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We introduce MC+, a fast, continuous, nearly unbiased, and accurate method of penalized

variable selection in high-dimensional linear regression. The LASSO is fast and continuous, but

biased. The bias of the LASSO interferes with variable selection. Subset selection is unbiased

but computationally costly. The MC+ has two elements: a minimax concave penalty (MCP)

and a penalized linear unbiased selection (PLUS) algorithm. The MCP provides the minimum

non-convexity of the penalized loss given the level of bias. The PLUS computes multiple local

minimizers of a possibly non-convex penalized loss function in certain main branch of the

graph of such solutions. Its output is a continuous piecewise linear path encompassing from

the origin to an optimal solution for zero penalty. We prove that for a universal penalty level,

the MC+ has high probability of correct selection under much weaker conditions compared

with existing results for the LASSO for large n and p, including the case of p≫ n. We provide

estimates of the noise level for proper choice of the penalty level. We choose the sparsest

solution within the PLUS path for a given penalty level. We derive degrees of freedom and

Cp-type risk estimates for general penalized LSE, including the LASSO estimator, and prove

their unbiasedness. We provide necessary and sufficient conditions for the continuity of the

penalized LSE under general sub-square penalties. Simulation results overwhelmingly support

our claim of superior variable selection properties and demonstrate the computational efficiency

of the proposed method.
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1. Introduction. Variable selection is fundamental in statistical analysis of high-

dimensional data. With a proper selection method and under suitable conditions, we are

able to build consistent models which are easy to interpret, to avoid over fitting in prediction

and estimation, and to identify relevant variables for applications or further study. Consider a

linear model in which a response vector y ∈ R
n depends on p predictors xj ∈ R

n, j = 1, . . . , p,

through a linear combination
∑p

j=1 βjxj. For small p, subset selection methods can be used

to find a good guess of the pattern

Ao ≡
{
j : βj 6= 0

}
. (1.1)

For example, one may impose a proper penalty on the number of selected variables based on

the AIC (Akaike, 1973), Cp (Mallows, 1973), BIC (Schwarz, 1978), RIC (Foster and George,

1994) or a data driven method. For large p, subset selection is not computationally feasible,

so that continuous penalized or gradient threshold methods are typically used.

Let ‖ · ‖ be the Euclidean norm. Consider penalized least squares estimators (LSE)

β̂ ≡ β̂(λ) ≡ arg min
b

{
1

2n

∥∥y −Xβ
∥∥2

+

p∑

j=1

ρ
(
|bj |;λ

)}
, (1.2)

with a penalty ρ(t;λ) indexed by λ ≥ 0, in the linear regression model

y =

p∑

j=1

βjxj + ε, (1.3)

whereX ≡ (x1, . . . ,xp), β ≡ (β1, . . . , βp)
′, and ε is an error vector. Assume the penalty ρ(t;λ)

is nondecreasing in t and has a continuous derivative ρ̇(t;λ) = (∂/∂t)ρ(t;λ) in (0,∞). Assume

further ρ̇(0+;λ) > 0, so that (1.2) has variable selection features with the possibility of β̂j = 0

(Donoho, Johnstone, Hoch and Stern, 1992). Changing the index λ if necessary, we assume

ρ̇(0+;λ) = λ whenever ρ̇(0+;λ) < ∞, so that λ has the interpretation as the threshold level

for the individual regression coefficients βj under the standardization ‖xj‖2/n = 1. In what

follows, we treat the set of variables selected by β̂ ≡ β̂(λ) as

Â ≡ Â(λ) ≡
{
j : β̂j 6= 0

}
. (1.4)

A widely used procedure of form (1.2) is the LASSO (Tibshirani, 1996) with ρ(t;λ) =

λ|t|, which is easy to compute (Osborne, Presnell and Turlach, 2000a, 2000b; Efron, Hastie,

Johnstone and Tibshirani, 2004) and has the interpretation as boosting (Schapire, 1990; Freund
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and Schapire, 1996; Friedman, Hastie and Tibshirani, 2000). Meinshausen and Buhlmann

(2006) and Zhao and Yu (2006) showed that the LASSO is variable selection consistent

P
{
Â = Ao

}
→ 1 (1.5)

under a strong irrepresentable condition on the covariance matrix X ′X and some additional

regularity conditions on {n, p,β, ε}. However, the strong irrepresentable condition is quite

restrictive, and that due to the estimation bias, the condition is also necessary for LASSO

to be selection consistent. Under a relatively mild sparse Riesz condition on the covariance

matrix X ′X, Zhang and Huang (2006) proved that the dimension |Â| for the LASSO selection

is of the same order as the size

do ≡ |Ao| = #
{
j : βj 6= 0} (1.6)

of the unknown pattern (1.1) and that the LASSO selects all variables with absolute coefficients

above certain separation zone of the order
√
doλ under the standardization ‖xj‖2/n = 1. These

results are still not satisfactory in view of the possibility of selecting some irrelevant variables

and the extra factor
√
do for the separation zone, compared with the intended threshold level

λ. Again, due to the estimation bias of the LASSO, the extra factor
√
do cannot be removed

under either the sparse Riesz or strong irrepresentable conditions. From these points of view,

the bias of the LASSO severely interferes with variable selection when p and do are both large.

Prior to the above mentioned studies about the interference of the bias of the LASSO with

accurate variable selection, Fan and Li (2001) raised the concern of the effect of the bias of

more general penalized estimators on estimation efficiency. They pointed out that the bias of

penalized estimators can be removed almost completely by choosing a constant penalty beyond

a second threshold level γλ, and carefully developed the SCAD method (Fan, 1997) for p > 1

with the penalty λ
∫ t
0 min

{
1, (γ−x/λ)+/(γ−1)

}
dx, γ > 2. Iterative algorithms were developed

there and in Hunter and Li (2005) and Zou and Li (2006) to approximate a local minimizer

of the SCAD penalized loss for fixed (λ, γ). For penalized methods with unbiasedness and

selection features, Fan and Peng (2004) proved the existence, variable selection consistency

(1.5) and asymptotic estimation efficiency of some local minimizer of the penalized loss under

the dimensionality constraint p = o(nr) with r = 1/3, 1/4 or 1/5 depending on regularity

conditions. Their results apply to general classes of loss and penalty functions but do not

address the uniqueness of the solution or provide methodologies for finding the local minimizer
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with the stated properties. A major cause of computational and analytical difficulties in these

studies of unbiased selection methods is the non-convexity of the minimization problem.

The main purpose of this paper is to introduce and study an MC+ methodology which has

two components: a minimax concave penalty (MCP) and a penalized linear unbiased selection

(PLUS) algorithm.

The MCP, defined as

ρ(t;λ) = λ

∫ t

0

(
1− x

γλ

)+
dx (1.7)

with a regularization parameter γ > 0, is the minimizer of the maximum concavity

κ(ρ;λ) ≡ sup
0<t1<t2

ρ̇(t1;λ)− ρ̇(t2;λ)

t2 − t1
, (1.8)

subject to the following unbiasedness and selection features:

ρ̇(t;λ) = 0 ∀ t ≥ γλ, ρ̇(0+;λ) = λ. (1.9)

The PLUS computes a piecewise linear path of critical points for the possibly non-convex

minimization problem (1.2). It differs from existing non-convex minimization algorithms

in three important aspects: (i) It computes the exact value of local minimizers instead of

iteratively approximating them; (ii) It computes a path of possibly multiple local minimizers

for the entire range of the penalty level λ ≥ 0 instead of a single solution for a fixed λ; (iii)

It computes multiple local minimizers for individual penalty levels λ by tracking along its

path of critical points for different values of λ instead of trying to jump from the domain of

attractions of one solution to another for a fixed λ. In each step, the PLUS computes one line

segment in its path between two turning points, and its computational cost is the same as the

LARS (Efron et al 2004) per step. The MC+ with larger regularization parameter γ provides

smoother predictors and computationally less complex path, but larger bias and less accurate

variable selection. The MC+ path converges to the LASSO path as γ →∞.

The proposed MC+ provides fast, continuous, nearly unbiased, and accurate variable

selection in high-dimensional linear regression, as our theoretical and numerical results support.

