires that the estimating
function U(β) be continuous, so that the asymptotic slope matrix A can be evaluated
directly, as in the missing-data example. For general estimating functions, we propose the
iterative algorithm

where β ̂(0) is a minimizer of ||U(β)||. For the penalized Buckley–James estimator, there is a
simple iterative algorithm,
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where β ̂(0) is the original Buckley–James estimator and ξ(β) = [ξ1(β), …, ξn(β)]T. In each
algorithm, we iterate until convergence; the final solution is an approximate solution to the
penalized estimating equation UP(β) = 0. To improve numerical stability, we standardize
each predictor to have mean 0 and variance 1.

We need to choose λ for LASSO, ALASSO, and hard thresholding penalty functions, (a, λ)
for the SCAD penalty and (λ1, λ2) for the EN penalty. Fan and Li (2001, 2002) showed that
the choice of a ≡ 3.7 performs well in a variety of situations; we use their suggestion
throughout our numerical analyses. Zou and Hastie (2005) showed that the EN estimator is
equivalent to an ℓ1-penalty on augmented data. In the rest of this section, we include the
subscript λ on β ̂ (i.e., β ̂λ) to stress the dependence of the estimator on the regularization
parameter λ. In the case of EN penalty, it is understood that cross-validation is two-
dimensional.

For uncensored data, Tibshirani (1996) and Fan and Li (2001) suggested the following
generalized cross-validation (GCV) statistic (Wahba 1985):

where RSS(λ) is the residual sum of squares ||y − Xβ ̂λ||2, and d(&lambda;) is the effective
number of parameters, that is, d(&lambda;) =tr[{Â + Σλ(β ̂λ)}−1ÂT]. Note that the intercept is

omitted in RSS(λ), because y may be centered at . When the Yi ’s are potentially
censored, d(λ) still may be considered the effective number of parameters; however, RSS(λ)
is unknown. We propose estimating n−1 RSS(λ) by

where K ̂(t) is the Kaplan–Meier estimator for K(t) = P(C > t), and . For
missing data, we propose estimating n−1 RSS(λ) by

Both proposals are based on large-sample arguments—namely, ν̂(λ)is a consistent estimator
for lim n−1 RSS(λ)for fixed λ under conditional independence between censoring and failure
time distribution, for censored outcome data, and under the MAR assumption for missing
data (cf. Tsiatis 2006, chap. 6). Thus our GCV statistic is

and we select λ ̂ = arg minλGCV(λ).
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5. SIMULATION STUDIES

5.1 Censored Data

We simulated 1,000 data sets of size n from the model

where β = (3, 1.5, 0, 0, 2, 0, 0, 0)T and εi and xi are independent standard normal with the
correlation between the j th and kth components of x equal to .5|j−k|. This model was
considered by Tibshirani (1996) and Fan and Li (2001). We set the censoring distribution to
be uniform(0,τ), where τ was chosen to yield approximately 30% censoring. We compared
the model error, ME ≡ (β ̂−β)T E(xxT)(β ̂−β), of the proposed penalized estimator with that of
the original Buckley–James estimator using the median relative model error (MRME). We
also compared the average numbers of regression coefficients that are correctly or
incorrectly shrunk to 0. The results are presented in Table 1, where oracle pertains to the
situation in which we know a priori which coefficients are non-zero.

The performance of the proposed estimator with the SCAD, hard thresholding, and
ALASSO penalties approached that of the oracle estimator as n increases. When the signal-
to-noise ratio was small (e.g., large n or small σ), oracle methods (SCAD, hard thresholding,
ALASSO) outperformed LASSO and EN in terms of model error and model complexity. On
the other hand, LASSO and EN tended to perform better than the oracle methods as σ/n
increased.

