
Running head: MULTIVAR 1

Penalized Estimation and Forecasting of Multiple Subject Intensive Longitudinal Data

Zachary F. Fisher1, Younghoon Kim2, Barbara L. Fredrickson2, and Vladas Pipiras2

1The Pennsylvania State University
2University of North Carolina at Chapel Hill

ar
X

iv
:2

00
7.

05
05

2v
2 

 [
st

at
.M

E
] 

 4
 F

eb
 2

02
2



MULTIVAR 2

Abstract

Intensive Longitudinal Data (ILD) is an increasingly common data type in the social and

behavioral sciences. Despite the many benefits these data provide, little work has been

dedicated to realizing the potential such data hold for forecasting dynamic processes at the

individual level. To address this gap in the literature we present the multi-VAR framework,

a novel methodological approach allowing for penalized estimation of ILD collected from

multiple individuals. Importantly, our approach estimates models for all individuals

simultaneously and is capable of adaptively adjusting to the amount of heterogeneity

present across individual dynamic processes. To accomplish this we propose a novel

proximal gradient descent algorithm for solving the multi-VAR problem and prove the

consistency of the recovered transition matrices. We evaluate the forecasting performance

of our method in comparison with a number of benchmark methods and provide an

illustrative example involving the day-to-day emotional experiences of 16 individuals over

an 11-week period.
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Penalized Estimation and Forecasting of Multiple Subject Intensive Longitudinal Data

Introduction

Intensive Longitudinal Data (ILD) is increasingly available to social and behavioral

scientists. With this increased availability come new opportunities for modeling and

predicting complex biological, behavioral and physiological phenomena. Despite these new

opportunities psychological researchers have not taken full advantage of promising

opportunities inherent to this data, the potential to forecast psychological processes at the

individual level. To address this gap in the literature we present a novel modeling

framework which addresses a number of topical challenges and open questions in the

psychological literature on modeling dynamic processes. First, how can we model and

forecast ILD when the length of individual time series and the number of variables

collected are roughly equivalent, or when time series lengths are shorter than what is

typically required for time series analyses? Second, how can we best take advantage of the

cross-sectional (between-person) information inherent to most ILD scenarios while

acknowledging individuals differ both quantitatively (e.g. in parameter magnitude) and

qualitatively (e.g. in structural dynamics)? Despite the acknowledged between-person

heterogeneity in many psychological processes is it possible to leverage group-level

information to support improved forecasting at the individual level? In the remainder of

the manuscript we attempt to address these and other pressing questions relevant to the

forecasting of multiple-subject ILD.

Forecasting in Psychology

Technological developments have significantly eased the burden of collecting intensive

longitudinal data (ILD) for psychological researchers. This includes sensor-based

physiological measurements, health and movement data, measures of behavioral and

emotional states, as well as data from many other noisy and complex systems. Increased

availability has brought with it the realization that ILD presents unique opportunities for

psychological scientists looking to model, forecast and modify complex time-dependent
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processes. Despite this realization the lion’s share of methods development within

psychology has focused exclusively on explanation. That is, psychological researchers have

primarily been concerned with the characterization of dynamic processes using a

combination of theoretical knowledge and measures of model fit to guide model

construction.

Despite this focus on explaining the past over predicting the future the development of

modern forecasting methods specifically tailored to psychological data hold great promise

for the field. For example, the accurate prediction of emotional and physiological states

would be an invaluable tool for clinicians tasked with monitoring and intervening on

individual behavior. Furthermore, accurate forecasts are helpful for identifying when and

to whom an intervention should be applied. Forecasting also presents psychologists with a

practical framework to assess conflicting evidence from empirical studies and competing

causal theories. In this paper we will focus specifically on forecasting daily measures of

emotion dynamics and psychopathology, addressing some of the unique challenges inherent

to this type of data.

Vector Autoregressive Models in Psychology

In the social science and behavioral sciences Vector Autoregressive (VAR) models and

their many flavors (e.g., Structural VAR, graphical VAR, time-varying VAR) have become

a common approach for modeling ILD. VAR models have been used to model binge eating

behaviors (Wild et al., 2010), dynamics among mother-infant dyads (Ji et al., 2020; Chen

et al., 2020), substance use patterns (Zheng et al., 2013), and persistent depressive

symptoms (Groen et al., 2019), to name a few. VAR models are a natural fit for many

idiographic analyses as they provide a concise interpretation of inter-variable relations.

They are also visualized easily using path or network connection diagrams, and allow for

the inclusion of many potentially relevant variables. This is useful when theory does not

give concrete guidance on whether a variable is related to the process under study.

VAR models are also a mainstay of forecasting in many fields. Consider econometrics,
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for example, where the widespread adoption of VAR models in the mid-1980s marked the

beginning of a boon in forecasting practice (Allen and Morzuch, 2006). These are just a

few reasons why VAR models represent a natural jumping off point for applied social

science researchers looking to apply forecasting methodologies in their work. However,

there are a number of features common to ILD research which deserve additional attention

in the context of VAR modeling.

The first issue we address was described by Sims (1980) as the "profligate

parameterization" of the unrestricted or canonical VAR model. Indeed, the number of VAR

parameters grows quadratically with each component series added to the system of

equations. In this way the flexibility of the VAR model specification is also its Achilles’

heel, there are a large number of unknown coefficients relative to the information available

from the data. This imbalance can lead to overfitting the sample data and poor forecasting

performance (Robertson and Tallman, 2001). This presents a potential problem for many

ILD scenarios where time series lengths typically fall between 30 and 100 measurement

occasions and many variables are collected (e.g., a 10− 20 item scale). In other words,

employing the VAR model in applied research can be a delicate operation. One wants to

include all relevant variables in a model to ensure the dynamics under study are

well-captured, however, stringent theoretically-motivated restrictions are generally required

to obtain a useful model.

The second issue our proposed method aims to address is that of multiple-subject

ILD, and more specifically how to best utilize cross-sectional information when modeling

intra-individual processes. This is a fundamental question in both psychology and time

series analysis. In psychology, much attention has been paid to multilevel modeling as a

means to synthesize time series data collected on multiple individuals (Bringmann et al.,

2013; Epskamp et al., 2018). This approach is promising when the number of variables in

the analysis is not large and individuals do not differ substantially in terms of their overall

model structure. Another approach for leveraging cross-sectional information for
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multivariate time series modeling at the individual-level is Group Iterative Multiple Model

Estimation (GIMME; Gates and Molenaar, 2012). The GIMME approach is built on the

Structural-VAR (S-VAR) framework and is available in the gimme package (Fisher, 2021).

Foundations of the Proposed Approach

With our approach we hope to retain the features of VAR modeling that are so

attractive to social science researchers while confronting the problem of

overparameterization. To accomplish this we turn to methods that induce sparsity on the

VAR parameter space through regularized estimation (Basu and Michailidis, 2015a,b).

Although it is also possible to address this issue by imposing some lower-dimensional

structure on the data matrix, as in dynamic factor analysis (Molenaar, 1985; Stock and

Watson, 2002), or by combining dimension reduction and VAR modeling (Bulteel et al.,

2018b), we focus our attention on the Least Absolute Shrinkage and Selection Operator

(LASSO; Tibshirani, 1996) and adaptive LASSO (Zou, 2006) frameworks. Although

originally developed for cross-sectional data these methods have been readily applied in the

domain of multivariate time series analysis and a number of authors have found these

methods to be successful in forecasting applications. For example, Li and Chen (2014)

found standard LASSO methods outperformed dynamic factor models in out-of-sample

forecasting and Medeiros and Mendes (2016); Kock and Callot (2015) found the adaptive

LASSO (Zou, 2006) to outperform standard forecasting approaches in both simulation

studies and real-world data problems.

In the cross-sectional setting a number of authors have considered applying LASSO

methods to data that arises from some fixed number of groups (Gross and Tibshirani, 2016;

Ollier and Viallon, 2017). These groups may represent different cohorts of individuals or

different genres of movies, however, the underlying theme of these approaches is that we

might learn more about each individual group or genre by structuring the combined data

in some reasonable way. Here a sensible approach should return a pooled solution if in fact

the underlying relations are identical across units of analysis, and return strictly
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unit-specific results if the units share little in common. Most importantly, a sensible

approach would be capable of operating in the gray area where some relations are common

across units and others are unit-specific.