Table 1 presents the results of a simulation experiment to demonstrate the superior selection

accuracy and competitive computational complexity of the MC+, compared with the LASSO

and SCAD. We measure the selection accuracy by the proportion CS of replications with the

correct selection CS ≡ I{Â = Ao} and the computational complexity by the average k of the
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Table 1: Performance of LASSO, MC+ and SCAD in Experiment 1

100 replications, n = 300, p = 200, β∗ = 1/2, γ = 2/(1−maxj 6=k |x′
jxk|/n) = 2.652

CS ≡ I{Â = Ao}, k ≡ #(steps); Nearly identical results for known σ

CS ≤ 0.14 for λ/σ̂ =
√

(log p)/n; CS ≤ 0.01 for λ/σ̂ = 1.96/
√
n or

√
16(log p)/n

do = 10 do = 20 do = 40

λ/σ̂ lasso mc+ scad lasso mc+ scad lasso mc+ scad
√

2(log p)/n CS 0.34 0.76 0.70 0.06 0.78 0.61 0.01 0.84 0.24

= 0.1879 k 12 16 26 23 32 51 48 65 132
√

4(log p)/n CS 0.88 0.97 0.93 0.41 0.81 0.49 0.01 0.11 0.00

= 0.2658 k 11 11 14 21 21 27 42 41 57
√

8(log p)/n CS 0.39 0.40 0.39 0.07 0.08 0.07 0.00 0.00 0.00

= 0.3759 k 10 10 10 17 17 17 31 28 32

number of the PLUS steps. In this experiment, y is generated with βj = ±β∗ for j ∈ Ao

and ε ∼ N(0, In) in (1.3), and xj are generated by greedy sequential sampling of groups 10

most correlated vectors from a pool of 600 iid vectors. See Section 3.5 for details. The design

X is fixed, with the maximum absolute correlation 0.2459, ‖xj‖ =
√
n, and the minimum

eigenvalue 0.0374 for X ′X/n, while Ao and ε are drawn independently for the 100 replications

with do = |Ao| ∈ {10, 20, 40}. The σ̂2 is the residual mean squares with 100 degrees of freedom

in the full 200-dimensional model. Bold face entries indicate P{Â = Ao} ≈ CS > 0.5.

Why is the MC+ able to avoid both the interference of estimation bias with variable

selection and the computational difficulties with non-convex minimization? A short, heuristic

explanation is that for sparse β and carefully selected γ, the condition

β∗ ≡ min
{
|βj | : j ∈ Ao

}
> γλ, λ ≥ σ

√
2 log p

(
max
j≤p
‖xj‖/n

)
, (1.10)

provides the MC+ with unbiasedness at sufficiently large threshold λ, while a moderate

maximum concavity κ(ρ;λ) = 1/γ provides certain sparse convexity of the penalized loss

L(β;λ) ≡ 1

2n

∥∥y −Xβ
∥∥2

+

p∑

j=1

ρ(|βj |;λ), β ∈ R
p. (1.11)

The first inequality of (1.10) allows unbiased selection of all j ∈ Ao. The second one prevents

selection of variables outside Ao given the selection of all variables in Ao in the linear model
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(1.3) with ε ∼ N(0, σ2In). Finally, the sparse convexity of (1.11) is needed for computational

simplicity. We observe that the penalty function must satisfy

lim
t→∞

ρ̇(t;λ) = 0, ρ̇(0+;λ) ≡ lim
t→0+

ρ̇(t;λ) > 0, (1.12)

for the unbiasedness and selection features. Since this excludes convex penalties, to ensure the

convexity of the penalized loss, the convexity of the squared loss in (1.11) must overcome the

concavity of the penalty as functions in R
p, at least in sparse regions that matter.

2. A sketch of main results. In this section, we provide a brief description of our

results, along with certain crucial concepts, conditions, and necessary notation.

In Section 3 we introduce the PLUS algorithm and discuss the choice of penalties and the

regularization parameter γ for the MC+. The PLUS computes a piecewise linear path

β̂(λ) ≡ β̂(k)
(λ) =

λ(k) − λ
λ(k) − λ(k−1)

β̂
(k−1)

+
λ− λ(k−1)

λ(k) − λ(k−1)
β̂

(k)
, k = 1, . . . , k∗, (2.1)

with possibly non-increasing λ(k) 6= λ(k−1) to accommodate multiple local minimizers. It

begins with an initial segment β̂(λ) = β(0) = 0 ∈ R
p, λ(0) ≤ λ < ∞. For each segment k,

β̂(λ) ≡ (β̂1(λ), . . . , β̂p(λ))′ satisfies the Kuhn-Tucker-type condition





x′
j

(
y −Xβ̂(λ)

)
/n = sgn(β̂j(λ))ρ̇(|β̂j(λ)|;λ), β̂j(λ) 6= 0

∣∣x′
j

(
y −Xβ̂(λ)

)
/n

∣∣ ≤ λ, β̂j(λ) = 0
(2.2)

for (1.2). For almost all designs X , segments of the PLUS path collectively form certain main

branch of the solutions of (2.2). The main branch encompasses continuously from the origin

to an optimal solution satisfying X ′(y −Xβ̂) = 0, while other branches of the solutions of

(2.2) form separate continuous loops. We assume that the penalty function is of the form

ρ(t;λ) = λ2ρ(t/λ) with a fixed quadratic spline ρ(t), including the ℓ1 penalty ρ(t) = t for the

LASSO as a special case. For such penalty functions, the PLUS has the following geometric

interpretation: A transformation of all the branches of the solutions of (2.2) is the intersection of

a single ray from the origin and a collection of adjacent and possibly overlapping parallelepipeds

in R
p, and each segment of the PLUS path corresponds to the intersection of the ray and one

of these parallelepipeds. In this sense, the PLUS path is linear. The computational complexity

of the PLUS path, depending on how the parallelepipeds fold, is easily manageable in our

simulation experiments.
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We prove that the PLUS provides the entire path of the global minimizer of (1.2) under a

global convexity condition and the sparsest solution of (2.2) under a sparse convexity condition

up to certain rank. The design matrix and penalty satisfy the global convexity condition if

cmin

(
Σ

)
+
ρ̇(t2;λ)− ρ̇(t1;λ)

t2 − t1
> 0, ∀ 0 < t1 < t2, (2.3)

where Σ ≡X ′X/n and cmin(M ) denotes the minimum eigenvalue of M . For A ⊆ {1, . . . , p},
define sub-design matrices and their standardized covariance as

XA ≡ (xj, j ∈ A)n×|A|, ΣA ≡X ′
AXA/n. (2.4)

For p > n or small cmin(Σ), we introduce the sparse convexity condition with rank d∗ as

κ(ρ;λ) < c∗ ≤ c∗(d∗) ≡ min
|A|≤d∗

cmin

(
ΣA

)
, (2.5)

where κ(ρ;λ) is the maximum concavity in (1.8). For p > n, cmin(Σ) = 0 and (2.3) does not

hold. However, for variable selection (2.5) is as good as (2.3) when |Â ∪ Ao| ≤ d∗. Thus,

(2.5) is very useful for sparse β when p > n and for (nearly) singular Σ when p ≤ n. Since

c∗(2) = 1−maxj 6=k

∣∣x′
kxj

∣∣/n for ‖xj‖2/n = 1, (2.5) holds for d∗ = 2 in Table 1.

In Section 4, we consider the estimations of the mean squared error (MSE) of linear

functionals of β̂ and the noise level in the linear model (1.3). We derive estimators for the MSE

and the degrees of freedom of the penalized LSE (1.2) via the SURE method of Stein (1981)

and provide sufficient conditions for their unbiasedness. We prove that for full rank designs,

the penalized LSE is continuous in y ∈ R
n if and only if (iff) the global convexity (2.3) holds,

iff the penalized loss function (1.11) is convex in the entire R
p.

In Section 5, we study the probability of correct selection under the global convexity

condition (2.3) for p ≤ n and under the sparse Riesz condition (SRC)

κ(ρ;λ) < c∗ ≤ c∗(d∗) ≤ c∗(d∗) ≡ max
|A|≤d∗

cmax

(
ΣA

)
≤ c∗ (2.6)

for general p and suitable {c∗, c∗, d∗}, where cmax(M ) is the largest eigenvalue of M , c∗ is as in

(2.5), and κ(ρ;λ) is the maximum concavity in (1.8). For ε ∼ N(0, σ2In), ‖xj‖2/n = 1 and the

penalty level λ ≥ σ
√

2(log p)/n, we prove the selection consistency (1.5) for the MC+ method

under the SRC, provided that both β∗/(γλ) and d∗/do are greater than certain constants

depending on {c∗, c∗, γ} only, where β∗, γ and do are as in (1.10), (1.7) and (1.6) respectively.

Under the global convexity condition (2.3), we obtain the explicit bound

P
{
Â 6= Ao

}
≤ (2p − do)Φ

(
−√nλ

σ

)
, Φ(t) ≡

∫ t

−∞

e−x2/2

(2π)1/2
dx, (2.7)

7



for β∗ ≥ (γ +
√
γ)λ. An interesting aspect of this theory is its validity for p as large as ea0n

with certain a0 > 0, the universal penalty level λ = σ
√

2(log p)/n (Donoho and Johnston,

1994), and general penalty functions satisfying (1.9).

In Section 6, we briefly discuss adaptive penalty, an extension of the PLUS algorithm to

generalized linear models, and penalized estimation.

3. The PLUS algorithm and quadratic spline penalties. We divide this section

into 5 subsections to cover quadratic spline penalties, a geometric description of the PLUS

algorithm, an algebraic description of the PLUS algorithm, penalized LSE for orthonormal

designs, and the effects of the regularization parameter γ of the MC+ on the computational

complexity and bias.

