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ABSTRACT

Motivation: Low haplotype diversity and linkage disequilibrium
are the rule in short genomic segments. This fact suggests
that parsimony should be enforced in estimation of haplotype
frequencies. The current article introduces a diversity penalty that
automatically discards potential haplotypes with low explanatory
power. The standard EM algorithm for haplotype frequency
estimation can accommodate the penalty if one passes over to a
more general minorize-maximize (MM) scheme for estimation.
Results: Our new MM algorithm converges in fewer iterations,
eliminates marginal haplotypes from further consideration and
reduces the computational complexity of each iteration. Estimation
by the MM algorithm also improves haplotyping and genotype
imputation compared to naive application of the EM algorithm.
Thus, the MM algorithm is a useful substitute for the EM algorithm.
Compared to the most sophisticated current methods of haplotyping
and genotype imputation, the MM algorithm is slightly less accurate
but at least an order of magnitude faster.

Availability: Our software will be made available in the next release
the program Mendel at http://www.genetics.ucla.edu/software/.
Contact: kayers@ucla.edu

1 INTRODUCTION

Estimation of haplotype frequencies serves a variety of purposes.
For example, good estimates help distinguish ethnic groups,
quantify the extent of linkage disequilibrium and guide imputation
of missing genotypes. In mapping Mendelian disease genes,
haplotype signatures provide evidence of unique mutation events. In
association studies with common diseases, these signatures can offer
more definitive predictors than single marker alleles (Akey et al.,
2001; Ayers et al., 2007). With the advent of large-scale genome
association studies and massive single nucleotide polymorphism
(SNP) genotyping, haplotyping and associated tasks have taken
on greater urgency. Fortunately, the enormous energy expended by
geneticists in improving haplotyping is beginning to pay dividends
in faster and more accurate software. Halperin and Eskin (2004),
Scheet and Stephens (2006) and Marchini et al. (2006) summarize
and compare the recent computational approaches.

The EM algorithm lying at the heart of many of these methods
relies on a classical gene counting argument (Excoffier and Slatkin,
1995; Hawley and Kidd, 1995; Long et al., 1995; Qin et al.,
2002). The algorithm operates on population data by filling in
missing phase information based on current haplotype frequencies.

*To whom correspondence should be addressed.

Given reconstructed phases, the EM algorithm equates haplotype
frequencies to imputed haplotype proportions. This iterative process
of imputation and re-estimation is natural and effective. One of its
strengths is that it accommodates a Dirichlet prior on haplotype
frequencies (Lange, 2002). In this Bayesian context, the EM
algorithm simply adds fixed pseudo-counts to imputed counts before
forming its new haplotype proportions. The drawback of a Dirichlet
prior is that it can only encourage the inclusion of rare haplotypes.
If we want to discourage the inclusion of rare haplotypes with
low explanatory power, we must turn elsewhere. In this article we
propose a haplotype diversity penalty that has the desired opposite
effect. Simple modification of the EM algorithm yields a novel
algorithm that maximizes the penalized likelihood.

Our algorithm is example of an minorize-maximize (MM)
algorithm. All EM algorithms are MM algorithms but not vice
versa. Many MM algorithms, ours included, dispense with the
missing data structures required by EM algorithms. In their stead
one must construct a surrogate function that is optimized at each
iteration. Derivation of surrogate functions requires manipulation
of mathematical inequalities. Compared to the traditional EM
algorithm for haplotype frequency estimation, our new MM
algorithm converges in fewer iterations, eliminates marginal
haplotypes from further consideration and reduces the computational
complexity of each iteration. Imposition of the diversity penalty also
improves haplotyping and genotype imputation. Compared to more
sophisticated methods of haplotyping such as PHASE (Marchini
et al., 2006; Stephens et al., 2001) and fastPHASE (Scheet and
Stephens, 2006; Stephens and Scheet, 2005), the MM algorithm is
slightly less accurate but considerably faster.