To the best of our knowledge the multi-VAR approach presented here is the first work

that combines regularized estimation of time series models (Basu and Michailidis, 2015a,b)

with the problem of supervised learning of multiple-group data (Gross and Tibshirani,

2016; Ollier and Viallon, 2017). We believe this combination is exceptionally well suited

many problems in the social sciences. In addition, we make a number of unique

contributions to the existing literature. First, we prove a consistency result for our

estimator in the proposed multiple-subject estimation problem. Second, we propose a

proximal gradient descent approach for solving the multiple-unit LASSO (standard and

adaptive) problem based on the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

of Beck and Teboulle (2009). Third, we evaluate the performance of our proposed method

in a simulation study and a real data example from Fredrickson et al. (2017) involving

day-to-day emotional experiences. Finally, we provide a convenient R package for applied

researchers looking to use the proposed methods (Lane et al., 2019).

Estimating Vector Autoregressive Models

We focus our attention on the multivariate time series, {Xt}t∈Z = {(Xj,t)j=1,...,d}t∈Z.

Xt is considered to follow a vector autoregressive model of order p, VAR(p), if

Xt = Φ1Xt−1 + . . .+ ΦpXt−p + εt, t ∈ Z, (1)

for some d× d matrices Φ1, . . . ,Φp and a white noise series {εt}t∈Z ∼WN(0,Σε)

characterized by E(εt) = 0 and E(εtε
′
s) = 0 for s 6= t. For simplicity we assume Xt is of

zero mean. Generally, a unique causal stationary solution to (1) can be ensured by

satisfying the stability condition given by det(Φ(z)) 6= 0, for |z| ≤ 1, z ∈ C, where

Φ(z) = Id −Φ1z − . . .−Φpz
p.
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Estimation of Unrestricted VAR Models

It is common to estimate (1) using ordinary least-squares (OLS) regression,

(Φ̂1, . . . , Φ̂p) = argmin
Φ1,...,Φp

T∑
t=p+1

‖Xt −Φ1Xt−1 − . . .−ΦpXt−p‖2
2, (2)

where T is the sample size and ‖ · ‖2 denotes the Frobenius (Euclidean) norm, which is

equivalent to running component-wise regression on each of the d VAR equations. In this

case the estimate Σ̂ε is defined as the sample variance-covariance matrix of the residuals.

When there are no restrictions on Φ the OLS estimates are asymptotically equivalent to

those produced by Generalized Least Squares (GLS) (Zellner, 1962). Under the assumption

that εt ∼ N (0,Σε) are independent across t, the OLS estimates obtained by

component-wise regression are also the Maximum Likelihood (ML) estimates (Lütkepohl,

2007). These estimators are asymptotically normal under mild assumptions with explicit

variance-covariance matrices.

A drawback of the unrestricted VAR model is the large number of parameters that

must be estimated. In fact, the number of parameters scales quadratically as the number of

component series increases. Assuming no mean structure, pd2 + d(d− 1)/2 model

parameters need to be estimated for the unrestricted VAR(p) model. This means that, for

example, a VAR(1) model with 10 component series requires estimating 145 parameters.

With such a large parameter space it is likely that many of the estimated linear

relationships in an unrestricted VAR model will be spurious and the regression matrix X′X

ill-conditioned. Furthermore, when (T − p)d < pd2 + d(d− 1)/2 estimation via OLS is not

possible.

Estimation of Sparse VAR Models

As a consequence of the dimensionality issues surrounding unrestricted VAR

estimation, much attention has been paid to methods for reducing the VAR parameter

space. Ideally the selection of relevant series would be guided by theory. Unfortunately, the
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ease associated with many types of electronic data collection in the behavioral and social

sciences has allowed for the collection of many repeated measures, all of which are

hypothesized as relevant to the phenomena under study. For this reason it is often difficult

to prune variables a priori when theory points to their inclusion. Several data-driven

approaches have been presented in the literature to overcome this issue of

high-dimensionality (Basu and Michailidis, 2015a; Han and Liu, 2013). In our current

approach we assume sparsity of Φ and use penalized estimation to recover the model

parameters.

LASSO Estimation. To set up the Least Absolute Shrinkage and Selection

Operator (LASSO; Tibshirani, 1996) the VAR model and associated data are expressed in

a regression form 

X′
p+1

X′
p+2
...

X′
T


︸ ︷︷ ︸
Y

=



X′
p . . . X′

1

X′
p+1 . . . X′

2
... . . . ...

X′
T−1 . . . X′

T−p


︸ ︷︷ ︸

X



Φ′1

Φ′2
...

Φ′p


︸ ︷︷ ︸
B∗

+



ε
′
p+1

ε
′
p+2
...

ε
′
T


︸ ︷︷ ︸
E

(3)

or, equivalently,

vec(Y) = (Id ⊗X )vec(B∗) + vec(E), (4)

Y︸︷︷︸
Nd×1

= Z︸︷︷︸
Nd×q

B∗︸︷︷︸
q×1

+ E︸︷︷︸
Nd×1

, (5)

where the star ∗ indicates the true parameter, N = T − p and q = pd2. Here, we assume

that B∗ is s-sparse (i.e. Σp
i=1‖vec(Φi)‖0 = ‖B‖0 = ∑q

i=1 1{Bi 6=0} = s where ‖ · ‖0 is the

`0-norm). With this structure in place we can write the LASSO estimator as

B̂ = argmin
B∈Rq

1
N
‖Y − ZB‖2

2 + λ‖B‖1, (6)
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where ‖B‖1 = Σq
i=1|Bi| for B = (B1, . . . , Bq)

′ and λ > 0 is the regularization penalty

parameter. In (6) the scaling constant 1
N

(corresponding to λ) sometimes takes the values
1

2N , 1 and 2 depending on the convention. Here N = T − p refers to the time series length

of a given individual in the sample. Changing the scaling context corresponds to a

reparameterization of λ and does not impact the estimation of (6). Large values of λ

typically correspond to sparser solutions.

Multiple-Subject Penalized VAR

Up to this point we have presented the VAR model and optimization problem in terms

of a single multivariate time series. This was useful for describing the estimators, however,

the majority of ILD and many psychophysiological applications involve observing the same

variables across multiple subjects. With multivariate repeated measurements collected

from multiple subjects we are now interested in estimating the sparse parameter vectors

B̂1, . . . , B̂K for K individuals. Rarely if ever are the relationships among items strictly the

same across any two individuals in the sample. However, it is certainly possible and maybe

even expected that certain qualitative aspects of a dynamic process are similar across

individuals. For this reason, strategies involving the estimation of K separate LASSO

problems are generally suboptimal. To overcome this limitation we propose the multi-VAR

modeling framework for multivariate time series data collected from multiple subjects.

The multi-VAR Approach

The approach described herein relies on the following decomposition of B∗k,

B∗k = µ∗ + ∆∗k, k = 1, . . . , K, (7)

where µ∗ ∈ Rq corresponds to the common effects across K individuals and ∆∗k ∈ Rq

corresponds to the effects unique to individual k. Now, considering the regularization

parameters λ1 and λ2,k, k = 1, . . . , K, which govern the cross-sectional heterogeneity in our
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solution we can write the revised optimization problem as

(µ̂, ∆̂1, . . . , ∆̂K) = argmin
µ,∆1,...,∆K

1
N

K∑
k=1
‖Y(k) − Z(k)(µ+ ∆k)‖2

2 + λ1‖µ‖1 +
K∑
k=1

λ2,k‖∆k‖1. (8)

As mentioned previously we prefer a sensible approach to handling multivariate time series

data arising from multiple individuals, specifically in the case where the cross-sectional

heterogeneity of the individual processes is unknown. If the individuals share very little in

common, in terms of their time series, this approach should return essentially independent

solutions. That is the results should be similar to what would be obtained from estimating

K separate VAR models. In (6), larger values of the penalty parameter λ will increasingly

drive the corresponding coefficient matrix B to zero. Similarly, in (8), large enough values

of λ1 will shrink the common effect matrix, µ̂ towards zero, and we will be left with the

individual-specific effects B̂k = ∆̂k. This would essentially produce results similar to those

obtained from estimating K independent VAR models.

Likewise, if the individual-level processes are essentially homogenous, a sensible

approach would return results similar to estimating a single pooled model for all

individuals in the sample. In this case we would expect that large enough values of λ2,k

would drive the individual-specific transition matrices, ∆̂k, towards zero, leaving only the

common effect transition matrix to explain the individual-level results, B̂k = µ̂. Finally, if

an individual’s process has both common and unique components, a sensible approach

would attempt to balance these contributions. In this case the penalty parameters, λ1 and

λ2,k, are selected to optimally govern the contribution of both the common (µ̂) and unique

(∆̂k) effects to each individual’s dynamics (B̂k).