Table 2 reports the results on the accuracy of the proposed re-sampling technique in
estimating the variances of the nonzero estimated regression coefficients. The standard
deviation (SD) pertains to the median absolute deviation of the estimated regression
coefficients divided by .6745. The median of the standard error estimates, denoted by SDm,
gauges the performance of the resampling procedure. Evidently, the resampling procedure
yielded reasonable standard error estimates, particularly for large n.

5.2 Missing Data

We simulated 1,000 datasets of size n from the model

where εi and xi are independent standard normal with the correlation between the jth and kth
components of x equal to .5|j−k|. We considered two scenarios:

Model 1:

and

Model 2:
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For a random design X, define the theoretical R2

For σ= 1 and 2, both models 1 and 2 have theoretical R2 =.89 and.67. Although models 1
and 2 have the same theoretical R2, they have differing numbers of nonzero coefficients; the
number of nonzero coefficients over the total number of coefficients (i.e., d = 10) in a given
model is sometimes referred to as the model fraction. The model fraction in model 1 is.6,
whereas model 2 has a model fraction of.3. We simulated data such that subjects fall into
one of three categories: R = 1 means that the subject was missing (x1, x2), R = 2 means that
the subject was missing x1, and R = ∞ means that the subject had complete data. The
observed data {R, GR(Z)} were generated in the following sequence of steps:

1. Simulate a Bernoulli random variable B1 with probability λ̃1{G1(Zi), η}.

2. If B1 = 1, then set R = 1; otherwise, continue.

3. Simulate a Bernoulli random variable B2 with probability λ̃2{G2(Zi), η}.

4. If B2 = 1, then set R = 2; otherwise, set R = ∞.

We formulated the missingness process by logistic models

and

where

and

These models yielded approximately 40% missing with subjects falling in the R = 1 and R =
2 categories in roughly equal proportions.

Table 3 presents the numerical results with n = 250. Oracle methods (SCAD, hard
thresholding, ALASSO) performed better than LASSO and EN in terms of relative model
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error and complexity when there were a few strong predictors of response, as in model 1;
however, oracle methods performed worse than LASSO and EN when there are many
weakly significant predictors, as in model 2.

6. THE PAUL COVERDELL STROKE REGISTRY

The Paul Coverdell National Acute Stroke Registry collects demographic, quantitative, and
qualitative factors related to acute stroke care in four prototype states: Georgia,
Massachusetts, Michigan, and Ohio (Paul Coverdell Prototype Registries Writing Group
2005). The goals of the registry include gaining a better understanding of factors associated
with stroke and generally improving the quality of acute stroke care in the United States. For
the purpose of illustration, we consider a subset of 800 patients with hemorragic or ischemic
stroke from the Georgia prototype registry. Our data set includes nine predictors and a
hospital length of stay (LOS) endpoint, defined as the number of days from hospital
admission to hospital discharge. Conclusions from analyses like ours would be important to
investigators in health policy and management, for example. The complete registry data for
all four prototypes consist of several thousand hospital admissions and has not been released
publicly. A more comprehensive analysis is ongoing.

Our data include the following nine predictors: Glasgow coma scale (GCS; 3–15, with 15
representing excellent health), serum albumin, creatinine, glucose, age, sex (1 if male), race
(1 if white), whether or not the patient was admitted to the intensive care unit (ICU; 1 if
yes), and stroke subtype (1 if hemorrhagic; 0 if ischemic). Of the 800 patients, 419 (52.4%)
had complete data (i.e., R = ∞), 94 (11.8%) were missing both GCS and serumn albumin
(i.e., R = 1), and 287 (35.9%) were missing only GCS (i.e., R = 2).

Table 4 presents estimates for the nuisance parameter η in the stroke data. We see that the
subjects missing both GCS and albumin (i.e., R = 1) tended to have higher creatinine and
glucose levels but were less likely to be admitted to the ICU on admission to the hospital.
Ischemic stroke and ICU admission were strongly associated with missing GCS score (i.e.,
R = 2) only. Because the missingness mechanism is related to other important prognostic
variables, this is mild evidence that the missing completely at random (MCAR) assumption
is not well supported, and variable selection techniques based on such an assumption will
lead to incorrect conclusions. Our analyses using methods described in Section 2 assuming
data missing at random (MAR) are displayed in Table 5.