2 METHODS

An MM algorithm for maximization involves minorizing an objective
function f(p) by a surrogate function g(p |p") anchored at the current iterate
p" of a search (De Leeuw and Heiser, 1977; Groenen, 1993; Hunter and
Lange, 2004; Lange, 2004). Minorization is defined by the two properties

fO"=g@"1p" (D
f@)=gplp"), p#p". )

In other words, the surface p+ g(p|p™) lies below the surface p+— f(p) and
is tangent to it at the point p=p". Construction of the minorizing function
g(p|p") constitutes the first M of the MM algorithm.

The second M of the algorithm maximizes the surrogate g(p|p") rather
than f(p). If p"*! denotes the maximizer of g(p|p™), then this action forces
the ascent property f(p" ') > f(p"). The proof of the property follows from
the inequalities

FEY = g™ PN = " 1P = fO)
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reflecting the definition of p"*! and the tangency conditions (1) and (2). The
ascent property lends the MM algorithm great numerical stability. Because
minorization is closed under the formation of sums, many objective functions
can be minorized piece by piece.

It is instructive to derive the traditional EM algorithm for haplotype
frequency estimation from the MM perspective. Let H; be the set of
maternal-paternal haplotype pairs consistent with the observed genotype
of person i at each marker. If p; is the frequency of haplotype j, then the
likelihood of i’s observed multi-marker genotype is

= Z Pip1-

(k,l)eH;

Our MM derivation exploits the concavity of the function Inx and minorizes
the loglikelihood L(p) of the whole sample by

Lip)=Y Inr;

=Y ¥ (-

i (k.)eH; 7
— _ . .
=) _¢'Inpj+i.

J

where c,’-’ is a positive constant that depends on the previous parameter vector
p" but not on the current parameter vector p, and j ranges over all haplotypes
consistent with at least one multi-marker genotype. A brief calculation shows

that
by
A=y (1{k:j>+1uzj))( P )
i (kD)eH; i
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The M step of the EM algorithm maximizes the surrogate function
chjllnpj-i-cg subject to the linear equality constraint Zj pj=1 and the
lower bounds p; > 0. Note that the surrogate function separates parameters.
This desirable feature carries over to the penalized loglikelihood.

Our diversity penalty is modeled on the lasso penalty, which was
introduced in regression analysis to perform continuous model selection and
enforce sparse solutions in underdetermined problems (Chen et al., 1998;
Claerbout and Muir, 1973; Santosa and Symes, 1986; Taylor et al., 1979;
Tibshirani, 1996). Unfortunately, the lasso penalty Azj |pjl=A is worthless
in the haplotype setting because it simply reduces to the tuning parameter A.
A more sensible penalty is linear for small haplotype frequencies and levels
off thereafter. We therefore suggest the penalty kzj f(pj), where

)
flg)= q 7=
g>8

for some positive threshold §. This choice of the penalty still discourages
small positive estimates. The optimal value of the tuning constant A can be
determined by numerical experimentation.

The overall minorization

Lp)=r) [z cfpi+ci—2) f(p)).
j j /

now involves non-differentiable penalty terms. To handle these, we majorize
the penalty function f(g) by smooth functions. There are two cases to
consider. When ¢" < §, we minorize —f(q) by —g. When ¢" > §, we minorize
—f(g) by the constant —§. One can easily draw a simple graph illustrating
how the tangency conditions are met in each case; see Figure 1. If S” is the
haplotype set {j: pj’-‘ < 8}, then the surrogate function minorizing the penalized

loglikelihood is
Zc Inp;j +cg— )LZpJ AZB
Jjes" Jsn

Parameters continue to be separated.

fla) fla)

a 4 Y a Y é

Fig. 1. The penalty function f(g) and its majorizer g(g|q,). f(q) is plotted
as a bold line and g(g|g,) as a dashed line.