Using the decomposition presented in (7) it is also possible to rewrite the right-hand
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side (RHS) of (8) such that µ only appears in the penalty term as

argmin
µ,B1,...,BK

1
N

K∑
k=1
‖Y(k) − Z(k)Bk‖2

2 + λ1‖µ‖1 +
K∑
k=1

λ2,k‖Bk − µ‖1

= argmin
µ,B1,...,BK

1
N

K∑
k=1
‖Y(k) − Z(k)Bk‖2

2 + λ1

(
‖µ‖1 +

K∑
k=1

λ2,k

λ1
‖Bk − µ‖1

)
. (9)

To simplify the following discussion let rk = λ2,k/λ1 for k = 1, . . . , K. Now, it is important

to note, as in Gross and Tibshirani (2016), that any choice of the regularization

parameters, λ2,1
λ1
, . . . ,

λ2,K

λ1
, and coefficients B1,j, . . . , BK,j identifies a specific solution for the

common effects in µ where µj is the weighted and shrunken median of B1,j, . . . , BK,j as in

Ollier and Viallon (2017) .

Indeed, the penalty term in (9) is separable in its q parameters such that we can

consider a single explanatory coefficient Bk,j and associated weight rk for k = 0, . . . , K.

Using this specification we can rewrite the penalty term in (9) as the sum of the generic

one-dimensional unconstrained optimization problem

argmin
µj

K∑
k=0

rk|Bk,j − µj|. (10)

Implicitly we set r0 = 1 and B0,j = 0 to match the penalty construction in (9). Expressed

as in (10), the solution µ̂j becomes a properly weighted median of (B0,j = 0, B1,j, . . . , BK,j).

In this setting a number of scenarios relevant to applied researchers are worth considering,

as discussed in Gross and Tibshirani (2016). First, if rk = r, k = 1, . . . , K and

r ∈ ( 1
K
, 1
K−2) the group effect µ̂j will be nonzero if and only if all Bk,j are of the same sign,

in which case it will be equal to the minimum value of (B1,j, . . . , BK,j). This means for the

group effect to exist it must be present for all individuals in the sample and only then will

deviations from the group be captured in the individual (B1,j, . . . , BK,j). Second, if

ΣK
k=1rk < 1 we are guaranteed the group effect µ̂j will equal zero and the problem will

resemble fitting K individual penalized VAR models. Third, if rk = r, k = 1, . . . , K and
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r > 1 the group effect µ̂j will effectively be the median of (B1,j, . . . , BK,j). In general, the

weights rk in the above minimization problem can be understood as a penalty applied to

idiosyncratic dynamics (coefficients) not shared by the entire sample.

The Adaptive multi-VAR Approach

It is also possible to develop an adaptive-LASSO (Zou, 2006) version of the

multi-VAR approach for the VAR model by minimizing the objective function

1
N

K∑
k=1
‖Y(k) − Z(k)(µ+ ∆(k))‖2

2 + λ1

(
ω‖µ‖1 +

K∑
k=1

λ2,k

λ1
νk‖∆(k)‖1

)
, (11)

where ωj = 1/|B̃`j ,j| and νk,j = 1/|B̃k,j − B̃`j ,j| with B̃k,j and B̃`j ,j defined next. For each of

the k individuals in the sample the estimate B̃k = (B̃k,j) of Bk can be obtained using

maximum likelihood or OLS when the number of time points for each individual (Nd)

exceeds the number of variables (pd2 + d(d− 1)/2), or from (9) when this condition is not

met. In addition, B̃`j ,j can be taken as the median coefficient estimate for variable j across

all K individuals such that B̃`j ,j = median(B̃1,j, . . . , B̃K,j). A benefit of the adaptive

LASSO approach in comparison to (8) is that we are able to weight the `1 penalty. By

weighting the `1 penalty we are able to help ensure coefficients we might expect to be

prominent in the model (based on a consistent first stage estimator, such as OLS) receive

smaller penalties. In certain contexts this helps to reduce the bias of the LASSO estimator

and can provide a number of benefits, including consistency in both variable selection and

parameter estimation (Zou, 2006). A nice property of this approach is that we can

reexpress (9) and (11) as a weighted LASSO problem, namely,



Y(1)

Y(2)

...

Y(K)


︸ ︷︷ ︸
Y

=



Z(1) Z(1) 0 . . . 0

Z(2) 0 Z(2) . . . 0
... ... ... . . . ...

Z(K) 0 0 . . . Z(K)


︸ ︷︷ ︸

Z



µ∗

∆(1)∗

...

∆(K)∗


︸ ︷︷ ︸
θ∗

+



E(1)

E(2)

...

E(K)


︸ ︷︷ ︸
E

, (12)
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where the criterion we are now concerned with minimizing is given by

argmin
θ

1
N
‖Y −Zθ‖2

2 + λ1‖θ‖1,w (13)

and ‖θ‖1,w = ∑
iwi|θi| with w′ = (1′d, (λ2,1/λ1)1′d,. . . , (λ2,K/λ1)1′d) for (9) and

w′ = (ω′ , (λ2,1/λ1)ν ′1,. . . , (λ2,K/λ1)ν ′K) for (11).

It is worth nothing that the design matrix Z in (12) is not of full column rank even if

the number of observations per subject will exceed the number of parameters. In

particular, OLS for (12) is not feasible. Yet, under sparsistency, results on consistency and

sparsistency for LASSO estimation are available as discussed in the appendix below.

Computational Algorithm and Estimation

Solving (13) requires iterative methods as the `1 penalty is not differentiable and no

analytic solutions exist. A popular schema for solving penalized regression problems is

coordinate descent as popularized by Friedman et al. (2010). Coordinate descent has

proved to be an exceedingly effective algorithm for exploiting the sparsity of the coefficient

vector structure, partly because it moves parameters one at a time. Coordinate descent is

easier to implement than many competing approaches and this has likely also contributed

to its popularity. Another class of methods for solving (13) fall under the umbrella of

proximal gradient descent. Unlike coordinate descent, proximal gradient descent moves all

the parameters of a model at once, and may provide efficiency gains for certain types of

problems, such as the estimation of high-dimensional VAR models (Nicholson et al., 2017).

We have chosen to implement our approach in the proximal gradient framework due to

these desirable qualities, as well as the generality of the proximal framework to a

wide-range of time-series optimization problems applicable to the multi-VAR framework.

In the remainder of this section we introduce the proximal gradient descent algorithm we

have implemented for solving (13) and describe a number of useful modifications for

enhancing computational efficiency.
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Proximal algorithms have proved incredibly useful in the fields of statistics, machine

learning and image processing for solving complex optimization problems involving

composite objective functions, such as the one presented in (9). In fact, many methods

commonly used in psychometric research, such as Expectation Maximization (EM),

Majorization-Minimization (MM) and Iteratively Reweighted Least Squares (IRLS), can be

shown to be proximal algorithms (Polson et al., 2015). Broadly, a proximal algorithm refers

to any algorithm where a proximal operator is applied to a subproblem of a larger

optimization routine, often in a nonsmooth setting where the aim is simplifying the

problem of interest. It is beyond the scope of the current work to describe the proximal

operator itself in any generality, however, a detailed treatment of proximal operators and

algorithms is given by Parikh and Boyd (2014). In the following section we will present a

proximal gradient descent algorithm for solving (9) and (11) in the form of (13).

To develop some intuition for the proximal gradient algorithm let us first consider the

unconstrained minimization of the convex differentiable function f(θ). At the global

minimum of f(θ) a necessary and sufficient condition for the optimality of parameters

θ∗ ∈ Rp is given by the zero-gradient condition ∇f(θ∗) = 0. Typically, gradient descent

methods require two primary decisions be made at each successive iteration. First, a

direction of descent must be determined. This direction will be the direction of steepest

descent −∇f(θs) for s = 0, 1, 2, . . .. Second, a step size (or scale factor) must be chosen to

govern the size of the step taken. This step size is governed by a step size parameter γs,

such that θs+1 = θs − γs∇f(θs) or equivalently

θs+1 = argmin
θ∈Rp

{
f(θs) + 〈∇f(θs),θ − θs〉+ 1

2γs‖θ − θ
s‖2

2

}
. (14)

Here, we can see the unconstrained minimization problem in (14) is simply the local linear

approximation to f(θ) supplemented with a quadratic smoothness term.

