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Abstract In likelihood�based approaches to robustify state space mod�

els� Gaussian error distributions are replaced by non�normal alternatives with

heavier tails� Robusti�ed observation models are appropriate for time se�

ries with additive outliers� while state or transition equations with heavy�

tailed error distributions lead to �lters and smoothers that can cope with

structural changes in trend or slope caused by innovations outliers� As a

consequence� however� conditional �ltering and smoothing densities become

analytically intractable� Various attempts have been made to deal with this

problem� reaching from approximate conditional mean type estimation to

fully Bayesian analysis using MCMC simulation� In this article we consider

penalized likelihood smoothers� this means estimators which maximize penal�

ized likelihoods or� equivalently� posterior densities� Filtering and smoothing

for additive and innovations outlier models can be carried out by computa�

tionally e�cient Fisher scoring steps or iterative Kalman�type �lters� Spe�

cial emphasis is on the Student family� for which EM�type algorithms to

estimate unknown hyperparameters are developed� Operational behaviour is

illustrated by simulation experiments and by real data applications�

Keywords� Additive outliers� EM algorithm� innovations outliers� it�

erative Kalman Filtering� non�Gaussian state space models�

� Introduction

Robusti�cation of state space models and of �ltering and smoothing algo�

rithms has been considered by various authors� In this paper we follow the

approach of Martin ��	
	�� West ��	��� �	��� Meinhold and Singpurwalla

��	�	� among others� where errors are assumed to be non�Gaussian with

longer than normal tails� As is well�known� exact closed�form solutions to the

�ltering and smoothing problem are generally no longer available� Approx�

imate �ltering and smoothing algorithms have therefore been given already

in early work on robusti�ed state space modelling� for example approximate

conditional mean �ACM� type smoothers �see Martin� �	
	� or Martin and

Raftery� �	�
�� Kitagawa ��	�
� uses numerical integration for computing
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posterior means� but the method becomes infeasible for higher state dimen�

sion� More recently� fully Bayesian MCMC simulation methods for models

with �nite Gaussian mixtures have been developed to tackle this problem� see

for instance Carter and Kohn ��		�a� �		�b�� Shephard and Pitt ��		
�� and

Durbin and Koopman ��		
� discuss models with Student errors for additive

outliers�

In this paper we consider posterior mode �lters and smoothers as an

alternative or supplementary tool that avoids numerical or Monte Carlo inte�

gration� Computational solutions can be based on well understood� e�cient

algorithms for nonlinear maximization problems� This approach leads to

Gauss�Newton or Fisher scoring smoothing algorithms which maximize pos�

terior densities or� equivalently� a certain penalized likelihood criterion� by

modifying and extending arguments in Fahrmeir and Kaufmann ��		��� Al�

ternatively� these algorithms can we written as iteratively weighted Kalman

�lters and smoothers applied to working observations in a similar way as for

dynamic generalized linear models �compare Fahrmeir and Tutz� �		� ch���

Fahrmeir and Wagenpfeil� �		
�� For models with heavy�tailed observation

error distribution we obtain �lters and smoothers that are robust against ad�

ditive outliers� Innovations outliers� leading for instance to distinct changes

in level or slope of a time series� can be modelled by heavy�tailed error distri�

butions in the transition equation� Resulting smoothers are �edge preserving��

that is they react quite �exibly to change points or edges� but still provide

smooth �ts in other regions�

Our approach is useful for a large class of heavy�tailed error distributions

but special emphasis is on the Student family� This concerns� in particular�

estimation of unknown hyperparameters such as scale factors or degrees of

freedom� We suggest an EM�type algorithm that is tailored to the Student

family and can be combined with smoothing algorithms for joint estimation

of state and hyperparameters� We illustrate performance by some simulation

experiments and by application to real data in Section ��
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� Robust state space models