In maximizing the surrogate function, the bound p; >0 can be ignored
because the term ¢/ Inp; tends to oo as p; tends to 0. The equality constraint
Z ipj =1 must be faced, however. This is done by introducing a Lagrange
mu]tlpller w and looking for a stationary point of the Lagrangian

L(p)= Zc 1npj+co—)\2pj

jesn
— 28+w(2p] - 1)
JEsn
Thus, we must solve the equations
n
D Loy = L aig(re=o. 3)
opj pj

If we multiply Equation (3) by p; and sum on the index j, then the constraint
>;pj=1requires
=X T =Y
jes" j

where =7, o pi. Substituting this result in Equation (3) produces

7 aqn

ST JES
p=1=%" @
s JES

For these solutions to be consistent with the constraint, we must have

chk—MZ G+ Az+AZ i

jesn jesn

Ifweletd=Y) jgsn ¢ and e= > jesn €' then we can recast this condition as

| 1
_ d .
dre—n T aFe—m1r®

In the exceptional cases d=0 and e=0, the values =1 and =0 clearly
work. In both cases the MM update reduces to the EM update. Otherwise,
cross multiplying by (d+e—At)(d+e—it+ 1) and rearranging terms leads
to the quadratic

A2 —(d+e+Ni+e =0, 5)

with solution

_(d4e+r)—y/(d+e+r) —dre
= > .

Because the quadratic on the left-hand side of Equation (5) has value e at
the point =0 and value —d at the point =1, it is clear that its smaller root
is the pertinent one. Furthermore, the smaller root lies on the open interval
(0,1). Substituting the smaller root for ¢ in formula (4) fully specifies the MM
update. It is clear from this exercise that the MM algorithm retains most of
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the computational simplicity of the EM algorithm for haplotype frequency
estimation. No matrix operations are required, and penalization is built in.

Our computer implementation of the MM algorithm in the genetic analysis
program Mendel (Lange et al., 2001) simultaneously conducts haplotype
frequency estimation, haplotyping and genotype imputation. Mendel uses a
haplotype window surrounding a central marker flanked by f markers on the
left and f markers on the right. The central marker is the object of phase and
genotype imputation. The value of f is determined by the user. Mendel’s
current default of 9 gives a window of length 19. Estimation of haplotype
frequencies commences with a defined list of haplotypes much shorter than
the full list of available haplotypes. We will comment in a moment on
how this list is generated and how windows at the ends of chromosomes
are handled. If an individual is untyped at a marker, then during haplotype
frequency estimation, all genotypes at the marker are assumed possible for
the individual. Mendel takes initial haplotype frequencies to be uniform and
iterates via the MM algorithm until the £; distance ), |p,'(‘+1 —p}| between
successive iterations n and n+ 1 drops below 10~ or the number of iteration
exceeds 100. Once convergence is declared, Mendel discards all haplotypes
with estimated frequencies below 1078,

Given haplotype frequency estimates, Mendel imputes phase at the central
marker for a given person by finding the ordered genotype at the central
marker with the highest posterior probability over all consistent haplotype
pairs. In the absence of pedigree data, this discovery by itself does not pin
phase down. However, if we imagine sliding the haplotype window from
left to right across a chromosome, then imputed ordered genotypes to the
left of the central marker will be available. We can therefore assign phase to
any consistent haplotype pair. If a consistent haplotype pair that agrees with
the already imputed phases is not found, Mendel will search for haplotypes
pairs that disagree at only one position. To the left of the central marker,
a mismatch can involve either one phase switch or one allele mismatch.
Allele mismatches are not allowed at the current central marker. To the right
of the central marker, a mismatch can involve only allele mismatches because
phase has not yet been imputed. In the rare case that a consistent haplotype
pair is still not found, the most common genotype is used to fill in the missing
ordered genotype.

Imputation of missing genotypes in the absence of haplotyping is handled
a little differently. We now divide the consistent haplotype pairs into groups
depending on the unordered genotype at the central marker. Mendel assigns
a probability to each group by summing the product probabilities of its
haplotype pairs. If no consistent haplotype pairs are found, then Mendel will
allow for one allele mismatch. The group with highest probability determines
the missing genotype at the central marker. In other words, Mendel selects
the unordered genotype with highest posterior probability.