Unlike the problem in (14) the optimization problems described in (9) and (11) are
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both nondifferentiable due to presence of the weighted `1 penalty. At this point it is helpful

to consider the decomposition of f(θ) into separable components g(θ) and h(θ) such that

f(θ) := g(θ) + h(θ) where g(θ) is convex and differentiable and h(θ) is convex but

nondifferentiable. In doing so we can define a gradient update where g(θ) is approximated

as in (14) and we leave the nonsmooth h(θ) in its original form

θs+1 = argmin
θ∈Rp

{
g(θs) + 〈∇g(θs),θ − θs〉+ 1

2γs‖θ − θ
s‖2

2 + h(θ)
}
. (15)

Now, for the weighted LASSO problem in (13), this decompositions takes the form

g(θ) = 1
N
‖Y −Zθ‖2

2 (16)

h(θ) = λ1‖θ‖1,w = λ1
∑
i

wi|θi|, (17)

where ∇g(θ) = Z ′(Y −Zθ) and the composition of w is determined both by the

similarity of individuals in the sample and the nature of the penalization scheme.

Fortunately, in the case of (13) the proximal operator for g(θ) has a closed-form

solution whose evaluation is negligible in terms of computational costs. We can write the

ith component of the proximal operator proxh,λ1 as

(proxh,λ1(θ))i = proxλ,wi
(θi) =


θi + λ1wi, if θi < −λ1wi

0, if |θi| ≤ λ1wi

θi − λ1wi, if θi > λ1wi

(18)

due to the separable sum property and the definition of the weighted `1 norm. Using (18)

we can now write gradient update given (15) as a proximal gradient update

θs+1 = proxh,γs {θs − γs∇g(θs)} (19)

= proxh,γs

{
θs − γs

(
Z ′(Y −Zθs)

)}
, (20)
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where the precomputation of Z ′Z and Z ′Y can further reduce the computational cost of

each update as the objective functional value will only differ by a constant. A classic

proximal gradient schemes for solving (13) is the Iterative Shrinkage-thresholding

Algorithm (ISTA). In the standard ISTA formulation step size is treated as a constant

across descent iterations and no smoothing techniques are used to accelerate the descent.

To overcome these limitations Beck and Teboulle (2009) proposed a general Fast Iterative

Shrinkage-Thresholding Algorithm (FISTA) for solving gradient descent problems. In the

remainder of this section we describe the version of FISTA we have implemented for the

multi-VAR problems described above.

As mentioned previously the choice of the step size parameter γs in gradient descent

can have a large impact on the convergence rate of the estimator, and also whether a global

minimum is reached. One convenient method for determining an approximately optimal

step size is to perform a backtracking line search (Boyd and Vandenberghe, 2004) within

each iteration. In this scheme the step size is determined by iteratively rescaling γ by η

where η ∈ (0, 1) until

f(θ −∇f(θ)) ≤ f(θ)− γα‖∇f(θ)‖2, (21)

where α ∈ (0, 0.5) is the second constant, in addition to η, used to govern the backtracking

procedure. Based on previous experience we have chosen a value of α = 0.5, which

corresponds to a maximum decrease in f between 1% and 50% and η = 0.5 which

corresponds to a moderate value of granularity as Boyd and Vandenberghe (2004, p. 466)

suggest η should be chosen within the range of 0.1 (more crude search) and 0.8 (less crude

search).

A final improvement to the typical gradient descent procedures corrects the

"zig-zagging" descent often observed during iterative computation of (19), which may slow

convergence (Hastie et al., 2015). A solution initially proposed by Nesterov (2007) and

incorporated into FISTA by Beck and Teboulle (2009) uses weighted combinations of the

past gradient descent directions to smooth the global descent path. Another nice feature of
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Algorithm 1: Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) for Solving
(13)
Input: Set θ0 = ψ0 = 0, c0 = 1, α = 0.5, η = 0.5, γ = 0.5, choose an ε > 0.
Output: A solution θs.
for s = 0, . . . , smax do

Update cs+1 := 0.5
(
1 +

√
1 + 4(cs)2

)
and terminate if

‖θs+1 − θs‖2 ≤ εmax{1, ‖θs‖2}
while f(θ −∇f(θ)) > f(θ)− γα‖∇f(θ)‖2 do

θs+1 = proxγs,h {ψs − γs∇g(ψs)}
ψs+1 = θs+1 + cs−1

cs+1 (θs+1 − θs)
γs = ηγs

(25)

end
end

proximal gradient descent is that the acceleration approach suggested by Nesterov (2007)

can be integrated into the proximal operator such that the gradient step now involves

cs+1 := 0.5
(

1 +
√

1 + 4(cs)2
)

(22)

θs+1 = proxγs,h {ψs − γs∇g(ψs)} (23)

ψs+1 = θs+1 + cs−1

cs+1 (θs+1 − θs) (24)

where the step size γs is chosen by the procedure while iterating until (21) is met. The

constant cs is updated at each iteration. Finally, we provide pseudocode describing our

algorithm in full.

Forecasting from the Estimated VAR Process

Here we provide a brief description of how forecasts are obtained from the estimated

VAR(1) transition matrices. For the multi-VAR approach 1-step ahead linear predictions of

Y(k)
T+1 for individual k is given by

Y(k)
T+1 = Z(k)

T (µ̂+ ∆̂k). (26)
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From (26) the h-step ahead forecast can be computed recursively for any horizon h.

Selection of the Penalty Parameters

Performance of the proposed multi-VAR approach is dependent on the selection of the

unknown penalty parameters λ1 and λ2,k, k = 1, . . . , K. Here we provide additional details

on how the penalty parameters are chosen in the simulation studies and empirical example.

The first step of our proposed procedure involves constructing a grid of plausible penalty

values. Following Friedman et al. (2010) we first identify λ1,max, or the smallest value of λ1

for which all the coefficients in the model will be zero. In the multi-VAR setting λ1,max is

equal to max|Z ′Y | where Z and Y are given in (13). From λ1,max we construct a grid

from λ1,max to λ1,max/1000 using equally spaced values on a log-scale. Across a number of

data contexts 20 values of λ1 and λ2,k were found to be sufficient. Following Ollier and

Viallon (2014, p. 32) the ratio λ2/λ1,k is chosen to vary on the interval (0, . . . , K) and this

ratio is used to solve for λ2,k,max, from which another grid is constructed, λ2,k,max to

λ2,k,max/1000, also on a log-linear scale.

To identify the optimal penalty parameters from our grid of candidate values we adapt

the rolling-window cross-validation (RWCV) procedure for high-dimensional VAR models

described by Bańbura et al. (2010), Song and Bickel (2011), and Nicholson et al. (2017) to

the multi-VAR problem. This procedure involves searching across the grid of

predetermined values described above and choosing the combination of penalty parameters

that minimize the h-step ahead mean-square forecast error (MSFE). Here h = 1, 2, 3, . . . is

the desired forecast horizon and for all analyses in this paper h = 1 is used to select the

penalty parameters. We chose to use this forecast horizon as ILD is often collected daily

and we hypothesized that one-day-ahead predictions have utility in behavioral, health and

social science applications. To implement the rolling-window cross-validation procedure we

divide each individual dataset into three periods. The first period is the initialization

period beginning at the first time point and ending at T1. Based on the literature above we

set T1 = T/3, or approximately 1/3 of the time series length. The second period is the
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training period, starting at T1 + 1 and ending at T2. We chose T2 to be equal to T − 3,

leaving a hold-out-sample of three observations in the final period (T2 + 1 to T ) for our

pseudo-out-of-sample forecast evaluation.

For each value of the λ1 and λ2,k grid we perform the following sequence. First, we

solve the problem in (13) using timepoints 1, . . . , T1 from each individual in the sample to

obtain µ̂ and ∆̂k. Separately for each individual these estimates are then used to forecast

Ŷ(k)
T1+1 and obtain the MSFE. We continue in this fashion, adding one observation at a time

to the initialization period and forecasting ahead h-units until we reach T2 − h, at which

time the forecast performance is aggregated across the (T2 − T1 − h+ 1) forecasts for each

combination of λ1 and λ2,k as in

MSFE(k)
λ1,λ2,k

= 1
T2 − T1 + 1

T2−1∑
t=T1

‖Ŷ(k)
t+1 −Y(k)

t+1‖2
2, (27)

and the values of λ1 and λ2,k which correspond to the smallest MSFE are chosen for

evaluating the forecast performance in the hold-out sample.