We use λ ̂= (.28,.63,.11,.16) for the SCAD, Hard, LASSO, and ALASSO estimates, and use
(λ ̂1, λ∘2) = (.34,.9) for the EN estimates. Table 5 presents the regression coefficient estimates
for the stroke data. Higher levels of albumin and creatine are strongly related to shorter
LOS, whereas admission to the ICU is associated with longer LOS. Older patients tend to
have LOS than younger patients; this is most easily explained by the fact that many older
stroke patients quickly die in the hospital because their bodies are too weak to recover.
Patients with hemorrhagic strokes have longer recovery periods and thus longer LOS. White
stroke patients tend to have shorter LOS than non-whites. Finally, sex and glucose are weak
predictors of LOS. The LASSO and EN estimates tend to retain more predictors in the final
model and, thus have more complex models compared with the other penalized estimators.
Among the SCAD, Hard, and ALASSO estimates, SCAD and ALASSO yielded similar
coefficient estimates, whereas the Hard thresholding estimates yielded the sparsest model.
Our methods yielded models that appear to have reasonable scientific interpretation and do
not make a strong MCAR assumption, an assumption that is not supported by the data.
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7. REMARKS

We have developed a general methodology for selecting variables and simultaneously
estimating their regression coefficients in semiparametric models. This development
overcomes two major challenges that are not present with any of the existing variable
selection methods. First, UP (β) may not correspond to the derivative of an objective
function or to quasi-likelihood, so that the mathematical arguments used by previous authors
to establish the asymptotic properties of penalized maximum likelihood or penalized GEE
estimators do not apply. Second, UP (β) may be discrete in β, which entails considerable
theoretical and computational challenges. In particular, the variances of the estimated
regression coefficients cannot be evaluated directly, and we have developed a novel
resampling procedure, which also can be used for variance estimation without the need for
variable selection. Our simulation results indicate that the resampling method works well for
modest sample sizes.

Rank estimators (Prentice 1978; Tsiatis 1990; Wei, Ying, and Lin 1990; Lai and Ying
1991b; Ying 1993) provide potential alternatives to the Buckley–James estimator but are
computationally more demanding to implement (cf. Johnson 2008). In general, rank-
estimating functions do not correspond to the derivatives of any objective functions. This is
also true of estimating functions for many other semiparametric problems. In all of those
situations, we can use Theorem 1 to establish the asymptotic properties of the corresponding
variable selection procedures and use the proposed resampling technique to estimate the
variances of the selected variables.

The proportional hazards and accelerated failure time models cannot hold simultaneously
unless the error distribution is extreme value. Thus, it is useful to have variable selection
methods for both models at one’s disposal, because one model may fit the data better than
another. A major advantage of model (1) is that the regression coefficients have a direct
physical interpretation. Hazard ratio can be an awkward concept, especially when the
response variable does not pertain to failure time.
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APPENDIX A: PROOF OF THEOREM 1

To prove part a, we consider , where . Because n1/2qλn(|
β0j|) →0, j = 1, …, s, under condition C.2.a and β ̂ = β0+Op(n−1/2), we have

Johnson et al. Page 15

J Am Stat Assoc. Author manuscript; available in PMC 2010 April 6.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Under condition C.2b, for j = s + 1, …, d,  and  are
dominated by −n1/2qλn (ε)and n1/2qλn(ε), so they have opposite signs when ε goes to 0.
Therefore, β ̂ is an approximate zero-crossing by definition.