When we slide the haplotype window one marker to the right, we must
construct a new abbreviated list of possible haplotypes. As we mentioned, we
discard haplotypes from the existing list with estimated frequencies below
10~3. For each remaining haplotype, we crop its leftmost allele and add on
its right one of the possible alleles at the new marker. If the new marker
has m alleles, this action propagates each cropped haplotype into m different
haplotypes in the new list. For example, the current SNP haplotype 1-2-2-1-2
is cropped to 2-2-1-2 and expanded to the two new haplotypes 2-2-1-2-1 and
2-2-1-2-2. Our retention—propagation strategy keeps all pertinent haplotypes
in play. Penalization weeds outs many of the haplotypes in the new list and
keeps the list from growing geometrically.

This description omits initialization of the haplotype list. Since
computation times scale as the square of list length, it is imperative to
adopt a strategy that minimizes list length. Thus, at the leftmost marker,
we start with a window of length 1 and extend it as just described, except
for imputation and cropping, until it hits length f+41. At that point, we
commence haplotype and genotype imputation at the leftmost marker but
still omit cropping. When the window reaches full length 2f 41, then we
begin haplotype cropping. At the right end of the chromosome, haplotype
propagation is omitted as soon as new markers are exhausted. Haplotype
and genotype imputation continue until the rightmost marker is processed.
These tactical adjustments entail more book keeping and shift the focus away

from the center of the window. In compensation, they successfully keep all
haplotype lists short.

In some regions little or no linkage disequilibrium exists, and the number
of haplotypes can balloon out of control. Many individuals will have unique
haplotypes; other individuals will be consistent with many haplotype pairs.
The result is a large list of haplotypes, with many haplotypes having equal
frequency estimates. In these regions, genotype imputation is already poor.
To decrease computation time, we limit the number of haplotypes in a
window to hmax. We order the haplotypes by decreasing frequency and
find the frequency of haplotype hmax+1. Any haplotype with frequency
less than or equal to this amount is dropped before moving to the next
window. In very rare cases, this tactic deletes too many haplotypes, so we
impose a lower limit Apni;, on the number of haplotypes retained. When
Nmax =hmin, all hmax haplotypes are kept. Setting a rigorous bound on
retained haplotypes is also central to other haplotyping programs such as
SNPHAP (http://www-gene.cimr.cam.ac.uk/clayton/software/).

3 RESULTS

3.1 Haplotype frequency estimation

To compare the MM and the EM algorithms in haplotype frequency
estimation, we randomly generated multilocus autosomal genotypes
from male X chromosome haplotypes. The fathers in the 30
European (CEU) parent—offspring trios of the HapMap project
are a convenient source of data (http://www.hapmap.org). We
chose groups of fully typed consecutive markers outside the
pseudoautosomal region with 8—11 markers per group. We then
simulated 100 sets of 50, 100 and 500 genotypes from each group,
sampling haplotypes with replacement. For this analysis, we began
estimation with the list of all consistent haplotypes. Table 1 gives
the results of applying the MM algorithm as a function of § and A for
100 genotypes. Results for 50 and 500 genotypes were similar (data
not shown). The EM algorithm correspond to the choice A =0. The
error column gives the average value of the £ error ) ;|p; —p;| over
all replicates and all marker groups of a given size. Here p; is the
generating haplotype frequency, and p; is the estimated frequency.
Average squared error and average maximum error lead to similar
conclusions. It is clear from the table that the MM algorithm takes
fewer iterations and much less computing time to converge than
the EM algorithm. Error rates are modestly better under the MM
algorithm. The error surface is relatively flat in A. As a rule of thumb,
we suggest choosing A between 100 and 1000, with larger values
for larger sample sizes. Error rates are also relatively flat in §. We
recommend the choice § =0.005 for haplotype frequency estimation
in a small window. To achieve the highly accurate estimates in
this test, we departed from Mendel’s defaults and chose the more
stringent £ convergence criterion of 10~ and the more liberal value
of 150 for the maximum number of iterations.