3.1. Quadratic spline penalties and the MCP. The PLUS algorithm assumes that

the penalty function is of the form ρ(t;λ) = λ2ρ(t/λ), where ρ(t) is an increasing quadratic

spline in [0,∞). Such ρ(t) must have a piecewise linear nonnegative continuous derivative ρ̇(t)

for t ≥ 0. We index such ρ(t) by the number of threshold levels m, or equivalently the number

of knots in [0,∞), including zero as a knot. Thus,

ρ(t;λ) = λ2ρm(t/λ), ρ̇m(t) ≡ dρm

dt
(t) =

m∑

i=1

(ui − vit)I{ti ≤ t < ti+1} (3.1)

with u1 = 1, vm = 0, tm+1 =∞ and knots t1 = 0 < t2 < · · · < tm = γ, satisfying ui − viti+1 =

ui+1 − vi+1ti+1 ≥ 0, 1 ≤ i < m. Since κ(ρ;λ) does not depend on λ for ρ(t;λ) = λ2ρ(t/λ), we

denote the concavity measure (1.8) as κ(ρ) in such cases.

We set ρ̇m(0+) = u1 = 1 to match the standardization ρ̇(0+;λ) = λ in (1.9), and vm = 0

for the uniform boundedness of ρ̇(t;λ). The unbiasedness parts of (1.12) or (1.9) demand

tm = γ > 0 and thus m > 1, but the PLUS includes the LASSO with m = 1. For ‖xj‖2/n = 1,

cmin(ΣA) ≤ 1, so that (2.5) requires κ(ρm) = maxi≤m vi < c∗ ≤ 1 for (3.1).

The penalty class (3.1) includes the ℓ1 penalty with m = 1 and κ(ρ1) = 0, the MCP with

m = 2 and κ(ρ2) = v1 = 1/γ, and the SCAD penalty with m = 3, v1 = 0, t2 = 1 and

κ(ρ3) = v2 = 1/(γ − 1). We plot these three penalty functions ρm, m = 1, 2, 3 and their

derivatives in Figure 1, with γ = 5/2 for the MCP and SCAD penalty.

As mentioned in the introduction, we propose the MCP (1.7) as the default penalty for the

PLUS, and thus the acronym MC+. The MCP corresponds to (3.1) with

ρ2(t) = min
{
t− t2/(2γ), γ/2

}
, ρ̇2(t) = (1− t/γ)+. (3.2)
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Figure 1: The ℓ1 penalty ρ1(t) = t for the LASSO along with the MCP ρ2(t) and the SCAD penalty

ρ3(t), t > 0, γ = 5/2. Left: penalties ρm(t). Right: their derivatives ρ̇m(t).

Among spline penalties satisfying (1.9), the MCP has the smallest number of threshold levels

m = 2. Since the PLUS path makes a turn when |β̂j(λ)/λ|, j ≤ p, hit one of the m thresholds,

MC+ is the simplest for the PLUS to compute except for the LASSO with m = 1. For

continuously differentiable penalty ρ(t;λ), define

ρ̈(t;λ) ≡ lim
ǫ→0+

inf
0<|x|≤ǫ

(
ρ̇(t+ x;λ)− ρ̇(t;λ)

)/
x, t > 0, (3.3)

so that −ρ̈(t;λ) measures the local concavity of ρ(·;λ) at t > 0 and κ(ρ;λ) = supt>0

{
− ρ̈(t)

}

in (1.8) measures the maximum concavity of the penalty ρ(t;λ). We call (1.7) the minimax-

concave penalty since it has the smallest maximum concavity κ(ρ;λ) given the threshold level

γλ for the “complete unbiasedness” in (1.9). Since κ(ρ;λ) is minimized at κ(ρ1) under (1.9), the

MCP offers the global convexity (2.3) of the penalized loss with the smallest possible cmin(Σ)

and the sparse convexity (2.5) with the highest rank d∗. Thus, it fulfills our main smoothness

conditions with the greatest stability. Moreover, for a given level of concavity κ(ρ;λ), the

MCP ensures the unbiasedness above the smallest second threshold γλ in (1.9) and thus the

smallest separation zone β∗ > γλ in (1.10). Therefore, in our program, the MCP provides

computational simplicity, smoothness, unbiasedness and accurate selection for the penalized

LSE to the greatest extent. Moreover, the MC+ allows the regularization parameter γ to be set

in the entire continuum of (0,∞]. Subsection 3.4 contains further discussion about MCP and

other penalty functions and their relationship to threshold estimators for p = 1. Subsection

3.5 discusses the effects of regularization parameter γ in (1.7) and (3.2).

3.2. A geometric description of the PLUS algorithm. Let z̃ ≡X ′y/n. For penalty
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functions of the form ρ(t;λ) = λ2ρ(t/λ), the optimization problem (1.2) is equivalent to

b(z) ≡ arg min
b

{
− b′z +

1

2
b′Σb+

p∑

j=1

ρ(|bj |)
}

(3.4)

through the scale change z̃ → λz and β → λb, where Σ ≡ X ′X/n. The solution of (3.4)

along the ray {z̃/λ, λ > 0} provides the solution of (1.2) with the inverse transformation

β̂(λ) = λb(z̃/λ). In this subsection, we describe the PLUS algorithm in the rescaled problem

(3.4) through a geometric interpretation of its path via the following rescaled version of (2.2):





zj − χ′
jb = sgn(bj)ρ̇m(|bj |), bj 6= 0,

∣∣z′j − χ′
jb

∣∣ ≤ 1 = ρ̇m(0+), bj = 0,
(3.5)

where ρm is as in (3.1) and χj ≡X ′xj/n are the columns of Σ.

We shall “plot” the solution b(z) against z to allow multiple solutions, instead of directly

solving (3.5) for a given z = z̃/λ = X ′y/(nλ). In the univariate case p = 1, we plot functions

in R
2. For p > 1, we need to consider b versus z in R

2p. Let H = R
p, H∗ be its dual, and

z ⊕ b be members of H ⊕H∗ = R
2p. Define

u(i) ≡ u|i|, v(i) ≡ v|i|, t(i) ≡




ti, 0 < i ≤ m+ 1

−t|i|+1, −m ≤ i ≤ 0,
(3.6)

with the ui, vi and ti in (3.1). For indicators η ∈ {−m, . . . ,m}p, let

S(η) ≡ the set of all z ⊕ b

satisfying





zj − χ′
jb = sgn(ηj)u(ηj)− bjv(ηj), ηj 6= 0

−1 ≤ zj − χ′
jb ≤ 1, ηj = 0

t(ηj) ≤ bj ≤ t(ηj + 1), ηj 6= 0

bj = 0, ηj = 0.

(3.7)

Since sgn(bj)ρ̇m(|bj |) = sgn(ηj)u(ηj) − bjv(ηj) for t(ηj) ≤ bj ≤ t(ηj + 1), (3.5) holds iff (3.7)

holds for certain η. For each η, the linear system in (3.7) is of rank 2p, since one can always

uniquely solve for b and then z if the inequalities are replaced by equations. Thus, since (3.7)

has p equations and p pairs of parallel inequalities, S(η) are p-dimensional parallelepipeds

living in H⊕H∗ = R
2p. Due to the continuity of ρ̇m(t) = (d/dt)ρm(t) in t by (3.1) and that of

zj−χ′
jb in both z and b, the solutions of (3.7) are identical in the intersection of any given pair
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Figure 2: Left: The solid ray as τ z̃ and the projections of the 52 = 25 parallelograms S(η) for the

MCP γ = 2 to the z-space H with dashed-edges, labeled by η1 and η2 along the margins inside the box.

Right: The MC+ path (solid) as the entire solution set of (2.2) in the β-space, along with the LASSO

path (dashed). Data: ‖xj‖2/2 = 1, x′
1x2/2 = 1/4, (z̃1, z̃2) = (1,−0.883), and p = 2.

of S(η) with adjacent η. Furthermore, the p-dimensional interiors of different S(η) are disjoint

in view of the constraints of (3.7) on b. Thus, the union of all the p-parallelepipeds S(η) forms

a continuous p-dimensional surface S ≡ ∪
{
S(η) : η ∈ {−m, . . . ,m}p

}
in H ⊕H∗ = R

2p. The

solution set of (3.5) for all z = τ z̃, τ = 1/λ, or equivalently the solution set of (2.2) for all

λ > 0, is identical to the intersection of this surface S and the (p + 1)-dimensional open half

subspace
{
(τ z̃)⊕ b : τ > 0, b ∈ H∗

}
in R

2p. Figure 2 depicts the projections of S(η) to H and

the MC+ and LASSO solutions for p = 2 under the global convexity condition (2.3).