Performance Evaluation

To better understand the finite sample properties of the proposed models and

algorithm we conduct a Monte Carlo simulation designed to replicate some of the basic

features of ILD collected from multiple subjects.

Simulation Design

To evaluate the performance of the proposed approach for forecasting multiple subject

ILD we generated data according to a number of commonly encountered features: (1)

individual time series lengths of T = (30, 50, 100), (2) number of ILD variables collected

per individual d = (10, 20, 30), (3) total number of individuals in the sample K = (10, 20),

(4) the level of cross-sectional heterogeneity (low, medium and high) and (5) the type of

penalized VAR model employed; (a) VAR fit by LASSO for each individual in the sample

separately as in (6), (b) the multi-VAR as in (9), and (c) the adaptive multi-VAR(1) as in
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(11).

Across all design factors the d× d sparse transition matrices for each individual were

generated to have 5% nonzero entries. This means, for example, a multivariate time series

with d = 30 would have 45 nonzero coefficients in the data generating model. The position

of non-zero elements in each individual’s transition matrix were selected randomly given

the following constraints. In the low-heterogeneity condition, 2/3 of paths were common to

all individuals, and 1/3 of paths were completely unique to each individual. In the medium

heterogeneity condition, 1/2 of each individual’s paths were common and 1/2 were unique.

In the high-heterogeneity condition 1/3 were common and 2/3 were unique. Across all

conditions the individual transition matrix elements were drawn from U(0.1, 0.9) until the

stability condition from (1) was satisfied. For each of the 2× 3× 3× 3 data generating

conditions we conducted 20 replications.

Across all conditions the 3 final time points of each component series were withheld to

evaluate forecast accuracy. For the synthetic data examples cross-validation was performed

in two different ways. First, we assumed the non-zero transition matrices were known and

chose the penalty parameters that resulted in the smallest estimation error (e.g.

‖B̂−B‖F/‖B‖F ). This allowed us to compare the different approaches independent of the

cross-validation method. Of course, in real data scenarios B is unknown and it is

important to examine our proposed framework under realistic conditions. To this end, our

second approach used the RWCV procedure described earlier to select optimal values of λ1

and λ2 in our simulation study.

Outcome Measures

To evaluate the performance of our approach we looked at a number of measures

relevant to forecast performance. These measures include (a) sensitivity, (b) specificity, and

(c) root mean square forecast error (RMSFE). The mean sensitivity and the mean
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specificity were calculated as

Mean sensitivity = 1
K

K∑
k=1

(
Σj(B̂k,j 6= 0 andBk,j 6= 0)

Σj(Bk,j 6= 0)

)
, (28)

Mean specificity = 1
K

K∑
k=1

(
Σj(B̂k,j = 0 andBk,j = 0)

Σj(Bk,j = 0)

)
(29)

where Bk,j and B̂k,j are the true and the estimated transition matrix elements, respectively,

for individual k in a given design condition. Finally, the mean RMSFE is

Mean RMSFE = 1
K

K∑
k=1

√√√√√1
d

d∑
j=1

(Ŷ(k)
j,t−3+h −Y(k)

j,t−3+h)2 (30)

where (Ŷ(k)
j,t−3+h −Y(k)

j,t−3+h) is the h step ahead forecast error for individual k on variable j

and h ∈ {1, 2, 3}.

Simulation Results

As expected performance differences emerged when the penalty parameters were

selected using the estimation error metric compared to the rolling-window cross-validation.

This is clear when one compares Figures 1 and 2. An interesting pattern also emerges when

comparing the performance of each method in aggregate. For example, the individual

LASSO achieved a mean sensitivity of 0.88 and a mean specificity of 0.81 across all

conditions when the true data generating matrices were used to select λ1 and λ2, using the

estimation error metric. When the RWCV procedure was used mean sensitivity was 0.87

and a mean specificity 0.80. The standard multi-VAR achieved a mean sensitivity of 0.93

and a mean specificity of 0.78 for the estimation error condition and a sensitivity of 0.94

and specificity of 0.75 using RWCV. In aggregate, for the individual-level LASSO and

standard multi-VAR approaches sensitivity and specificity were similar across the two

penalty selection procedures. On the other hand, performance of the adaptive multi-VAR

approach differed considerably across the two approaches, with sensitivity increasing from

0.88 to 0.94 and specificity decreasing from 0.93 to 0.73. This suggests the adaptive
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multi-VAR approach suffered the most from the RWCV approach to selecting the penalty

parameters. Regardless, the RWCV approach is what will be used in practice we will focus

our discussion on this set of results.

Sensitivity and Specificity for Bk. We first consider recovery of the total effect

matrix for each individual. Although we would not expect the heterogeneity levels or

number of individuals in the sample to impact the individual LASSO performance, we are

certainly interested in their impact on the multi-VAR methods. Overall, the differing levels

of heterogeneity had little impact on parameter recovery outside of small decrement in

sensitivity for the multi-VAR approaches at the smallest time series length of T = 30. This

is also consistent with the aggregate findings as the multi-VAR approaches both showed a

decrement (0.03) in sensitivity and a slight increase (0.01− 0.02) in specificity, as

heterogeneity increased from low to high. In aggregate, both multi-VAR approaches

showed no change in sensitivity or specificity when the number of individuals included in

the sample was 10 or 20.

In contrast to the cross-sectional heterogeneity and the number of individuals

conditions, we would expect the number of timepoints and the number of variables to

impact the performance of all three approaches. For the standard multi-VAR sensitivity

increased as the time series length increased, from (0.88, 0.95, 0.99) for (T = 30, 50, 100),

respectively, while specificity remained relatively constant, (0.75, 0.74.0.74). For the

multi-VAR approach both sensitivity and specificity increased as the time series length

increased. Sensitivity and specificity ranged from (0.90, 0.95, 0.98) and (0.70, 0.74, 0.75),

respectively. For the individual-level LASSO sensitivity also increased as the time series

length increased, (0.73, 0.90, 0.98), while specificity decreased with larger sample sizes

(0.83, 0.80, 0.78).

The standard multi-VAR showed slight increases in both specificity as the number of

variables included in the analysis increased from 10 to 30. Specificity and sensitivity

increased by 0.02 and 0.05, respectively. Similarly, the individual LASSO showed increases
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in sensitivity 0.04 and specificity 0.02 as the number of included variable increased. The

multi-VAR approach showed no changes in sensitivity as the number of variables increased,

and a small increase in specificity, from 0.69 to 0.76. It should be noted that for the

individual-LASSO the time series lengths and variable dimensions considered here are quite

small.

Sensitivity and Specificity for µ. In addition to looking at the recovery of Bk,

we are also interested in the recovery of the common effect matrix µ. Figure 3 shows the

sensitivity and specificity for the two multi-VAR approaches in recovering the common

effects. We do not include the individual-level LASSO here as it does not explicitly model

group and unique model components. It is clear from the sensitivity plots in Figure 3 that

both multi-VAR procedures do well in consistently capturing the common effects across all

simulation blocks (sensitivity = 0.99). In terms of specificity, averaged over all simulation

conditions, the standard multi-VAR obtains a specificity of 0.86 and the adaptive version

0.87. Importantly, although we see slight increases in specificity as heterogeneity increases

and µ becomes sparser, both approaches perform well in terms of identifying the zero

elements of µ.

It is also worth examining the recovery of the unique effect matrices ∆k. Figure 4

shows the sensitivity and specificity for the two multi-VAR approaches in recovering the

effects unique to each individual. As one might expect the sensitivity of our approaches for

recovering ∆k is lower when compared to the common effect matrix, as these effects are less

persistent in the parameter space. Here we see a slight increase in sensitivity to recovering

∆k as µ becomes sparser, but this is mostly at the smallest number of timepoints T = 30.

Specificity of both approaches remains high across all simulation conditions suggesting that

recovery of the unique effects is quite balanced across the two performance measures.