To test how the EM and MM algorithms perform in conjunction
with our specific haplotype extension strategy, we simulated 100
autosomal genotypes using a longer stretch of the same HapMap X
chromosome data. All 30 European haplotypes in this region of 110
consecutive markers are distinct. We initiated estimation at the first
marker and extended haplotypes by adding one marker at a time.
At each extension step, we computed haplotype frequencies and
dropped those haplotypes with frequencies below 10~8. At most 100
haplotypes were retained at each step. Table 2 records our average
results over 100 random replicates for §=.005 and A=100 and
A=1000. Column 1 gives window length, Column 2 the number
of iterations until convergence, Column 3 the time in seconds
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Table 1. Deviations of computed haplotype frequencies from their true values for 100 individuals and 4 datasets

§=0.001 §=0.005 §=0.01
A Tter £ error Time(s) Iter £ error Time(s) Iter £ error Time(s)
8 markers (6)
0 23.72 0.1097 2.3279
10 22.23 0.1097 2.3914 23.03 0.1095 2.4897 23.03 0.1094 2.4852
100 16.17 0.1096 1.7561 17.23 0.1085 1.9107 18.24 0.1083 2.0274
1000 12.11 0.1085 1.3168 7.55 0.1085 0.8396 11.73 0.1354 1.3276
10000 11.38 0.1085 1.2466 5.88 0.1087 0.6663 10.80 0.1408 1.2520
100000 11.04 0.1085 1.2264 5.73 0.1087 0.6564 10.62 0.1414 1.2367
9 markers (16)
0 65.88 0.2325 2.5023 62.10
10 59.60 0.2323 2.7621 47.57 0.2278 2.1710 49.53 0.2271 2.2536
100 42.01 0.2307 1.9465 39.43 0.2244 1.8293 43.59 0.2293 1.9856
1000 33.42 0.2265 1.5160 35.38 0.2671 1.6197 57.05 0.3863 2.7000
10000 33.41 0.2285 1.4856 36.56 0.3125 1.7034 55.19 0.4257 2.6065
100000 33.39 0.2285 1.4640 35.72 0.3148 1.6629 54.18 0.4326 2.5368
10 markers (6)
0 22.52 0.1160 4.7730
10 21.59 0.1160 4.6272 22.08 0.1159 4.7307 22.11 0.1158 4.7277
100 15.35 0.1151 3.2193 17.80 0.1141 3.9100 18.18 0.1142 3.9349
1000 9.85 0.1138 2.1119 8.76 0.1196 2.0040 11.52 0.1377 2.6621
10000 8.86 0.1144 1.9443 10.31 0.1527 2.5059 13.45 0.2014 3.2914
100000 8.62 0.1144 1.9076 10.36 0.1535 2.5302 13.37 0.2035 3.3021
11 markers (7)
0 29.69 0.1251 9.3812
10 28.76 0.1251 10.2635 27.46 0.1250 9.8979 27.40 0.1250 9.9489
100 19.95 0.1246 7.1080 16.83 0.1241 6.0724 19.16 0.1244 7.2570
1000 15.27 0.1246 5.4492 12.42 0.1256 4.7980 16.71 0.1361 6.5768
10000 16.15 0.1249 5.9050 11.18 0.1259 4.3932 15.49 0.1385 6.4742
100000 15.46 0.1246 5.7591 10.64 0.1259 4.1641 15.18 0.1385 6.3782

Note: The number of generating haplotypes is shown in parentheses next to the number of markers.

until convergence, Column 4 the ¢; error, Column 5 the maximum
number of haplotypes encountered and Column 6 the actual number
of haplotypes in the sample. Sampling was done with replacement,
and time is cumulative. For testing convergence, we used Mendel’s
default criteria.