For simplicity we will consider only the standard linear state space model

for univariate observations� However� extensions to more complex models for

instance nonlinear models and multivariate observations are obvious� The

model consists of a linear observation equation

yt � z�t�t � �t �t � �� �� � � �� �����

for the observations y�� y�� � � � given the states ��� ��� � � �� which is supple�

mented by a linear transition equation

�t � Ft�t�� � vt �t � �� �� � � �� �����

�� � a� � v��

The design vectors z�� z�� � � � and the transition matrices F�� F�� � � � as well as

the vector a� are nonrandom�

The errors �t� vt� t � �� and v� are assumed to have zero mean densities

f � g and g�� which are twice piecewise di�erentiable� Furthermore errors are

mutually independent� If these densities are normal� we have the common

linear Gaussian state space model� We say that ����� and ����� form a robust

state space model if at least one of the densities f or g is heavy�tailed� Models

for additive outliers �AO�� where the observation densities f are heavy�tailed

while g and g� are Gaussian� form an important subclass� However� we can

also deal with innovations outliers �IO� by choice of heavy�tailed densities g

for the errors vt in the transition equation ������ Such IO robust state models

are quite useful for �tting time series with change points� for instance sudden

shifts of level or slope� Resulting �lters or smoothers are �edge preserving��

they provide smooth �ts for regions with only small local variation but do

not blur edges or change points�

Well�known univariate examples with heavy�tailed densities are the

Cauchy distribution� the logistic distribution� discrete mixtures of normals�

the Student family� or the Huber family� Multivariate distributions can be

handled as either generated by independent univariate variables or e�g� as a
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multivariate t�distribution discussed by Meinhold and Singpurwalla ��	�	�

and Lange� Little and Taylor ��	�	�� However� as pointed out by Meinhold

and Singpurwalla ��	�	� Appendix �� there may be serious problems concern�

ing estimation of the dispersion parameter� Our focus will be on the Student

family� in particular concerning estimation of hyperparameters� Large parts

of the development are valid more generally� however�

For derivations and formulations of �lters and smoothers it is

convenient to introduce �negative� log�densities� �rst derivatives �in�u�

ence or score function� and second derivatives �random information��

��z� � � log f�z� � ��z� � ���z�	�z�

��z� � ����z�	�z�z� � ���z�	�z��

r�z� � � log g�z� � c�z� � �r�z�	�z�

C�z� � ��r�z�	�z�z� � �c�z�	�z��

and r�� c�� C� de�ned analogously� To ensure positive de�niteness� it may

be necessary to consider expected information E���z��� E�C�z�� instead of

��z�� C�z��We will use � and C as generic symbols for observed and expected

second derivatives� For the t�distribution with scale factor 
 and � degrees

of freedom� the density is up to a normalizing constant

f�z� � �� � z�	�
��
��������

� �� 
 � � � �����

Score function and random information are given by

��z� �
� � �

� � z�	
�

��z

��z� �
� � �

�� � z�	
��
�


���� � z�	
��

and the expected information is �see Lange� Little and Taylor� �	�	��

E��z� �
� � �

� � �

���

Throughout the paper we assume that design vectors zt and transition ma�

trices are known� However� unknown hyperparameters of the densities f





and g� for instance the scale factor 
 and the degrees of freedom � of the

t�distribution� have to be estimated in most practical applications along with

the sequence of unknown states� A number of data driven methods for choos�

ing hyperparameters are conceivable� for instance simple heuristic methods

as in ACM�type smoothing �Martin and Yohai� �	��� or cross�validation�

We develop an EM�type algorithm that combines suggestions of Lange� Lit�

tle and Taylor ��	�	� for static robust regression and of Fahrmeir ��		�� for

dynamic generalized linear models�

� Penalized likelihood estimation

For the following let y � �y�� � � � � yT �
�� � � �� �

�� �
�
�� � � � � �

�
T �

� denote the whole

vector of observations or parameters up to time T � Smoothing is based on

the posterior density p��jy�� Fully Bayesian methods based on MCMC sim�

ulation have been developed recently to tackle this problem� see for instance

Shephard and Pitt ��		
� and Carter and Kohn ��		�a� �		�b�� As pointed

out in the introduction� posterior mode smoothers are still a useful alterna�

tive� They are obtained by maximizing p��jy� or� equivalently� p�yj��p����

Taking logarithms and using the model assumptions of Section �� we obtain

the penalized log�likelihood criterion

pl��� � log p�yj�� � log p��� �����

�
TX

t��

log f�yt � z�t�t� � log g���� � a�� �
TX

t��

log g��t � Ft�t���

With � � � log g� r � � log f and r� � � log f� de�ned in Section � maxi�

mization of ����� is equivalent to minimizing

TX
t��

��yt � z�t�t� � r���� � a�� �
TX

t��

r��t � Ft�t���� �����

The �rst term in ����� is a robust measure for the distance between data and

�t and is familiar from M�estimation in static robust regression� The second

term acts as a robust smoothness prior penalizing roughness of the sequence

of states� For ��x� � r�x� � x� we get a penalized least squares criterion�
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leading to non�robust classical linear Kalman �ltering and smoothing� see for

instance Fahrmeir and Tutz ��		� Section �����

The following should be noted� We have arrived at the penalized log�

likelihood criterion in a Bayesian framework by maximizing the posterior

density p��jy�� However� we might forget about this Bayesian approach and

start directly from ����� regarding f�tg as a �xed but unknown sequence

which has to be estimated subject to smoothness restrictions� Furthermore�

we may allow that � is not a proper �negative� log�density but any of the

��functions as they are popular in robust statistics� leading to posterior M�

estimation�

In maximizing ����� or minimizing ����� the score function

u��� � �pl���	��

and the observed or the expected information matrix

U��� � ���pl���	���� � or �U��� � E U���

are of interest� The score function can be partitioned as u �

�u�
�� � � � � u

�
t� � � � � u

�
T �

� with ut � �pl���	��t � t � �� � � � � T � To avoid special

formulas for t � � and t � T � we de�ne z� � � and FT�� � �� Straightforward

di�erentiation shows that

ut � z�t�t � ct � F �
t��ct�� �t � �� � � � � T � �����

where �t and ct are the �rst derivatives of � and r evaluated at yt� z�t�t and

�t � Ft�t��� The information matrix is block�tridiagonal�

U �

�
BBBBBBBBBBB�

U�� U�� � � � � �

U �
�� U��

� � �
���

�
� � � � � � �

���
� � � UT���T

� � � � � U �
T���T UTT

�
CCCCCCCCCCCA

����

with
Utt � zt�tz

�
t � Ct � F �

t��Ct��Ft��

Ut���t � F �
tCt

�t � �� � � � � T � �����
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where �t and Ct are �expected� second derivatives of � and r evaluated at