To prove part b, we consider the sets in the probability space Cj = {β̂j ≠ 0}, j = s + 1, …, d.
It suffices to show that for any ε > 0, when n is sufficiently large, P(Cj) < ε. Because β̂j =
Op(n−1/2), there exists some M such that when n is large enough,

Using the j th component of the penalized estimating function and the definition of the
approximate zero-crossing, we obtain that on the set of {β ̂j ≠ 0, |β ̂j| < Mn−1/2},

where Aj is the j th row of A. The first three terms on the right side are of order Op(1). As a
result, there exists some M′ such that for large n,

Because  by condition C.2b, β ̂j ≠ 0 and |β ̂j| < Mn−1/2 imply
that n1/2qλn (|β ̂j|) > M′ for large n. Thus P (β ̂j ≠ 0, |β ̂j| < Mn−1/2) = P(β̂j ≠ 0, |β ̂j| < Mn−1/2),
n1/2qλn(|β̂j|) > M′. Therefore, P(Cj) < ε/2 + P(β ̂j ≠ 0, |β ̂j| < Mn−1/2, n1/2qλn(|β̂j|) > M′) < ε.

To prove the second part of part b, because

after the Taylor series expansion of the last term, we conclude that
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To prove part c, we consider β1 ∈ Rs on the boundary of a ball around β01, that is, β1 = β01 +

n−1/2u with |u| = r for a fixed constant r. From the penalized estimating function , we
have

where  is between βj and β0j for j = 1, …, s. Because A11 is non-singular, the second term

on the right side is larger than a0r2n−1/2, where a0 is the smallest eigenvalue of . The

first term is of order rOp(n−1/2). Because , the third term is dominated by
the second term. Therefore, for any ε, if we choose r sufficiently large so that for large n, the
probability that the absolute value of the first term is larger than the second term is less than
ε, we then have

Applying the Brouwer fixed-point theorem to the continuous function , we see

that  implies that  has a

solution within this ball or, equivalently,  has a solution within this ball. That

is, we can choose an exact solution  to  with β ̂ = β ̂0+Op(n−1/2). Thus β ̂ is
a zero-crossing of UP (β).

APPENDIX B: CONDITIONAL DISTRIBUTION OF (β^1∗−β^1)

Here we justify the resampling procedure for the penalized Buckley–James estimator.
Similar justifications can be made for other estimators. Under conditions D.1–D.3, we have
the following asymptotic linear expansion for the penalized Buckley–James estimating
function:

(B.1)

In addition,

where w1i comprises the components of wi corresponding to β1, and wi, i = 1, …, n, as given
by Lin and Wei (1992), are n independent mean-0 random vectors. Replacing the unknown
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quantities in wi with their sample estimators yields Wi. Recall that  satisfies

, where W1i comprises the components of Wi corresponding to β ̂1.

Applying (B.1) to β ̂1 and  yields

The conclusion then follows.
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Table 1

Simulation results on model selection with censored data: MRME and the average number of correct (c) and
incorrect (I) 0’s

Average number 0’s

Method MRME (%) C I

n = 50,σ = 3

 SCAD 69.48 4.73 .35

 Hard 73.41 4.30 .17

 LASSO 66.16 3.99 .11

 ALASSO 57.77 4.40 .17

 EN 76.48 3.54 .08

 Oracle 32.76 5 0

n = 50, σ = 1

 SCAD 40.11 4.78 .01

 Hard 69.79 4.18 .01

 LASSO 64.48 3.97 .01

 ALASSO 48.21 4.90 .01

 EN 95.55 3.49 0

 Oracle 31.30 5 0
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Table 4

Estimates of η in the stroke data, where η pertains to the parameters in the coarsening models λ̃1{G1(Z)} and

λ̃2{G2(Z)}

η1 η2

(int) −2.342(.152) .478(.082)

Albumin −.112(.089)

Creatinine −.492(.291) −.101(.091)

Sex −172(.113) .043(.079)

Glucose −.286(.164) −.067(.084)

ICU −.470(.155) −.304(.091)

Age .045(.124) .006(.087)

Type −.101(.144) −.213(.094)

Race .084(.122) −.034(.085)

LOS −.007(.140) −.045(.092)
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