Forecasting Performance. The RMSFE across all simulation conditions and

forecast horizons are presented in Table 1. Again, these results are tabulated using the

penalty parameters chosen with RWCW procedure. As mentioned previously, for the
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individual LASSO we would not expect forecasting performance to be impacted by

heterogeneity levels or the number of individuals in the sample. In aggregate, collapsing

across the other simulation factors, this was also true for both multi-VAR approaches. In

addition, for both time series length and the number of variables, all three penalized

regression procedures showed small decreases in RMSFE for the 1-unit forecast horizon as

time series length and number of variables increased. For forecast horizons of 2 and 3 there

was less variability across the approaches and simulation factors.

For the simulation conditions we also examined the performance of various benchmark

methods; (a) the series mean, (b) the AR(1) model for each component series, and (c) the

VAR(1) model. The RMSFE for these benchmark methods are presented in Table 2. For

the forecast horizon of 1 the regularization methods outperformed the benchmark methods

in terms of RMSFE, (LASSO = 0.89, multi-VAR = 0.87, multi-VAR (A) = 0.89, mean =

1.00, AR(1) = 1.00, VAR(1) = 1.26). For the forecast horizon of 2, the estimators

performed more similarly, (LASSO = 0.95, multi-VAR = 0.95, multi-VAR (A) = 0.95,

mean = 1.00, AR(1) = 1.00, VAR(1) = 1.31). This trend continued for the forecast

window of 3, (LASSO = 0.97, multi-VAR = 0.97, multi-VAR (A) = 0.97, mean = 1.00,

AR(1) = 1.00, VAR(1) = 1.34).

An Illustrative Example

We now present an empirical example based on Fredrickson et al. (2017) who

examined the day-to-day emotional experiences of a nonclinical adult sample across an

eleven week period. Each evening across an 11-week period participants evaluated their

daily emotional experiences using the modified Differential Emotions Scale (mDES)

(Fredrickson, 2013). The mDES is a 20-item measure representing ten positive emotions

and ten negative emotions. For the purpose of our current study we included all 10

indicators for each of the emotion constructs. The question of how best to handle missing

data within penalized estimation framework is an open question and currently missing data

routines are not supported in the multi-VAR framework. For this reason we retained
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subjects with less than 10% missing data and imputed the missing values component-wise

using the predicted values from a single run of the Kalman Filter. This procedure left us

with 16 subjects on which to conduct our analysis.

For each of these 16 individuals in our sample we partitioned the data matrix into a

training and test set. The training set contained the first 77 days of the 82 day observation

period and was used to estimate the various model parameters. The test set contained the

final 5 days of the observation period and was used to evaluate the accuracy of the different

methods. In addition to the individual-level LASSO and multi-VAR approaches (standard

and adaptive) we also considered some benchmark forecasting methods. These methods

include (a) the series average where all future forecasts are equal to the mean of the

training data, (b) a naïve method where all forecasts are set to the value of the last

observation in the training set, (c) a drift method which consists of drawing a straight line

between the first and final observation of the training set, and extrapolating that trend line

into the test set, (d) an AR(1) model fit to each component of the training series and (e)

an unrestricted VAR(1) model. Root Means Squared Forecast Error was used to evaluate

forecasts for each of the 5 forecast horizons. Both the individual-level LASSO and

multi-VAR approaches require tuning the λ regularization parameters. To select the

optimal λ values we used the rolling-window cross-validation approach described previously.

The 1− 5-step ahead forecast accuracy for the individual methods are given in Table

3. The LASSO-based approaches performed similarly and obtained the smallest forecast

error across the forecasting approaches we evaluated. Within the LASSO approaches the

two multi-VAR approaches performed the best in aggregate. In addition, Figure 5 provides

a snapshot of the recovered transition matrices across the three approaches. In the first

row of the figure the transition matrices for Subject 1 from each algorithm are shown. The

second row of Figure 5 provides a comparison of common effects resolved from the different

approaches. For the individual LASSO the matrix represents the median effects across all

individuals. For the multi-VAR approaches the transition matrices are the common effect
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matrices obtained from the algorithm directly. Lastly, for each method the third row

provides the path frequency counts across all individuals in the sample. Here one can see a

similar pattern of sparsity, as well as clustering within the positive and negative sub-scales.

This is consistent with previous studies which have used a bivariate dynamic factor

analysis approach to model positive and negative items from the mDES as representing

distinct but interdependent constructs (Fisher et al., 2020).

Discussion

This paper presents a novel approach for synthesizing multivariate time series

obtained from multiple individuals. This method is especially well-suited to ILD paradigms

when it is unclear how much individuals differ in terms of their dynamic processes. If

individuals share little in common results from the proposed method resemble what would

be obtained from fitting separate models to each individual. If individuals are homogenous

results resemble what would be obtained from pooling the data and fitting a single model

to the sample. Most importantly, if the truth lies somewhere in between these extremes -

certain dynamics are shared while others are idiosyncratic - results will reflect this and

provide researchers with new tools for isolating generalizable dynamics. Importantly, the

simulation results presented here confirm that across three different levels of cross-sectional

heterogeneity the proposed methods perform well in recovering the model dynamics and

forecasting compared to benchmark methods.

Despite these developments a number of limitations and opportunities for future

development are worth considering. First, although we addressed some limitations of the

VAR modeling in the context of ILD, others remain. For example, we assume the

parameters themselves do not vary across time. This may be a strong assumption in the

context of emotional dynamics. Second, in our simulation study and empirical example we

set the regularization parameter λ2 to be constant across individuals. In practice this is

unlikely to hold and relaxing this assumption would potentially lead to better performance

for the multi-VAR approaches, at an increased computational cost.
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Relatedly, a limitation of our current work and an important area for future

development involves identifying alternative methods for resolving the optimal multi-VAR

penalty parameters. It was noted in the simulation study performance of the adaptive

multi-VAR approach degraded considerably when the penalty parameters were chosen by

RWCV. Although there appears to be little consensus on which performance estimation

method works best in the case of time-series data, two approaches are often considered: (1)

Out-of-sample (OOS), and (2) cross-validation (CV) methods (Cerqueira et al., 2020).

Choosing an appropriate method depends on the specific characteristics of the data. The

difference between OOS and CV methods is that OOS methods always preserve the

temporal order of the observations and a model is never tested on historical data, relative

to the training data. CV approaches, such as K-folds CV, often break the temporal order

of time series and may produce poor estimates of predictive performance in real time-series

contexts.

However, recent work has empirically demonstrated that CV methods perform well for

stationary time series data, even outperforming OOS approaches in some circumstances

(Bulteel et al., 2018a; Bergmeir and Benítez, 2012; Bergmeir et al., 2014, 2018). The

reasons for this are not entirely clear although a number of adaptations to traditional

K-fold CV have been made to accommodate time dependence through block-sampling (see

Bulteel et al. (2018a) for a review). One explanation may be that CV approaches more

efficiently use the available data, without requiring hold-out or initialization samples. CV

approaches may be highly relevant for the smaller sample sizes considered here and the

adaptive multi-VAR framework. Future work should explore which if any of the existing

OOS or CV approaches are particularly well suited for the multi-VAR construction.

Another important area of development is to compare the multi-VAR approach to

other frameworks capable of handling multiple-subject time series data. Two prominent

methods are multilevel time series modeling (Bringmann et al., 2013; Epskamp et al., 2018)

and GIMME (Gates and Molenaar, 2012). While the current procedure relies on the VAR
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model, GIMME is based on the Structural VAR, making a naive comparison difficult.

Work is currently under way to extend multi-VAR to the Structural and Graphical VAR

frameworks. It is our hope these extensions will provide researchers with more tools for

flexibly accommodating cross-sectional dependence in time-series data.

Based on the described results approaches capable of accommodating individual

idiosyncrasies while exploiting what is common hold great promise for improving our

ability to characterize and forecast complex physical and mental health outcomes at the

individual level. In this vein we are optimistic the continued adoption of forecasting

methodology by social and behavioral science researchers will only help to further integrate

the nomothetic and idiographic approaches.

Appendix

In this technical appendix, we discuss some theoretical aspect of LASSO estimation in

the multi-VAR setting, namely, concerning its consistency and sparsistency.

Consistency: Consistency of LASSO estimation for single (stable) VAR models was

established in the seminal paper by Basu and Michailidis (2015a,b), building upon such

results in the regression setting by Loh and Wainwright (2012a,b). In the multi-VAR

setting, the model is inherently unidentifiable. It could be that the LASSO solution is

consistent for some particular µ∗, ∆∗k in the model (7), or over a subset of such

identifications, but this problem still appears largely unresolved. Some related result

though can be found in the discussion on sparsistency below following Ollier and Viallon

(2017). Here, we shall discuss a weaker form of consistency of B̂k = µ̂+ ∆̂k for B∗k. The

arguments are quite straightforward and shed some light on the problem, and also

seemingly were not made in the related literature yet.