Some interesting conclusions emerge from the table. First,
standard EM does surprisingly well when paired with our
extension—elimination strategy. Nonetheless, MM takes about half
as many iterations and about half the time. For this increase in
speed, MM pays a small but manageable price in £ error. Error rates
stabilize because there are only 30 generating haplotypes. Once all
of these are included in the model, accuracy remains almost constant
as new markers are added.

3.2 Genotype imputation

To compare the performance of the MM and EM algorithms in
genotype imputation, we analyzed the X chromosome HapMap
data on all 54 males of the African population (Yoruban). We
first removed pseudoautosomal markers and markers with missing
genotypes. After the data were cleaned, we constructed 30 genotypes
by sampling haplotypes with replacement from the first 10000
markers. We then randomly deleted 1% of the constructed genotypes.
These steps generated 3008 missing genotypes and positioned us to
evaluate the accuracy of the MM and EM algorithms in genotype
imputation. In our experience, imputation by posterior probability

is more accurate than imputation by most likely haplotype pair.
Table 3, therefore records counts of imputation errors using posterior
probabilities. Since error rates depend on the number of flanking
markers, the table lists results in the range of 6-10 flanking
markers. In the table, C; denotes the number of incorrectly
imputed genotypes, and A; denotes the number of incorrectly
imputed alleles. These numbers differ slightly because a few imputed
genotypes incorrectly specify both alleles.

The EM algorithm is overwhelmed by the sheer number of
haplotypes when the number of flanking markers reaches eight.
The MM algorithm discards most haplotypes and can attack
much longer segments. Introducing strict limits on the number
of haplotypes within a window allows the EM algorithm to
recover. Haplotype frequency estimation was performed under
Mendel’s default convergence criterion and an upper limit of
hmax =hmin =100 haplotypes per window. Compared to more
stringent criteria, these choices greatly reduce computing times with
virtually no effect on error rates.

Inspection of Table 3 shows that both error rates reach their
approximate minima for nine flanking markers and the value
A=1000. Recall that A=0 corresponds to the EM algorithm.
Experiments not displayed in the table suggests that the choice
8 =.005 performs almost as well as our current choice § =.01. At the
bottom of the table, we list the more accurate but far slower results
of fastPHASE. For fastPHASE, we invoked the options —H—4
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Table 2. Haplotype frequency estimation via marker extension

Window Iter Time(s) £ error H, H;
length

EM

2 12.30 0.0078 0.00000398 4.00 3.00
10 17.07 0.0657 0.01142453 13.16 7.00
30 27.62 1.4685 0.02444192 33.20 14.99
40 36.93 3.5966 0.02777934 49.34 21.99
50 33.42 5.9615 0.02653682 49.08 21.99
60 27.67 8.5778 0.01168201 57.68 25.98
70 22.83 10.9654 0.01034319 60.58 26.98
80 13.03 12.2991 0.00481665 62.34 27.98
90 10.01 13.7276 0.00451555 70.78 28.98
100 8.20 14.8207 0.00436692 70.60 28.98
110 10.61 16.1275 0.00485051 77.56 29.98
MM A =100

2 10.71 0.0074 0.00000169 4.00 3.00
10 12.01 0.0551 0.01110438 12.72 7.00
20 18.24 0.3906 0.02227146 26.96 14.00
30 18.99 0.9869 0.02176035 32.90 14.99
40 22.28 2.2788 0.02089113 48.16 21.99
50 22.09 3.7472 0.01945703 47.36 21.99
60 19.05 5.3511 0.00715012 55.34 25.98
70 16.68 6.9214 0.00605148 57.20 26.98
80 9.55 7.9332 0.00354929 60.34 27.98
90 7.89 8.9868 0.00340693 68.18 28.98
100 7.28 9.8501 0.00335740 66.36 28.98
110 8.37 10.8586 0.00374288 72.88 29.98
MM A =1000