yt � z�t�t and �t � Ft�t���

Setting rt �� z�t�t� Rt �� zt�tz
�
t and Q��

t �� Ct� the expressions �����

and ����� for �rst and second derivatives are formally identical to formulas

��
� and ��	� for exponential family state space models in Fahrmeir and

Kaufmann ��		��� Therefore factorization and inversion of the information

matrix U and the covariance matrix recursion developed in that paper remain

formally identical�

� Filtering� Smoothing and Estimation of

Hyperparameters

In the following we �rst summarize the resulting Fisher scoring or Gauss�

Newton �lters and smoothers for given or known hyperparameters�

Gauss�Newton smoother

Initialize� Choose a starting sequence �� � ���
�jT

�
� ��

�jT
�
� � � � � ��

tjT
�
� � � � � ��

T jT
�
�
�
�

for example by an ACM�type smoother�

Iterate the Gauss�Newton steps �� � ���

�� � � u� � ��j� � C��
� � with u� and C� evaluated at ���

�� Compute for t � �� � � � � T

�tjt�� � Ft�t��jt��F
�
t � C��

t

�tjt � ����
tjt�� � zt�tz

�
t�
��

����

Bt � �t��jt��F
�
t�

��
tjt��

and ut by ������ all expressions evaluated at ��� Set t � ut �B�
tt���

�� Filter correction� ��
T jT � ��

T jT � �T jTT

� Smoother corrections� For t � T� � � � � �

�t��jT � �t��jt�� �Bt��tjT � �tjt���B
�
t






��
t��jT � ��

t��jT �Bt��
�
tjT � ��

tjT � � ��t��jT �Bt�tjTB
�
t�t���

Iterate steps ��� � till convergence to obtain conditional mode smoothers

�� �
�jT � � � � � �

�
tjT � � � � � �

�
T jT �

� together with curvatures ���jT � � � � ��tjT � � � � ��T jT �

as approximate error covariance matrices�

An equivalent but computationally alternative form for �ltering and

smoothing are iterative Kalman �lters and smoothers applied to working

observations� They can be derived along the line of argument in Fahrmeir

and Wagenpfeil ��		
�� but are not presented here�

Up to now we assumed hyperparameters of the error distributions�

such as scale factors or degrees of freedom� as known� Estimation of

hyperparameters can be based on general concepts such as cross�validation

or maximum likelihood� We developed an EM�type algorithm for �ap�

proximate� ML estimation� It is tailored to the Student family� using the

fact that a t�distributed random variable t can be generated as a mixture

t � x	
q
z	� with x as zero�mean normal and the mixture variable z as

���distributed with � degrees of freedom� Therefore we can treat the states

in an approximative EM algorithm together with the mixture variables

as missing� E�xpectation��steps are then analogous to robust regression

models �see Lange� Little and Taylor� �	�	�� but posterior expectations are

substituted by posterior modes� Compared to the EM�type algorithm for

dynamic generalized linear models �see e�g� Fahrmeir and Tutz� �		�� fur�

ther Taylor series expansions are necessary� Details are given in the appendix�

Then� the complete algorithm can be summarized as follows�

�� Set hyperparameters � � �����

�� Compute penalized likelihood smoother� with � � �����

�� Compute ���� by EM steps� using ����� ����� for updating of variances

and maximization of ����� for degrees of freedom�

�



� Set ���� � �����

Iterate steps ��� � till convergence�

� Simulations and Applications

To gain experience with practical performance� the smoothing algorithm was

applied to a number of simulated and real data� Gauss Newton smoothing

was combined with Fisher scoring by using expected information whenever

the observed information matrix was not positive de�nite� To combine states

and parameter estimation a complete Gauss�Newton algorithm and a single

EM�type step were alternated until convergence� Subsection ��� and ���

report on typical simulation results� Real data examples follow in Subsection

����

��� Simulation �� additive outliers

One�dimensional states were computed according to �t � sin��t�	�� � �����

t � �� � � � � �� and held �xed throughout ��� simulation runs� Scalar observa�

tions were obtained from yt � �t� �t� t � �� � � � � �� with errors �t drawn from

a t�distribution with � d�f� and scale ���� Gauss�Newton smoothing estimates

f�tj��g were computed based on a second�order random walk model for AO�

i�e� �
� �t

�t��

�
� �

�
� � ��

� �

�
�
�
� �t��

�t��

�
��

�
� vt

�

�
� � yt � �t � �t�

with vt � N��� q� and �t as t�distributed with unknown d�f� � and scale


�� Since positive de�niteness of Ct is required� we set Ct � diag�q� �e��	��

Approximative con�dence bands f�tj�� � � � 
tj��g were computed using cor�

responding diagonal elements 
�tj�� of curvatures �tj���

To illustrate advantages of robust smoothing over linear smoothing un�

der normality assumptions� we pick out run �� which was the �th best ac�

cording to the mean squared error criterion� Results are shown in Figure ��

Gauss�Newton estimates are not a�ected by the additive outlier at t � �� and

	



EM�type for robust smoother EM for linear smoother

Bias MSE Bias MSE


�� �����
�� ������� ������ ������

� ������� �������   

Table �� Hyperparameter estimation for simulation ��

con�dence bands are considerably smaller� The EM�type algorithm yielded

q � ������ 
�� � ������ and � � ��
�� The EM algorithm combined with

the linear smoother computed q � ������ and 
�� � ����� Overestimation of


�� is typical for linear smoothers in the case of AO� compare Table ��

The boxplots in Figures � and � show the empirical distributions of

Gauss�Newton resp� linear smoothing estimates �
�i�
tj�� from simulation runs

i � �� � � � � ���� Points indicate outlying estimates beyond the whiskers which

are drawn to the nearest value not beyond one and a half times the inter quar�

tile range� Comparing both �gures with respect to bias and� in particular�

variability provides clear evidence for MSE superiority of robust smoothing�

in agreement with Table ��

��� Simulation �� innovations outliers

For analyzing IO� we chose

�t �

	