We first describe the basic result for a single VAR model expressed in the regression

form (5), and then turn to a multi-VAR model. We index the model quantities with

subscript k or superscript (k), k = 1, . . . , K, representing the individual models in the

multi-VAR setting. After expanding the quadratic term of the objective function (6), the
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estimation equation can be rewritten as in Basu and Michailidis (2015a) in terms of the

quantities

Γ̂k = 1
N

Z(k)′Z(k) = 1
N

(Id ⊗X (k)X (k)′), γ̂k = 1
N

Z(k)′Y(k). (31)

Estimation consistency is proved under the following two conditions on these quantities:

• Restricted eigenvalue condition: The matrix Γ̂k is said to satisfy this condition with

parameters αk, τk > 0, if

β′kΓ̂kβk ≥ αk‖βk‖2
2 − τk‖βk‖2

1, βk ∈ Rq, (32)

with q = pd2.

• Deviation condition: This condition is satisfied if

‖γ̂k − Γ̂kB∗k‖∞ ≤ Qk(B∗k,Σk,ε)
√

log q
N

, (33)

for a deterministic function Qk.

Let sk = ‖B∗k‖0 denote the sparsity of the model. Under the conditions above and

assuming skτk ≤ αk/32, Proposition 4.1 of Basu and Michailidis (2015a) states that any

solution B̂ of (6) satisfies: for any λ ≥ 4Qk(B∗k,Σk,ε)
√

log q
N

,

‖B̂k −B∗k‖1 ≤
64skλ
αk

, ‖B̂k −B∗k‖2 ≤
16√skλ
αk

. (34)

Additionally, a result on the support of thresholded estimators of B̂k is also available. The

consistency results in (34) apply to generic LASSO estimators as long as the quantities

Γ̂k, γ̂k satisfy the restricted eigenvalue and deviation conditions.

Among the key contributions of Basu and Michailidis (2015a) are their results

(Propositions 4.2 and 4.3) proving that Γ̂k and γ̂k satisfy the restricted eigenvalue and

deviation conditions with high enough probabilities, and expressing the various parameters
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involved in the conditions (αk, τk, Qk(B∗k,Σk,ε)) in terms of the VAR model parameters.

Furthermore, in the restricted eigenvalue condition, τk can be chosen so that skτk ≤ αk/32.

We also note that the right-hand side of the inequalities (34) are expected to be negligible

for small λ and hence small log q/N . The case when the logarithm of the dimension

compares to the sample size through this way is the typical LASSO scenario.

In the multi-VAR setting, the optimization problem (9) can be expressed through the

objective function

−
K∑
k=1

2B′kγ̂k +
K∑
k=1

B′kΓ̂kBk + λ1‖µ‖1 +
K∑
k=1

λ2,k‖Bk − µ‖1. (35)

A consistency bound for the minimizer B̂k of (35) can still be obtained similarly as for

single VAR models if one is willing to make the assumption

‖µ̂‖0 ≤ s0. (36)

The constraint (36) could be imposed while optimizing (35) or choosing λ1 appropriately

large, or inferred to hold (with high enough probability) from sparsistency result, if

available. Indeed, under (36), a consistency bound can be derived easily as in the proof of

Proposition 3.3 in Basu and Michailidis (2015a,b). That is, observe first that

−
K∑
k=1

2B̂′kγ̂k +
K∑
k=1

B̂′kΓ̂kB̂k + λ1‖µ̂‖1 +
K∑
k=1

λ2,k‖B̂k − µ̂‖1

≤ −
K∑
k=1

2B∗′k γ̂k +
K∑
k=1

B∗′k Γ̂kB∗k + λ1‖µ̂‖1 +
K∑
k=1

λ2,k‖B∗k − µ̂‖1

and rearranging the terms and setting vk = B̂k −B∗k, we deduce

K∑
k=1

vkΓ̂kvk ≤
K∑
k=1

2v′k(γ̂k − Γ̂kB∗k) +
K∑
k=1

λ2,k (‖B∗k − µ̂‖1 − ‖B∗k − µ̂+ vk‖1) .

With Ĵk = supp{B∗k − µ̂ being the index support of B∗k − µ̂}, repeating the argument in
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Basu and Michailidis (2015a,b), we get

0 ≤
K∑
k=1

v′kΓ̂kvk ≤
K∑
k=1

(
3λ2,k

2 ‖(vk)Ĵk
‖1 −

λ2,k

2 ‖(vk)Ĵc
k
‖1

)
(37)

as long as λ2,k ≥ 4Qk(B∗k,Σk,ε)
√

log q
N

(with the function Qk from the deviation condition),

where (·)Ĵ and (·)Ĵc denote restrictions to the index sets Ĵ and Ĵ c, respectively. Then,

K∑
k=1

λ2,k‖(vk)Ĵc
k
‖1 ≤ 3

K∑
k=1

λ2,k‖(vk)Ĵk
‖1

and one also has

K∑
k=1

λ2,k‖vk‖1 ≤ 4
K∑
k=1

λ2,k‖(vk)Ĵk
‖1

≤ 4
K∑
k=1

λ2,k(s0 + sk)1/2‖vk‖2 ≤ 4

√√√√ K∑
k=1

λ2
2,k(s0 + sk)‖v‖2, (38)

by Cauchy-Schwarz inequality (twice) and the fact that |supp{ĴK}| ≤ s0 + sk, where

‖v‖2
2 = ∑K

k=1 ‖vk‖2
2. Similarly, by the restricted eigenvalue condition (32) for each model

and assuming skτk ≤ αk/32, we have

K∑
k=1

v′kΓ̂kvk ≥
K∑
k=1

αk
2 ‖vk‖

2
2 ≥

min{αk}
2 ‖v‖2

2. (39)

A combination of (37)-(39) yields e.g.

min{αk}
2 ‖v‖2

2 ≤ 6

√√√√ K∑
k=1

λ2
2,k(s0 + sk)‖v‖2 (40)

or

‖v‖2 ≤
12
√∑K

k=1 λ
2
2,k(s0 + sk)

min{αk}
. (41)

This is the multi-VAR analogue of the second consistency bound in (34). One can similarly
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obtain a bound on ‖v‖1 analogous to the first one in (34).

Sparsistency: We comment here briefly on the possibility of recovering the supports

of µ∗ and ∆∗k. The same issue of (non)identifiability is fundamental here as well. Some

result nevertheless are available in the literature for special cases. Assuming effectively that

sλ1/λ2,k = cK1/2, Ollier and Viallon (2017) gave conditions for identifiability and

sparsistency with the limiting common parameter of interest µ∗ defined as the entrywise

median of B∗k. Their approach goes through verifying a particular well-known

irrepresentability condition on a design matrix. It could in principle be adapted to the

multi-VAR context but the value of this effort might be questionable. First,

irrepresentability conditions are quite restrictive and difficult to verify, and as a result,

adaptive LASSO versions are advocated for. The setting where the limiting parameter of

interest is necessarily related to the median could also be viewed restrictive.
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Table 1
Root Mean Squared Forecast Error for Simulation Study Conditions

H Step-Ahead Forecast
H=1 H=2 H=3

Number of Model Model Model
Subjects Variables Time LASSO m-VAR m-VAR (A) LASSO m-VAR m-VAR (A) LASSO m-VAR m-VAR (A)

Heterogeneity: Low

10

10
30 0.96 0.97 0.98 0.94 0.94 0.94 0.98 0.99 1.00
50 0.94 0.94 0.94 0.97 0.96 0.95 0.98 0.99 0.99
100 0.96 0.96 0.94 0.96 0.95 0.95 1.00 0.98 1.00

20
30 0.87 0.89 0.91 0.93 0.94 0.94 0.98 0.99 0.98
50 0.85 0.87 0.89 0.97 0.97 0.97 0.99 0.99 0.97
100 0.86 0.87 0.88 0.94 0.94 0.97 0.97 0.97 0.98

30
30 0.85 0.88 0.89 0.96 0.98 0.98 0.99 1.00 1.00
50 0.81 0.82 0.83 0.93 0.93 0.96 0.98 0.98 0.98
100 0.79 0.80 0.79 0.91 0.91 0.89 0.95 0.95 0.95