The rescaled PLUS path in H ⊕H∗ is a union of connected line segments

∪k∗

k=0ℓ(η
(k)|z̃), ℓ(η|z) ≡ S(η) ∩

{
(τz)⊕ b : τ ≥ 0, b ∈ H∗

}
, (3.8)

beginning with ℓ(η(0)|z̃) =
{
(τ z̃)⊕ b(0) : 0 ≤ τ ≤ τ (0)

}
, η(0) = b(0) = 0, and connected at

{
(τ (k−1)z̃)⊕ b(k−1)

}
= ℓ(η(k−1)|z̃) ∩ ℓ(η(k)|z̃), z̃ ≡X ′y/n. (3.9)

We initialize (3.9) with b(0) = 0 and τ (0) = 1/maxj≤p |z̃j |. Given (τ (k−1)z̃)⊕ b(k−1), we find a

new line segment ℓ(η(k)|z̃) and compute the other end of it as (τ (k)z̃)⊕b(k), k ≥ 1. The PLUS

path ends at step k∗ if (τ (k∗)z̃)⊕b(k∗) provides an optimal fit satisfyingX ′(y−Xb(k∗)/τ (k∗)) =

0 with τ (k∗) > 0. If an optimal fit can not be found in the current pass, the PLUS searches

11



through the existing turning points to find a connected new line segment to restart. In this

case, the PLUS path can still be written as a single sequence satisfying (3.8) and (3.9) with

some repeating segments. This provides the geometric description of the PLUS algorithm.

Non-degenerate designs: We say that the design matrix X in (1.3) is non-degenerate

if for all A ⊂ {1, . . . , p} of size |A| = n ∧ p− 1 and ηj ∈ {−1, 0, 1}, j ≤ p, the n ∧ p vectors

xj , j ∈ A,
∑

k 6∈A

ηkxk are linearly independent. (3.10)

For p ≤ n, X is non-degenerate iff rank(X) = p.

Theorem 1. (i) Suppose the design matrix X is non-degenerate. Given X, there exist a

finite set Γ0(X) such that for γ 6∈ Γ0(X) the MC+ path is composed of sequentially connected

line segments ℓ(η(k)|z̃) with turning points (τ (k)z̃) ⊕ b(k), τ (k) > 0, k = 1, . . . , k∗ < ∞,

and ends with an optimal fit satisfying X ′
(
y −Xb(k∗)/τ (k∗)

)
= 0. Consequently, the PLUS

path β̂(λ) in (2.1) ends with the optimal fit β̂
(k∗)

= b(k∗)/τ (k∗) as a solution of (2.2) for all

0 ≤ λ ≤ λ(k∗) = 1/τ (k∗).

(ii) For fixed γ > 0, the design matrix X is non-degenerate and γ 6∈ Γ0(X) almost everywhere

in R
n×p under the Lebesgue measure.

(iii) For fixed positive γ 6= 1, the design matrix X is non-degenerate and γ 6∈ Γ0(X) almost

everywhere under the product of p Haar measures in the (n− 1)-sphere {x : ‖x‖2/n = 1}.

Under the conditions of Theorem 1 (i), the MC+ path forms a main branch from β̂ = 0

to a point of optimal fit in the graph of the solution set of (2.2). We actually prove that the

MC+ algorithm finishes in one pass almost everywhere in z̃ ∈ R
p. Theorem 1 (ii) and (iii)

assert that the conditions of Theorem 1 (i) hold almost everywhere in X for all fixed {n, p, γ}.
Conditions of Theorem 1 (i) is not necessary for the MC+ path to end with an optimal fit. For

example, if xj = ±xk, the PLUS path uses at most one design vector xj or xk in any step, so

that it behaves as if one of them never exists. For simplicity, we omit an extension of Theorem

1 to the PLUS with general quadratic penalty (3.1).

Theorem 1 does not guarantee that the PLUS path contains all solutions of (2.2), but

Theorem 2 below does under the global convexity condition (2.3). Figure 3 depicts an example

in which the complete solution set of (2.2) contains the main branch covered by the MC+ path

and a loop not covered. Still, Theorem 7 in Section 5 shows that under the SRC (2.6), the

PLUS path provides variable selection consistency in such cases.
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Figure 3: Plots for the same data as in Figure 2 with γ = 1/2 for the MCP. Clockwise from the top

left: the z-space plot with overlapping areas marked by multiple values of ηj ; the main branch and one

loop as the entire MCP solution set of (2.2) in the β-space, along with the LASSO; the segments of the

main branch with τ (k)z̃, k = 0, 1, 2, 3, representing transitions η =
(
0
0

)
→

(
1
0

)
→

(
2
0

)
→

(
2
−1

)
→

(
2
−2

)
;

the loop with τ (k)z̃, k = 4, 5, 6, 7, representing transitions η =
(

0
−2

)
→

(
0
−1

)
→

(
1
−1

)
→

(
1
−2

)
→

(
0
−2

)
.

For η ∈ {−2, 0, 2}p, z-segments turn into β-points in the MC+ path.

Let ΣA be as in (2.4). Define Σ(η) ≡ Σ{j:ηj 6=0} and

Q(η) ≡ Σ(η)− diag
(
v(ηj), ηj 6= 0

)
, d(η) ≡ #{j : ηj 6= 0}. (3.11)

Since the χj in (3.5) are the columns of Σ, the first equation of (3.7) can be written as

Q(η)P (η)b = P (η)
(
z − sgn(η)u(η)

)
, (3.12)

where P (η) : b→ (bj , ηj 6= 0)′ are projections and u(·) is as in (3.6).

Proof of Theorem 1. Let X be fixed. Define dk(η) ≡ #{j : |ηj | = k}, k = 1, 2. We

consider three types of indicators η ∈ {−2,−1, 0, 1, 2}p with η = 0 as Type-1.
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Type-2: d2(η) ≥ n∧ p. Let (τ z̃)⊕ b ∈ S(η) as in (3.7), so that (3.5) holds with zj = τ z̃j =

τx′
jy/n. Since ρ̇2(|bj |) = 0 for |ηj | = 2, (3.5) implies x′

j(τy −Xb) = 0 for all |ηj | = 2. Since

τy−Xb ∈ R
n and {xj , |ηj | = 2} contains at least n∧ p linearly independent vectors, by (3.8)




d2(η) ≥ n ∧ p

(τ z̃)⊕ b ∈ ℓ(η|z̃)
⇒ X ′(τy −Xb) = 0. (3.13)

Type-3: d2(η) < n ∧ p and η 6= 0. If (3.5) holds for z = 0, then bjx
′
jXb/n = bjχ

′
jb =

−|bj|ρ̇2(|bj |) for all bj 6= 0, so that ‖Xb‖2/n = −∑
j |bj |ρ̇2(|bj |) = 0 due to ρ̇2(|bj |) ≥ 0. Since

ρ̇2(|bj |) = 1/γ > 0 for |bj | < γ and |bj | ≤ γ for |ηj | = 1, bj = γηj for |ηj | = 1 in such cases.

Therefore, Xb =
∑

|ηj |=2 bjxj + γ
∑

|ηk|<2 ηkxk = 0. This is impossible for non-degenerate X

since γ > 0 and d2(η) < n ∧ p. Thus, 0⊕ b 6∈ S(η) for indicators η of Type-3.

We now consider the choice of γ for the MC+. It follows from (3.2) and (3.11) that the

determinant det(Q(η)) is a polynomial of v1 = 1/γ with det(Σj:|ηj|=2)(−v1)d1(η) 6= 0 as the

leading term. Let Γ0(X) be the finite set of all reciprocals of the roots of such polynomials. We

choose γ 6∈ Γ0(X) here after, so that det(Q(η)) 6= 0 for all η of Type-3. Since det(Q(η)) 6= 0,

in S(η) the vector (bj , ηj 6= 0)′ is a linear function of z by (3.12) , so that by (3.8) and the

discussion in the previous paragraph




d2(η) < n ∧ p

η 6= 0
⇒




ℓ(η|z) is a generalized line segment

0⊕ b 6∈ ℓ(η|z) ∀ b.
(3.14)

Here a generalized line segment includes the empty set, single points in H ⊕H∗ = R
2p, and

line segments of finite or infinite length.

For each nonzero z ∈ H ≡ R
p, we define a graph G(z) with ℓ(η|z) of positive length and

Type-3 η as edges and the end points of edges as vertexes. The graph G(z) is not necessarily

connected. A vertex in G(z) is terminal if it is also a boundary point of S(η) for some η of

Type-2. If the MC+ path reaches a terminal vertex (τ z̃)⊕ b, then b/τ provides an optimal fit

by (3.13) and (3.14). The degree of a vertex in G(z) is the number of edges connected to it.

Suppose z̃ 6= 0. At step k = 0, the MC+ path reaches (τ (0)z̃)⊕ b(0) as a boundary point of

S(0). Since the p-parallelepipeds (3.7) are contiguous, (τ (0)z̃) ⊕ b(0) is also a boundary point

of S(η(1)) for some η(1) satisfying either (3.13) or (3.14) with z = z̃. If η(1) is of Type-2, then

b(0)/τ (0) gives an optimal fit and the MC+ path ends with k∗ = 0. Otherwise, the MC+ path

enters the graph G(z̃) at the initial vertex (τ (0)z̃) ⊕ b(0). If the degree of the initial vertex is
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odd and the degrees of all other non-terminal vertexes are even, then the MC+ path traverses

through G(z̃) and eventually reaches a terminal vertex in one pass. This is simply an Euler’s

Konigsberg problem.