2 8.64 0.0073 0.00000022 4.00 3.00
10 9.44 0.0456 0.01208444 12.04 7.00
20 9.05 0.2288 0.02092093 24.68 14.00
30 8.36 0.5181 0.02095165 31.46 14.99
40 9.01 1.0461 0.01949569 46.90 21.99
50 8.40 1.6180 0.01885398 45.52 21.99
60 7.90 2.3104 0.00803921 54.34 25.98
70 7.25 3.0631 0.00567504 56.20 26.98
80 6.11 3.6691 0.00441167 57.76 27.98
90 5.96 4.3387 0.00711512 60.82 28.98
100 6.22 4.9303 0.00805822 59.96 28.98
110 5.86 5.6075 0.00506157 64.66 29.98

Table 3. Genotype imputation errors for a 10K dataset with 30 genotypes

and —K10. The —H option shuts off haplotype estimation, and the
—K10 options sets the number of haplotype clusters to 10. Both of
these choices promote faster computation times at the expense of a
slight increase in error rates.

We also compared results on two other populations with
60 individuals each from the SeattleSNPs resequencing project
(http://pga.gs.washington.edu). Our initial findings on 50 different
genes (data not shown) are similar to the HapMap findings. The
SeattleSNPs analysis was also done in both PHASE v2.1 and
fastPHASE. The software for these programs were downloaded at
http://www.stat.washington.edu/stephens/software.html. We found
PHASE to have similar error rates to fastPHASE, varying by
a fraction of a percent, but much longer computation times.
Because of PHASE'’s inability to handle large numbers of markers
simultaneously, we abandoned PHASE on a comparison involving
10000 markers. In this larger dataset, the simple default of filling
in missing genotypes with the most common genotype in the
population results in 873 mistakes for an error rate of 29%. Mendel
reduces this error rate to 4.6%, and fastPHASE reduces it further to
2.5%. In timing comparisons Mendel is about 50 times faster than
fastPHASE.

3.3 Haplotyping

To compare the MM and EM algorithms on large-scale haplotyping,
we reverted to the simulated data constructed from the African
HapMap X chromosome data. Again we elected Mendel’s default
convergence criteria and set hmax =/, =100. In this case, we
filled in missing phases and missing genotypes using the ordered
genotypes rather than the unordered genotypes with the highest
posterior probabilities. Table 4 records the number Cy, of incorrectly
imputed genotypes and the number Cs of phase switch errors under
this strategy. Markers with missing genotypes were not included in
the switch error because an imputed genotype can differ from the
true genotype. The bottom line of the table displays fastPHASE’s
result on the same data under the —K10 option.

In this comparison, Mendel’s best genotype imputation error
rate of 4.9% is nearly double fastPHASE’s error rate of 2.6%.
Mendel’s best phase switch error rate of 5.4% is also about double
fastPHASE’s error rate of 2.8%. Increasing the number of flanking
markers continues to improve Mendel’s phase switch error rate,
but it eventually increases the genotype imputation error rate.

Flanking 6 7 8 9 10
markers
A Cn A Time (s) Cn A Time (s) Cn A Time (s) Cn A Time (s) Cn A Time (s)
0 172 174 98.265 158 160 124.302 163 167 163.22 160 163 209.075 170 176 240.040
10 168 170 81.984 163 165 104.895 164 167 136.63 156 159 180.004 168 173 200.036
100 163 166 58.472 152 154 75.754 156 160 95.112 151 156 122.243 157 162 146.226
1000 159 162 40.402 146 150 54.741 142 145 68.310 137 143 87.890 151 158 106.127
10000 161 164 39.056 146 151 52.750 151 155 65.330 141 146 89.344 153 159 105.597
100000 160 165 37.456 148 153 48.196 150 154 62.155 143 148 81.626 152 158 103.523
fastPHASE 78 - 3002.853
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Table 4. Error counts for haplotyping and genotype imputation for a 10K dataset with 30 genotypes