�










�

���� � t � �� � � � � ��

��� � t � ��� � � � � �

������ t � �� � � � � ��

� � t � ��� � � � � ��

������ t � ��� � � � � ��

�xed throughout ��� simulations runs and generated scalar observations yt �

N��t� ������ Gauss�Newton smoothing estimates were computed assuming a

steady state model for IO�

�t � �t�� � vt� yt � �t � �t

��



with vt as t�distributed with unknown � and q� and �t � N��� 
�� ��

Figure  shows run 
 which was no��� according to the mean squared

error criterion� In comparison to the linear smoother under normality

assumption the Gauss Newton algorithm is able to track the level shifts

quite well and yields smooth estimates in between with smaller con�dence

bands� The EM�type algorithm yielded q � �����	� 
�� � ����

 and

� � ����� The EM algorithm combined with the linear smoother computed

q � ����� and 
�� � ���	�  q is typically greater than the robust estimate

in case of IO� The boxplots in Figures � and � were constructed in analogy

to Simulation � and enlighten the behaviour for all ��� simulation runs�

They show that dynamic models with robust smoothness priors clearly

outperform Gaussian dynamic models in the presence of discontinuities and

are promising candidates for edge preserving smoothing�

��� Real Data Examples

Penalized likelihood smoothing was applied to the suspended deposit data of

Tukey ��	

�� see also Martin and Raftery ��	�
�� which show an IO in the

year �	� after the foundation of the Federal Deposit Insurance Corporation

in the USA� The data and the results are illustrated in Figure 
� Based on a

steady state model for IO� the EM type algorithm computed the estimates

q � ���� 
�� � ��
	 and � � ���
� Gauss Newton smoothing exhibits the

level shift immediately and yields a smooth track before and after the year

�	��

The monthly CP� sales data �West and Harrison� �	�	� shown in Figure

� contain an AO in December �	��� indicating also a change point� as well

as IO in January �	�
 and �	��� Assuming again a steady state model for

IO penalized likelihood smoothing clearly indicates the level shifts and gives

smooth estimates in between� especially almost ignoring the AO� Hyperpa�

rameter estimates were q � 	� 
�� � ���� � � �����

��



� Conclusion and Outlook

Linear state space models with heavy�tailed error distributions provide a

�exible tool for curve estimation in the presence of additive outliers� The

proposed penalized likelihood or posterior mode smoothers avoid numerical

integration or Monte Carlo techniques and provide a useful alternative or

supplement to MCMC simulation� Special emphasis was laid on the Student

distribution� For this case� an EM�type algorithm for data driven estimation

of unknown scale factors and degrees of freedom has been developed� State

space models for innovations outliers lead to robust smoothness priors and

to edge preserving smoothing algorithms that can cope with discontinuities

or change points in the underlying curve� Extensions to spatial models� in

particular for image analysis seem to be promising and will be considered in

future research�

Appendix

We assume independent univariate t�distributions for the observation errors

�t and the components vtj� j � �� � � � � p of the errors vt � �vt�� � � � � vtp�

of the transition equation� Then �tjut � N��� 
��	ut�� vtj � N��� qj	wtj�

with mixture variables ut � ��
�	� and wtj � ��

�j
	�j� j � �� � � � � p� If

we assume� for simpli�cation� starting values a�� Q� to be known� then

� � �
�� � �� q�� ��� � � � � qp� �p� is the vector of unknown hyperparameters� Given