Let S0 be the union of all intersections of three or more distinct p-parallelepipeds S(η),

η ∈ {−2,−1, 0, 1, 2}p , and H0 ≡ {z : (τz) ⊕ b ∈ S0 for some τ and b}. Since the interiors of

the p-parallelepipeds S(η) do not intersect, the intersections of three distinct S(η) are (p− 2)-

parallelepipeds, so that the projection of S0 to the (p− 1)-sphere {z : ‖z‖ = 1} along the rays

{τz, τ > 0} has Haar measure zero. Consequently, H0 has Lebesgue measure zero in H ≡ R
p.

For z 6∈ H0, each vertex in G(z) is a boundary point of exactly two p-parallelepipeds S(η),

so that the initial vertex has degree 1 and other non-terminal vertexes have degree 2 in G(z).

Thus, the initial vertex is connected to a terminal vertex in G(z̃) for z̃ 6∈ H0. For z̃ ∈ H0,

the initial vertex is still connected to at lease one terminal vertex in G(z̃) since Hc
0 is dense

in H ≡ R
p and the limits of G(z) as z → z̃ are subgraphs of G(z̃). Hence, the PLUS path

reaches a terminal vertex in either cases. �

3.3. An algebraic description of the PLUS algorithm. We provide formulas for

a simplified version of the PLUS algorithm (3.8) and (3.9), in which we only look for line

segments ℓ(η(k)|z̃) with positive length, new η(k), and det(Q(η(k))) 6= 0. This simplification

has no impact in our simulation experiments, since it is identical to the full version of the

PLUS algorithm for almost all datasets according to Theorem 1 and its proof.

For det(Q(η(k))) 6= 0, the map z → b is unique in S(η(k)) by (3.5), (3.7) and (3.12). Thus,

τ (k) 6= τ (k−1) for the k-th segment ℓ(η(k)|z̃). We write the PLUS path (2.1) as

β̂
(k)

= λ(k)b(k), λ(k) = 1/τ (k), b(τ z̃) = b(k−1) +
(
τ − τ (k−1)

)
s(k), (3.15)

with β̂(λ) = λb(z̃/λ) and τ = 1/λ between τ (k−1) and τ (k), z̃ ≡ X ′y/n as in (3.9), the

initial segment b(τ z̃) = b(0) ≡ 0 for all 0 ≤ τ ≤ τ (0) ≡ 1/maxj |z̃j |, turning points b(k) ≡
(b

(k)
1 , . . . , b

(k)
p )′ ∈ H∗ ≡ R

p, “slopes” s(k) ≡ (s
(k)
1 , . . . , s

(k)
p )′, and hitting times τ (k) > 0. We

note that the map τ → b(τ z̃) is potentially many-to-one and that τ may not be a monotone

function as (3.15) traverses through the solution set of (3.5).

As in (3.8), let η(k) be the indicator of the p-parallelepiped (3.7) in which the k-th piece of

the rescaled PLUS path (τ z̃) ⊕ b(τ z̃) lives. In the k-th step, we compute η(k), s(k), τ (k) and

b(k) given η(0), . . . ,η(k−1), τ (k−1) and b(k−1). Let

C(k) ≡
{
j : |b(k)

j | ∈ {t1, . . . tm} with η
(k)
j 6= 0 or

∣∣τ (k)z̃j − χ′
jb

(k)| = 1
}
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be the set of critical indices j at which (3.15) hits the boundary of the inequalities in (3.7) in

step k at τ = τ (k). We try all 2|C
(k−1)| − 1 nonempty subsets of C(k−1) for the path of (3.15)

to cross the boundaries at the beginning of its k-th segment, or equivalently all 2|C
(k−1)| − 1

possible candidates for η(k). We note that the “one-at-a-time” condition |C(k−1)| = 1 holds

almost everywhere. Here, η(k) is required to be new, so that η(k) 6= η(ℓ) for 0 ≤ ℓ < k.

Given η(k), the identity (3.12) must hold for η = η(k), z = τ z̃ and b = b(τ z̃).

Differentiating this identity with respect to τ , we find by (3.12) and (3.15) that

Q(η(k))P (η(k))s(k) = P (η(k))z̃, η
(k)
j = 0⇒ s

(k)
j = 0. (3.16)

Moreover, the j-th negative gradient of the loss in (3.4) and its derivative are

gj(τ z̃) = τ z̃j − χ′
jb(τ z̃),

d

dτ
gj(τ z̃) = z̃j − χ′

js
(k), (3.17)

by (3.5). Given a tentative choice η(k) 6= η(ℓ), 0 ≤ ℓ < k, we check if the solution s(k) of (3.16)

indeed carries the k-th segment of the path from the p-parallelepiped S(η(k−1)) into S(η(k))

according to (3.7), or equivalently (3.5), for two possible signs of

ξ(k) ≡ sgn(τ (k) − τ (k−1)). (3.18)

It follows from (3.15) and (3.17) that for either ξ(k) = ±1 this amounts to verifying





ξ(k)(η
(k)
j − η(k−1)

j )s
(k)
j ≥ 0, η

(k−1)
j 6= η

(k)
j 6= 0

ξ(k)(η̃
(k)
j − η(k−1)

j )s
(k)
j ≤ 0, η

(k−1)
j = η

(k)
j 6= 0, η̃

(k)
j 6= η

(k−1)
j

ξ(k)η
(k−1)
j (z̃j − χ′

js
(k)) ≤ 0, η

(k−1)
j 6= η

(k)
j = 0

ξ(k)η̃
(k)
j (z̃j − χ′

js
(k)) ≤ 0, η

(k−1)
j = η

(k)
j = 0 6= η̃

(k)
j ,

(3.19)

where η̃(k) is the “neighbor” of η(k−1) with η̃
(k)
j 6= η

(k−1)
j ,∀ j ∈ C(k−1). We note that (3.19)

checks all indices j with η̃
(k)
j 6= η

(k−1)
j . If the tentative choices of η(k) and ξ(k) and their

associated s(k) pass the test (3.19), we move on to find τ (k).

Let ∆(k) ≡
∣∣τ (k) − τ (k−1)

∣∣ be the length of the k-th segment of the PLUS path measured

in τ . Given the slope s(k) and the sign ξ(k) of dτ for the segment, there are at most p possible

ways for (τ z̃)⊕b(τ z̃) to hit a new side of the boundary of the p-parallelepiped S(η(k)) in (3.7).
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If it first hits the boundary indexed by η
(k)
j , ∆(k) would be

∆
(k)
j =





ξ
(k)
j {t(η

(k)
j + 1)− b(k−1)

j }/s(k)
j , ξ

(k)
j s

(k)
j > 0 6= η

(k)
j

ξ
(k)
j {t(η

(k)
j )− b(k−1)

j }/s(k)
j , ξ

(k)
j s

(k)
j < 0 6= η

(k)
j

ξ
(k)
j {1− g

(k−1)
j }/{z̃j − χ′

js
(k)}, ξ

(k)
j (z̃j − χ′

js
(k)) > 0 = η

(k)
j

ξ
(k)
j {−1− g(k−1)

j }/{z̃j − χ′
js

(k)}, ξ
(k)
j (z̃j − χ′

js
(k)) < 0 = η

(k)
j

(3.20)

by (3.7), (3.15) and (3.17), where the function t(·) is as in (3.6) and g
(k−1)
j ≡ gj(τ

(k−1)z̃) is

the j-th negative gradient (3.17) at τ = τ (k−1). It follows that

τ (k) = τ (k−1) + ξ(k)∆(k), ∆(k) = min
1≤j≤p

∆
(k)
j . (3.21)

We note that (3.19) guarantees ∆
(k)
j > 0,∀j in (3.20). We formally write the PLUS as follows.

The PLUS Algorithm.

Initialization: b(0) ← 0, τ (0) ← 1/maxj≤p |z̃j |, k = 1

Iteration:

Find η(k) 6= η(ℓ), 0 ≤ ℓ < k, such that (3.19) holds

for the solution s(k) of (3.16) and some ξ(k) = ±1 (3.22)

Find τ (k) according to (3.21) (3.23)

b(k) ← b(k−1) +
(
τ (k) − τ (k−1)

)
s(k) (3.24)

k ← k + 1 (3.25)

Termination: (3.22) has no solution for k = k∗ + 1 or τ (k∗) =∞.

Output: τ (0), b(0), η(k), s(k), τ (k), b(k), k = 1, 2, . . . , k∗

Theorem 2. Let β̂(λ) be defined by (2.1) and (3.15) with the output of the PLUS.

(i) If Q(η(k)) in (3.11) is positive-definite and ℓ(η(k)|z̃) does not live on the boundary of S(η(k))

in (3.8), then β̂(λ) is a local minimizer of the penalized loss (1.11) in the k-th segment of its

path strictly between the turning points β̂
(k−1) ≡ λ(k−1)b(k−1) and β̂

(k) ≡ λ(k)b(k).