Flanking 6 7 8 9 10
markers
A Cn Cy Time (s) Cp, Cs Time (s) Cp Cy Time (s) Cp Cy Time (s) Cp Cs Time (s)
0 185 5656 98.151 178 5164 62.208 175 4878 159.304 170 4797 198.417 174 4534  225.164
10 186 5573 43475 179 5137  100.959 167 4913 134.961 165 4695 175310 174 4454  201.380
100 175 5294 31.619 164 4755 75.011 154 4528 89.023 158 4391 120.290 157 3971 144.147
1000 172 5223 22.828 150 4769 55.079 153 4443 71.537 148 4209 88.096 161 3997 116.173
10000 171 5277 21.457 151 4784 52.913 155 4494 67.211 149 4266 83.994 166 4086 110.170
100000 168 5295 20.940 152 4846 49450 152 4506 65.101 155 4322 80.946 171 4146  104.924
fastPHASE 79 2070  3725.013

Haplotyping also decreases computation times because it takes
advantage of the phase information to the left of the central marker.
For almost every value of XA, the MM algorithm outperforms the
EM algorithm in phasing, genotype imputation and speed. Although
fastPHASE makes fewer mistakes than Mendel, it is slower by one
to two orders of magnitude, depending on parameter settings.

4 DISCUSSION

The EM algorithm has long served as a computational engine in
haplotyping schemes. Our analysis demonstrates that penalization
improves haplotype frequency estimation, genotype imputation,
and haplotyping. In essence, penalization captures the parsimony
nature imposes. The MM implementation of penalized estimation
converges in fewer iterations than EM. Combining the MM
algorithm with haplotype extension—elimination along a sliding
window of markers makes it possible to handle hundreds of
thousands of markers efficiently. Overall computational complexity
scales linearly in the number of markers. The software described here
will be made available to the public in the next release of Mendel.

Although our combination of methods does not lead to the lowest
error rates in imputing missing genotypes, it is not clear that this is a
serious handicap. If we accept 1% missing data as reasonable on the
best genotyping platforms, then Mendel’s overall error rate of 1/2000
should lead to very few incorrect inferences in association studies.
The vast majority of errors committed still get one of the two alleles
correct, and errors are less damaging in association studies than they
are in linkage studies. This optimistic attitude should not be equated
with complacency. Every source of error should be attacked.

The alternative to haplotyping via linkage disequilibrium is
haplotyping via Mendelian inferences in pedigrees. When pedigree
data are available, the two methods can be combined. The obvious
tactic is to apply genotype elimination first marker by marker
(Lange and Goradia, 1987). The partial phase information gleaned
can then guide haplotype frequency estimation and genotype
imputation, treating the genotyped pedigree members as unrelated.
One anticipated problem with this approach is that the first stage
may uncover genetic inconsistencies. In this rare circumstance, we
suggest ignoring stage one and proceeding directly to haplotype
frequency estimation. Neither haplotype frequency estimation nor
Mendelian inferences depend on allele frequencies or map distances.

At the expense of more complex programming, there are several
options for improving the speed and accuracy of the MM algorithm.
For instance, one can chose window widths to reflect the local extent

of linkage disequilibrium. Long windows are more compatible
with strong linkage disequilibrium. We have used a fairly strict
convergence criterion. Relaxing it cuts the number of iterations
until convergence. There are obvious tradeoffs between speed and
accuracy. Since there is no guarantee that the objective function
is concave in penalized estimation, one can safeguard estimation
by trying several different starting points. This tactic obviously
increases computational times.

Although penalized estimation by itself does not lead to the most
accurate haplotyping, it is important to stress its potential in more
sophisticated schemes of haplotyping. It has much to offer in the
more complex algorithms incorporated in fastPHASE. Bayesian
estimation based on Markov chain Monte Carlo is less likely to be a
beneficiary. Finally, it is worth mentioning that penalized estimation
is apt to pay dividends in other areas of population genetics. High-
dimensional estimation problems are here to stay in genetics, and one
of our first reflexes in solving them should be to consider parameter
regularization.
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