the current iterate ����� the EM algorithm computes the next iterate ���� by

maximizing the posterior expectation of the complete data log likelihood

E flog p�y� u� �� w�jy� ����g� where y���u and w are the vectors of all obser�

vations� state vectors and mixture variables respectively� Due to the model

assumptions this is equivalent to

E
n
log p�yju� �� � log p�u� � log p��jw� � log p�w�

y� ����o �� max
�

� �����

This implies separate maximization problems for the components of �� Sup�

pressing the index j� we outline the derivation of our EM�type algorithm for

the unknown scale factor q and degrees of freedom �� Omitting constants�

��



we have to consider the maximization problems

S�q� � �
T

�
log q �

�

�q

TX
t��

E f��
twtjy� �

���g �� max
q

�����

with �t as the j the component of �t � Ft�t��� and

S��� �
TX

t��

E flog p�wt�jy� �
���g �� max

�
� �����

Using iterated conditional expectations� the t�the summand in S�q� can

be written as

E
n
��
twt

y� ����o � E
n
E���

twtj�� y� �
����

y� ����o

� E
n
��
t!

�����t�
y� ����o

with !�����t� � f��������	��������
t 	q

����g� compare Lange� Little and Taylor

��	�	� property ��� By a Taylor series expansion around "�t � E��tjy� �
����

we get

E���
twtj�� y� �

���� � "��
t!

����"�t��
�

�
#����"�t� var��tjy� �

����

with #����"�t� � f������������������ �"��
t 	q

����	������ "��
t 	q

����
g� Setting the

�rst derivative of S�q� to zero� we get

q��� �
�

T

TX
t��

"��
t!

��� var��tjy� �
����� ����

Approximating posterior expectations and variances by posterior modes and

curvatures� available from our smoothing algorithm for given ����� this is an

EM�type step for estimating q� Similarly we get the iteration step


����� �
�

T

TX
t��

"�t!
����"t� � #����"t� zt�tjT z

�
t �����

for 
�� with "t � yt � z�t�t and !����"t� and #����"t� de�ned analogous to the

above�

Similar approximations are made in the E�step for ����� Since the wt are

independently ���
� distributed� we have

S��� �
T�

�
log�

�

�
�� T log�$�

�

�
�� � �

�

�
� ��

TX
t��

E
n
logwtjy� �

���
o

�
�

�

TX
t��

E
n
wtjy� �

���
o
� �����

��



Suppressing t� iterated conditional expectations now yield

E
n
w
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By Taylor series expansion of h��� � ����� � ��	����� � ��	q���� around � we

obtain
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Once more iterating conditional expectations gives
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where DG��� is the Digamma function� The last equation is given by Lange�

Little and Taylor ��	�	�� By Taylor series expansion of g��� � log������ �

��	q����	�� we obtain the �nal approximation
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Conditional variances var��jy� ����� in ���
� and ����� are again approx�

imated by curvatures and after di�erentiation of S��� the next estimate ����

can be found by a one dimensional search algorithm�

To obtain an estimate for the degrees of freedom � of the observa�

tion error�s distribution we can proceed analogously� especially using that

u conditional on � and y is ��
���	�� � �	
�� � distributed and therefore

E fujy� �g � �� � ��	�� � �	
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Figure �� True parameters f�tg indicated by �� � �� and smoothing estimates

�& � together with naive ��
�con�dence bands �  � obtained by the robust

smoother �a� and by the linear smoother �c�� Observations fytg indicated

by diamonds and �tted values f"ytg �& � resulting from the robust smoother

�b� and from the linear smoother �d��

�




Time

0 10 20 30 40 50 60

-1
.0

-0
.5

0.
0

0.
5

1.
0

••

•

••
•

••
•

•••

•••

••

••

•• •

••

•

•

• • •

•

•

••

••

•
•••

••
•

•
••

•

•
•

•

•
•

•

•

•

•••••

•

•• ••
•
••
•
•
• ••• •••

••

•

•

•

••
•• •• • •

•

••

•

••

•

• • • •
••• •••

•

••

•

•••

•

••

•

••

•

• •
•
•

•
••
•••
•••••

Figure �� Boxplots visualizing the empirical distribution of Gauss�Newton

smoothing estimates for simulation �� True values f�tg indicated by �& ��
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Figure �� Boxplots visualizing the empirical distribution of linear smoothing

estimates for simulation �� True values f�tg indicated by �& ��
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