(ii) Suppose the sparse convexity condition (2.5) holds with rank d∗. Then, for any given

A ⊆ {1, . . . , p} with |A| ≤ d∗, the penalized loss (1.11) is strictly convex and has a unique

minimizer under the constraint βj = 0 ∀j 6∈ A. In particular, if d(η(k)) ≤ d∗/2, then β̂(λ) in

the k-th segment provides the unique solution of (2.2) satisfying #{j : β̂j 6= 0} ≤ d∗/2.
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Figure 4: The same type of plots as in Figures 2 and 3 for the same X and more sparse (z̃1, z̃2) =

(1,−1/2). From the left: the z-space plot for MC+ with γ = 2; MC+ with γ = 1/2; the MC+ (same

for both γ = 2 and γ = 1/2) and LASSO paths in the β-space.

(iii) If the global convexity condition (2.3) holds, then λ(k−1) > λ(k), the PLUS path ends with

the LSE β̂
(k∗)

= Σ−1X ′y/n, and β̂(λ) is always the unique solution of (2.2), i.e. the global

minimizer of (1.11) and the solution of (1.2).

The significance of Theorem 2 (ii) is as follows. If max(d(η(k)), do) ≤ d∗/2 and the pattern

Ao in (1.1) is identified by a solution of (2.2), then the solution is given by β̂(λ) in the k-th

segment of the PLUS path. Thus, the effect of non-convexity is less pronounced for sparse data.

In the example in Figure 4, the convex penalized loss with γ = 2 yields identical MC+ path

as the non-convex one with γ = 1/2 for sparse data outside regions where the the projections

of the parallelograms S(η) fold severely in the z-space for γ = 1/2. This should be compared

with the dramatic difference between γ = 2 and γ = 1/2 in Figures 2 and 3 for dense data.

Choice among multiple solutions: Theorem 2 suggests that among multiple solutions

in the PLUS path for a specific λ, we choose the sparsest one, the solution in the segment with

the smallest d(η(k)) = rank(P (η(k))), subject to the positive-definiteness of Q(η(k)). We break

the ties by further minimizing the “degrees of freedom” as the trace of Q(η(k))Σ(η(k)) and

then maximizing cmin

(
Q(η(k))

)
for the stability of the estimator. See (3.11) for the notation

and Subsection 4.2 for the justification of the degrees of freedom and stability measures.

Proof of Theorem 2. (i) Since (z̃⊕ β̂(λ))/λ is in the interior of S(η(k)), (2.2) holds with

strict inequality. Thus, by (3.11), the directional derivative of the penalized loss (1.11)

∂

∂t
L(β̂(λ) + tb;λ) = tb′1Q(η(k))b1 +

∑

η
(k)
j =0

|bj |
(
λ− sgn(bj)x

′
j(y −Xβ̂(λ))/n +O(t)

)

is positive for small t > 0, where b1 = P (η(k))b. Thus, β̂(λ) is a local minimizer.
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(ii) The strict convexity and uniqueness follow from (iii), since the sparse convex condition

implies the global convex condition under the constraint βj = 0 for all j 6∈ A. Let λ be fixed.

For any solutions β̂ and β̃ of (2.2) with #{j : β̂j 6= 0} ≤ d∗/2 and #{j : β̃j 6= 0} ≤ d∗/2, the

constrained uniqueness implies β̂ = β̃.

(iii) Let λ be fixed and define h(t) ≡ κ(ρ;λ)t2/2 + ρ(|t|;λ) − λ|t|. Since ρ̇(0+;λ) = λ, h(t)

is a continuously differentiable convex function in view of the definition of κ(ρ;λ) in (1.8). It

follows that the penalized loss

L(β;λ) =
{ 1

2n

∥∥y −Xβ
∥∥2 − κ(ρ;λ)

2
‖β‖2

}
+

p∑

j=1

{
|bj |+ h(|bj |)

}
(3.26)

is a sum of two convex functions, with the first one being strictly convex for cmin(Σ) > κ(ρ;λ)

and the second one being strictly convex otherwise. This gives the uniqueness. �

3.4. Orthonormal designs and more discussion on penalties. For orthonormal

designs x′
jxk/n = I{j = k}, the penalized estimation problem (1.2) is reduced to the case of

p = 1. For ρ(t;λ) = λ2ρm(t/λ) with the quadratic spline penalties (3.1), (3.4) becomes

β̂j = λb
(
x′

jy/(nλ)
)
, b(z) ≡ arg min

b

{
(z − b)2/2 + ρm(|b|)

}
. (3.27)

For p = 1 and the MCP with κ(ρ2) = 1/γ < 1, the solution of (3.27) is

bf (z) = sgn(z)min
(
|z|, γ(|z| − λ)+

γ − 1

)
,

which turns out to be the firm threshold estimator of Gao and Bruce (1997). The firm threshold

estimator is always between the soft threshold estimator bs(z) ≡ sgn(z)(|z|−λ)+ and the hard

threshold estimator bh(z) ≡ zI{|z| > λ}. Actually, bs(z) ≤ b(z) ≤ bf (z) ≤ bh(z) for z > 0 and

the opposite inequalities hold for z < 0 for all solutions of (3.27), given a fixed γλ in (1.9) or

a fixed maximum concavity κ(ρm) = 1/γ with γ > 1. For example, the univariate SCAD

bSCAD(z) ≡ sgn(z)min
[
|z|,max

{
(|z| − λ)+,

(γ − 1)|z| − γλ
γ − 2

}]
, γ > 2,

satisfies these inequalities and has the concavity measure κ(ρ3) = 1/(γ − 1) > κ(ρ2) = 1/γ.

We plot these univariate estimators in Figure 5.

For p = 1 and κ(ρ2) = 1/γ ≥ 1, the MC+ path has three segments and its sparsest

solution gives the hard threshold estimator. See Figure 5 on the left. Antoniadis and Fan

(2001) observed that in the orthonormal case, the global minimizer (3.27) for the penalty (1.7)

19



0 1 2 z

1

2

b

hard

soft

mc+

hard

scadmc+/firm

0 1 2 z

1

2

b

>

^

>

^

Figure 5: Left: The univariate hard, soft and MC+ paths in z⊕b ∈ H⊕H∗ = R
2 with a vertical dotted

line at z = γ = 1/2. Right: The hard, MC+/firm and SCAD paths for p = 1 with γ = 5/2. Hard and

soft path in solid, and additional segments of MC+ and SCAD in dashed lines.

with γ = 1/2 yields the hard threshold estimator. In fact, in the univariate case, any penalty

function with concave derivative ρ̇(t;λ) and γ ≤ 1 in (1.9) yields the hard threshold estimator

as the global minimizer in (3.27).

A crucial difference between the MC+ and hard threshold estimator for p = 1, and more

generally between the PLUS and other non-convex minimization algorithms for p > 1, is

in the ways the multiple solutions of (2.2) are treated. Unlike existing iterative algorithms

which search for a local minimizer of the penalized loss (1.11) for fixed λ with a given initial

guess or tries to jump from the domain of attraction of one local minimizer to another, the

PLUS continuously tracks multiple solutions of (2.2) for the entire range of λ and thus is

computationally more efficient. In Figure 5 on the left, the dashed segments of the MC+

path continuously connect the two segments of the hard threshold estimator. In Figure 3,

the MC+ path has 4 segments labeled by η(k) =
(
0
0

)
,

(
1
0

)
,

(
2
0

)
, and

(
2
−1

)
, respectively for

k = 0, . . . , 3, and terminates with a point of optimal fit at the boundary of the parallelogram

indexed by η =
( 2
−2

)
. The line segments in the rescaled path b(λ) turn into single points β̂(λ)

for k ∈ {0, 2}, corresponding to the selection of label sets A = ∅ and {1}, while the segments

for k ∈ {1, 3} connect these solutions and the terminal point. Given a set of solutions of (2.2)

for a given λ, we choose the sparsest local minimizer instead of the one with the smallest
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penalized loss.

The analytical and computational properties of penalized estimation and selection for

general correlated X and concave penalty is much more complicated than the case of p = 1,

since they are determined in many ways by the interplay between the penalty and the design.

To a large extent, the effects of the penalty can be summarized by the threshold factor γ

for the unbiasedness in (1.9), the maximum concavity κ(ρ;λ) in (1.8) and their relationships

to the correlations of the design vectors. This naturally leads to our choice of the MCP as

the minimizer of κ(ρ;λ) given the threshold factor γ and the role of γ = 1/κ(ρ1) as the

regularization parameter for the bias and computational complexity of the MC+.

For p > 1 with correlated xj, the interpretations of “hard” or “firm” estimators are not

clear. If “hard” means discontinuity of the global minimizer (1.2) in y or the non-uniqueness

of (2.2), then by Theorem 5 in Subsection 4.3 the criterion is the failure of (2.3), which means

κ(ρm) ≥ cmin(Σ) for (3.1) and is not a property of the penalty function alone.

3.5. Computational complexity and bias. For the MC+, the tuning parameter γ

regulates computational complexity and bias level. Here we study its effects through three

simulation experiments, say Experiments 1, 2 and 3.