20

10
30 0.91 0.92 0.94 0.95 0.95 0.95 0.96 0.96 0.96
50 0.92 0.93 0.91 0.97 0.97 0.95 0.97 0.98 0.96
100 0.92 0.92 0.93 0.95 0.96 0.95 0.98 0.98 0.96

20
30 0.89 0.92 0.93 0.94 0.95 0.95 0.98 0.98 0.98
50 0.86 0.87 0.88 0.93 0.94 0.95 0.95 0.95 0.96
100 0.85 0.85 0.85 0.95 0.95 0.96 0.96 0.96 0.98

30
30 0.84 0.87 0.89 0.94 0.96 0.96 0.96 0.97 0.97
50 0.80 0.81 0.84 0.91 0.92 0.91 0.94 0.94 0.96
100 0.81 0.82 0.83 0.92 0.92 0.92 0.97 0.97 0.97

Heterogeneity: Medium

10

10
30 0.91 0.93 0.93 0.96 0.96 0.96 0.93 0.93 0.94
50 0.93 0.94 0.91 0.99 0.99 0.98 0.99 0.99 1.02
100 0.92 0.92 0.91 0.99 0.99 0.96 0.95 0.94 0.94

20
30 0.90 0.92 0.91 0.96 0.97 0.96 0.98 0.98 0.98
50 0.88 0.90 0.89 0.94 0.95 0.95 0.98 0.98 0.97
100 0.84 0.85 0.89 0.94 0.94 0.95 0.96 0.96 0.98

30
30 0.85 0.88 0.90 0.97 0.99 0.98 0.97 0.98 0.98
50 0.83 0.85 0.83 0.94 0.95 0.94 0.99 1.00 0.97
100 0.79 0.80 0.80 0.88 0.88 0.91 0.94 0.94 0.95

20

10
30 0.95 0.97 0.96 0.96 0.97 0.98 0.94 0.94 0.95
50 0.94 0.95 0.90 0.96 0.95 0.95 0.98 0.98 0.96
100 0.93 0.93 0.94 0.97 0.97 0.95 0.96 0.96 0.96

20
30 0.88 0.91 0.91 0.94 0.95 0.95 0.97 0.97 0.97
50 0.87 0.88 0.88 0.94 0.95 0.95 0.98 0.98 0.99
100 0.86 0.86 0.87 0.97 0.98 0.97 0.99 0.99 0.99

30
30 0.86 0.88 0.88 0.94 0.95 0.95 0.97 0.98 0.98
50 0.82 0.84 0.84 0.93 0.94 0.95 0.97 0.97 0.97
100 0.81 0.82 0.81 0.92 0.93 0.93 0.97 0.97 0.97

Heterogeneity: High

10

10
30 0.92 0.94 0.93 0.97 0.97 0.97 0.94 0.94 0.93
50 0.91 0.92 0.95 0.95 0.95 0.94 0.95 0.95 0.95
100 0.92 0.92 0.92 0.95 0.95 0.99 0.94 0.95 0.94

20
30 0.89 0.92 0.90 0.98 0.99 0.97 0.93 0.94 0.93
50 0.91 0.94 0.89 0.95 0.96 0.95 1.00 1.00 0.98
100 0.88 0.88 0.86 0.94 0.94 0.93 0.99 0.99 0.94

30
30 0.84 0.87 0.88 0.93 0.94 0.94 0.97 0.97 0.98
50 0.81 0.83 0.82 0.91 0.92 0.93 0.97 0.97 0.97
100 0.79 0.79 0.80 0.91 0.91 0.92 0.98 0.97 0.97

20

10
30 0.89 0.91 0.90 0.94 0.94 0.93 0.95 0.95 0.96
50 0.91 0.91 0.89 0.95 0.95 0.97 0.97 0.97 0.98
100 0.90 0.90 0.91 0.93 0.93 0.96 0.97 0.97 0.98

20
30 0.90 0.93 0.92 0.95 0.96 0.96 0.98 0.98 0.98
50 0.87 0.89 0.87 0.96 0.97 0.97 0.99 1.00 1.00
100 0.88 0.88 0.89 0.95 0.95 0.95 0.98 0.98 0.98

30
30 0.87 0.90 0.89 0.95 0.96 0.95 0.97 0.97 0.97
50 0.84 0.86 0.84 0.92 0.93 0.94 0.96 0.97 0.97
100 0.80 0.80 0.82 0.92 0.92 0.92 0.97 0.98 0.96

Note. (A) indicates adaptive version of the multi-VAR.
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Table 2
Root Mean Squared Forecast Error for Benchmark Methods Across Simulation Conditions

H Step-Ahead Forecast
H=1 H=2 H=3

Number of Model Model Model
Subjects Variables Time Mean AR(1) VAR(1) Mean AR(1) VAR(1) Mean AR(1) VAR(1)

10

10
30 0.92 0.94 0.93 0.97 0.97 0.97 0.94 0.94 0.93
50 0.91 0.92 0.95 0.95 0.95 0.94 0.95 0.95 0.95
100 0.92 0.92 0.92 0.95 0.95 0.99 0.94 0.95 0.94

20
30 0.89 0.92 0.90 0.98 0.99 0.97 0.93 0.94 0.93
50 0.91 0.94 0.89 0.95 0.96 0.95 1.00 1.00 0.98
100 0.88 0.88 0.86 0.94 0.94 0.93 0.99 0.99 0.94

30
30 0.84 0.87 0.88 0.93 0.94 0.94 0.97 0.97 0.98
50 0.81 0.83 0.82 0.91 0.92 0.93 0.97 0.97 0.97
100 0.79 0.79 0.80 0.91 0.91 0.92 0.98 0.97 0.97

20

10
30 0.89 0.91 0.90 0.94 0.94 0.93 0.95 0.95 0.96
50 0.91 0.91 0.89 0.95 0.95 0.97 0.97 0.97 0.98
100 0.90 0.90 0.91 0.93 0.93 0.96 0.97 0.97 0.98

20
30 0.90 0.93 0.92 0.95 0.96 0.96 0.98 0.98 0.98
50 0.87 0.89 0.87 0.96 0.97 0.97 0.99 1.00 1.00
100 0.88 0.88 0.89 0.95 0.95 0.95 0.98 0.98 0.98

30
30 0.87 0.90 0.89 0.95 0.96 0.95 0.97 0.97 0.97
50 0.84 0.86 0.84 0.92 0.93 0.94 0.96 0.97 0.97
100 0.80 0.80 0.82 0.92 0.92 0.92 0.97 0.98 0.96

Table 3
Root Mean Squared Forecast Error for Fredrickson et al. (2017) Data

Forecast Window Length
Method 1 2 3 4 5

Mean 0.84 0.88 1.00 1.05 0.98
Naïve 0.89 1.15 1.34 1.31 1.35
Drift 0.89 1.17 1.36 1.34 1.39

AR(1) 0.79 0.88 1.01 1.05 0.98
VAR(1) 0.83 0.90 1.03 1.04 0.97
LASSO 0.82 0.86 1.00 1.02 0.94

multi-VAR 0.75 0.85 0.97 1.03 0.95
multi-VAR (A) 0.76 0.85 0.97 1.03 0.95
Note. (A) indicates adaptive multi-VAR.
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Figure 1 . Sensitivity and Specificity for Bk (Estimation Error Approach)
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Figure 2 . Sensitivity and Specificity for Bk (Rolling Window Cross-Validation)

Sensitivity

Time = 30 Time = 50 Time = 100

Specificity

Time = 30 Time = 50 Time = 100

V
ariables = 10

Individuals = 10

V
ariables = 20

V
ariables = 30

V
ariables = 10

Individuals = 20

V
ariables = 20

V
ariables = 30

Lo
w

M
ed

H
ig

h

Lo
w

M
ed

H
ig

h

Lo
w

M
ed

H
ig

h

Lo
w

M
ed

H
ig

h

Lo
w

M
ed

H
ig

h

Lo
w

M
ed

H
ig

h

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

Heterogeneity

V
al

ue
 o

f S
en

si
tiv

ity
 (

S
pe

ci
fic

ity
)

multi−VAR multi−VAR (A) LASSO (N=1)



MULTIVAR 44

Figure 3 . Sensitivity and Specificity for µ (Rolling Window Cross-Validation)
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Figure 4 . Sensitivity and Specificity for ∆k (Rolling Window Cross-Validation)
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Figure 5 . Results from Fredrickson et al. (2017) Data Across Approaches
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