Experiment 1, summarized in Table 1 in Section 1, illustrates the superior selection accuracy

of the MC+ for sparse β, compared with the LASSO and SCAD. Experiment 2, summarized

in Table 2 here, shows the effects of the regularization parameter γ on selection accuracy and

computational complexity of the MC+. Experiment 3, summarized in Table 3, demonstrates

the scalability of the MC+ methodology for large p. The design vectors xj are identical

in Experiments 1 and 2. We generate a 300 × 600 random matrix as the difference of two

independent random matrices, the first with iid unit exponential entries and the second iid

χ2
1 entries. We normalize the 600 columns of this difference matrix to summation zero and

Euclidean length
√
n. We then sequentially sample groups of 10 vectors from this pool of

normalized columns. For them-th group, we sample from the remaining 610−10m columns one

member as x10m−9 and 9 more to maximize the absolute correlation |x′
jx10m−9|/n, j = 10m−

8, . . . , 10m. In Experiment 3, xj are generated in the same way with groups of size 50 from a

pool of 6000 iid columns, yielding anX with maximum absolute correlation maxj<k |x′
jxk|/n =

0.3041. In all the three experiments, βj = ±β∗ for j ∈ Ao and ε ∼ N(0, In).

Strong effects of bias on selection accuracy is observed in all three tables. Heuristically,

condition (1.10) provides an unbiased solution of (2.2) for the MC+ and SCAD, while the
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Table 2: Performance of MC+ with Different γ in Experiment 2

100 replications, n = 300, p = 200, do = 30, ε ∼ N(0, In)

TM = |Â \Ao|+ |Ao \ Â|; LASSO for γ =∞; rows with CS ≤ 0.03 not reported

+(++): 12 (18) replications fail to reach λ = 0.1 up to 5000 steps for γ = 1/2

β∗ λ γ 0.50 0.99 1.01 1.40 2.652 5.00 ∞
√

(log p)/n CS 0.03+ 0.05 0.05 0.05 0.03 0.00 0.00

3/8 = 0.1329 TM 3.73+ 2.45 2.45 2.29 2.45 4.53 9.36

k 1504+ 668 558 103 53 35 39
√

2(log p)/n CS 0.76+ 0.84 0.84 0.83 0.32 0.11 0.00

3/8 = 0.1879 TM 1.83+ 0.26 0.26 0.26 1.58 2.82 4.77

k 1495+ 660 550 99 32 31 33
√

4(log p)/n TM 8.14+ 7.23 7.43 9.36 7.76 7.45 7.64

3/8 = 0.2658 k 1319+ 462 369 56 23 24 25

3/8 any ≥ 0.1 CS 0.87+ 0.97 0.97 0.97 0.59 0.20 0.06

3/8 β∗/γ 0.75 0.38 0.37 0.27 0.14 0.08 0.00

1/4 0.1329 TM 6.73++ 5.58 5.77 5.56 7.91 9.40 11.44

1/4 0.1879 TM 11.99++ 11.70 11.81 12.29 11.29 11.26 11.41

1/4 0.2658 TM 21.63++ 21.62 21.62 21.39 19.54 19.00 18.67

1/4 any ≥ 0.1 CS 0.08++ 0.11 0.10 0.08 0.01 0.00 0.00

1/4 β∗/γ 0.50 0.25 0.25 0.18 0.09 0.05 0.00

strength of the signal overcomes the bias for all PLUS procedures when β∗ is of the order
√
doλ

or larger. These rules can be easily verified in the three tables via λ ≤ β∗/γ or λ ≤Mβ∗/
√
do

for a moderate M , with β∗/γ = 1.885 and β∗/
√
do = (0.1581, 0.1118, 0.0791) in Table 1. They

explain the behavior of P{Â = Ao} ≈ CS in most entries in the three tables.

In Tables 2 and 3, we report two additional measures of selection accuracy. The second

measure is the total miss (TM), the sum of the total false discovery |Â \Ao| and the total false

negative |Ao \ Â|. Again, the average TM over 100 replications demonstrates the superior

performance of the MC+ in our simulation experiments. The third measure of selection

accuracy is the correct selection CS for any point in the PLUS path up to the stopping rule

λ(k∗) ≤ 0.1. Comparison of this measure for the entire path with the CS for individual values

of λ shows that the universal penalty level λ = σ
√

2(log p)/n is a good choice for variable

selection in the MC+ path for standardized designs with ‖xj‖2/n = 1, although the MC+ is
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Table 3: Performance of MC+ with p > n in Experiment 3

100 replications, n = 300, p = 2000, do = 30, ε ∼ N(0, In); *: SCAD with γ = 2.4

β∗ = 1/2 β∗ = 3/8

λ γ 1.1 1.4 1.7 2.4* ∞ 1.1 1.4 1.7 2.4* ∞
√

(log p)/n CS 0.02 0.02 0.02 0.01 0.00 0.02 0.02 0.02 0.00 0.00

= 0.1592 TM 4.07 4.02 4.56 6.41 48.79 8.03 5.81 5.23 29.46 47.32

k 366 104 78.3 240 80.0 680 167 100 231 75.2
√

2(log p)/n CS 0.93 0.93 0.93 0.01 0.00 0.26 0.14 0.05 0.00 0.00

= 0.2251 TM 0.07 0.07 0.07 14.77 25.24 7.61 7.06 7.77 24.68 25.41

k 353 98.4 72.7 128 53.9 392 111 61.4 56.4 46.4
√

4(log p)/n CS 0.53 0.16 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

= 0.3183 TM 2.14 4.15 6.59 14.82 15.08 17.87 17.58 16.77 18.15 18.16

k 342 80.8 42.5 40.2 36.1 152 35.3 19.9 23.8 23.8

any ≥ 0.15 CS 1.00 1.00 0.99 0.22 0.00 0.65 0.64 0.41 0.00 0.00

β∗/γ 0.45 0.36 0.29 0.21 0.00 0.34 0.27 0.22 0.16 0.00

somewhat confused with the choice of λ(k) in its path in the most difficult cases.

As expected, we observe in Tables 2 and 3 that MC+ with smaller γ is computationally

more costly. Dramatic rise in the number of needed PLUS steps is observed when γ decreases

to 1/2. We avoid γ = 1, since it produces singular Q(η) = 0 for (3.12) whenever
∑p

j=1 |ηj | = 1

for the MC+ with the standardization ‖xj‖2/n = 1.

An interesting phenomenon exhibited in Experiments 2 and 3 is that the observed selection

accuracy CS is always decreasing in γ. Despite the computational complexity for small γ, the

MC+ still recovers the true Ao among so many line segments it traverses through. This suggests

that the interference of the bias, not the complexity of the path or the lack of the convexity

of the penalized loss, is a dominant factor in variable selection. Of course, bias reduction does

not always provide accurate variable selection. When the separation zone shrinks to β∗ = 1/4

from β∗ = 3/8 in Table 2, the selection accuracy suddenly drops to CS ≤ 0.11 for all values

of (λ, γ). This seems to indicate that for β∗ = 1/4, the data simply do not contain sufficient

information for the identification of Ao due to the failure of (1.10).

Table 3 shows that the MC+ methodology scales well for p > n. Comparisons between

Tables 2 and 3 demonstrate that for similar do and signal strength, the computational

complexity of the MC+ is insensitive to p as measured by the average number of steps k.
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4. The MSE, degrees of freedom, and noise level. In this section, we consider

the estimation of the MSE of β̂(λ) and µ̂(λ) = Xβ̂(λ) under the normality assumption on

the errors in (1.3). Formulas for unbiased estimation of risks are derived and justified via the

SURE. Necessary and sufficient conditions are provided for the continuity of the penalized

LSE. We first consider the estimation of the noise level as it is needed for both risk estimation

and proper choice of λ.

4.1. Estimation of noise level. Consider throughout this subsection standardized

designs with ‖xj‖2/n = 1 for all j ≤ p. We have shown in Tables 1, 2 and 3 that the MC+

with the universal penalty level λ = σ
√

2(log p)/n works well for variable selection in the linear

model (1.3) with N(0, σ2) errors. In practice, this requires a reasonable estimate of the noise

level σ. For p < n, the mean residual squares ‖y − µ̃‖2/{n − rank(X)} for the full model

provides an unbiased estimator of σ2 as in Table 1, where µ̃ is the projection of y to the

linear span of the design vectors {xj, j ≤ p}. However, the estimation of σ2 is a more delicate

problem for p > n or small n − p > 0. In this subsection, we present some simulation results

for a simple estimator of σ2 in the case of p > n.

If (2.2) provides consistent estimates µ̂(λ) of the mean µ ≡Xβ, we may estimate σ2 by

σ̂2(λ) ≡ ‖y − µ̂(λ)‖2
n− d̂f(λ)

(4.1)

with certain d̂f(λ) for the adjustment of degrees of freedom. We will provide a formula of d̂f(λ)

in (4.12) below. Still, good σ̂2(λ) requires a consistent µ̂(λ), which depends on the choice of a

suitable λ of the order σ
√

(log p)/n. This circular estimation problem can be solved with

σ̂ ≡ σ̂(λ̂), λ̂ ≡ min
{
λ ≥ λ∗ : σ̂2(λ) ≤ nλ2

r0(log p)

}
, (4.2)

for suitable r0 ≤ 2 and λ∗ > 0. Here λ∗ could be preassigned or determined by upper bounds

on d̂f(λ) or the dimension #{j : β̂j(λ) 6= 0}. In principle, we may also use in (4.2) estimates

σ̂2(λ) based on cross-validation or bootstrap, but the computationally much simpler (4.1) turns

out to have the best overall performance in our experiments with r0 = 1 in (4.2).

In Figures 6 and 7, we present simulation results for the estimation of σ in Experiments 4

and 5. In Experiment 4, γ = 1.7, β∗ = 1/2, and β is generated every 10 replications.

Its configurations are otherwise identical to that of Experiment 3 reported in Table 3. In

Experiment 5, xj are normalized columns from a Gaussian random matrix with iid rows and

the correlation σj,k = σ
|k−j|
1,2 among entries within each row, γ = 2/(1 − maxj>k |x′

kxj|/n)
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Figure 6: The median of σ̂2(λ)/(nλ2/ log p) as function of λ/
√

(log p)/n ∈ [2−3/2, 4] based on 100

replications. Left: Experiment 4 with n = 300, p = 2000 and do = 30. Middle and right: Experiment 5

with high and low correlations respectively, n = 600, p = 3000 and do = 35.
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Figure 7: Histograms of σ̂ for the same simulations as in Figure 6.

as in Experiment 1, the nonzero βj are composed of 5 blocks of β∗(1, 2, 3, 4, 3, 2, 1)
′ centered

at random multiples j1, . . . , j5 of 25, β∗ sets ‖Xβ‖2/n = 3, ε ∼ N(0, In), and {X,β} are

generated every 10 replications. It has two settings: σ1,2 = 0.9 for high correlation and

σ1,2 = 0.1 for low correlation. We set λ∗ = {2−3(log p)/n}1/2 in both Experiments 4 and 5.

Figure 6 plots the median of σ̂2(λ)/(nλ2/ log p) versus λ/
√

(log p)/n in the simulations

described above. Since all three curves cross the level σ̂2(λ)/(nλ2/ log p) = 1 at approximately

λ/
√

(log p)/n = 1, the estimation equation (4.2) provides approximately the right answer

σ̂2 ≈ 1 for r0 = 1. We solve (4.2) per replication and plot the histograms of σ̂ in Figure 7. The

means and standard deviations are 0.971± 0.057, 1.033± 0.032 and 1.060± 0.039 respectively

from the left to the right in Figure 7. Thus, the MSE for σ̂ is of the same order as n−1/2 in
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these simulations.

4.2. The estimation of MSE and degrees of freedom. The formulas derived here are

based on Stein’s (1981) theorem for the unbiased estimation of the MSE of almost differentiable

estimators of a mean vector. A map h : R
p → R

p is almost differentiable if

h(z + v) = h(z) +
{ ∫ 1

0
H(z + xv)dx

}
v, ∀v ∈ R

p, (4.3)

for certain map H : R
p → R

p×p. Suppose in this subsection that ρ(t;λ) is almost twice

differentiable in t > 0, or equivalently ρ̇(t;λ) ≡ (∂/∂t)ρ(t;λ) is almost differentiable with

ρ̇(t;λ) ≡ ∂

∂t
ρ(t;λ) = ρ̇(1;λ) +

∫ t

1
ρ̈(x;λ)dx,∀ t > 0, (4.4)

for certain function ρ̈(x;λ). Under this condition, ρ̈(t;λ) = (∂/∂t)ρ̇(t;λ) almost everywhere in

(0,∞). Since (3.3) is the minimum of the left- and right-derivatives, the ρ̈(x;λ) in (3.3) and

(4.4) are identical almost everywhere whenever (4.4) holds.

For multivariate normal vectors z ∼ N(µ,V ), Stein’s theorem can be stated as

Eh(z)(z − µ)′ = EH(z)V , (4.5)

provided (4.3) and the integrability of all the elements of H(z). This can be applied to the

penalized LSE (1.2). Let ΣA be as in (2.4). We extend (3.11) to general penalty functions

ρ(t;λ) as follows:

Q(β;λ) ≡ Σ{j:βj 6=0} + diag
(
ρ̈(|βj |;λ), βj 6= 0

)
, d(β) ≡ #{j : βj 6= 0}. (4.6)

Theorem 3. Let β̂ ≡ β̂(λ) be the penalized LSE in (1.2) for a fixed λ > 0. Let Σ ≡X ′X/n

be as in (2.3) and P̂ be the d(β̂) × p matrix giving the projection P̂ b = (bj : β̂j 6= 0)′ as in

(3.12). Suppose ε ∼ N(0, σ2In) in (1.3) and (2.5) holds with d∗ = p . Then,

E
(
β̂ − β

)(
β̂ − β

)′
= E

{(
β̂ − β̃

)(
β̂ − β̃

)′
+

2σ2

n
P̂

′
Q−1(β̂;λ)P̂

}
− σ2

n
Σ−1, (4.7)

where β̃ ≡ Σ−1X ′y/n is the ordinary LSE of β. In particular, for all a ∈ R
p,

∣∣a′
(
β̂ − β̃

)∣∣2 +
2σ̂2

n
(P̂ a)′Q−1(β̂;λ)(P̂ a)− σ̂2

n
a′Σ−1a (4.8)

is an unbiased estimator of the MSE E
∣∣a′

(
β̂ − β

)∣∣2, provided σ̂2 = σ2 in the case of known

σ2 or σ̂2 = ‖y −Xβ̃‖2/(n − p) in the case of p < n. Consequently,

E
{∥∥β̂ − β̃

∥∥2
+

2σ̂2

n
trace

(
Q−1(β̂;λ)

)
− σ̂2

n
trace

(
Σ−1

)}
= E

∥∥β̂ − β
∥∥2
. (4.9)
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Remark. Condition (2.5) with d∗ = p asserts cmin(Σ) > κ(ρ;λ), which is slightly stronger

than the global convexity condition (2.3). We prove in Subsection 4.3 that (2.3) is a necessary

and sufficient condition for the continuity of β̂, which is weaker than the almost differentiability

of β̂. Thus, the conditions of Theorem 3 are nearly sharp for the application of the SURE. In

the k-th segment of the PLUS path (2.1), Q(β̂(λ);λ) = Q(η(k)) as in (3.11).

Let µ ≡ Ey = Xβ and µ̂ = Xβ̂ with the penalized LSE (1.2). Let µ̃ and µ̂o

be the projections of y to the linear spans of {xj , j ≤ p} and {xj, βj 6= 0} respectively.

For uncorrelated errors with common variance σ2, the degrees of freedom for µ̂o is
∑p

j=1 Cov(µ̃j , µ̂
o
j)/σ

2 = rank
(
xj : βj 6= 0

)
. Thus, since E‖µ̃− µ‖2 = σ2rank(X) and

‖µ̂−µ‖2 + ‖µ̃− µ‖2 − ‖µ̃− µ̂‖2 = 2(µ̃ − µ)′(µ̂−µ),

the notion of “degrees of freedom” is extended to µ̂ as

df(µ̂) ≡
p∑

j=1

Cov(µ̃j, µ̂j)

σ2
=

1

2
E

(
rank(X)− ‖µ̃− µ̂‖

2

σ2
+
‖µ̂− µ‖2

σ2

)
. (4.10)

This also provides the Cp-type risk estimate

Ĉp ≡ Ĉp(λ) ≡ ‖µ̃− µ̂‖2 + σ̂2
{
2 d̂f− rank(X)

}
≈ ‖µ̂− µ‖2. (4.11)

Theorem 3 suggests the unbiased estimator for the degrees of freedom (4.10) as

d̂f ≡ d̂f(λ) ≡ trace
(
Q−1(β̂;λ)P̂ΣP̂

′
)

(4.12)

and the related Cp-type estimator of the MSE E‖µ̂−µ‖2 via (4.11). We refer to Efron (1986)

and Meyer and Woodroofe (2000) for more discussions about (4.10) and (4.11).

We summarize in Figure 8 the performance of (4.11) for the MC+ in Experiments 4 and 5,

with the d̂f in (4.12) and the σ̂ in (4.2). For each of the three settings, E‖µ̂(λ)−µ‖2 and EĈp(λ)

are approximated by the averages in 100 replications and the expected conditional variance

EVar(Ĉp(λ)|X ,β) is approximated by the within-group variance, since (X,β) is unchanged

in every 10 replications in each of the three settings. From Figure 8, we observe that the MSE

E‖µ̂(λ)−µ‖2 is reasonably approximated by Ĉp(λ) for p > n, at least before the MC+ starts

to over fit with small λ. The following theorem asserts the unbiasedness of (4.11).

Theorem 4. Under the conditions of Theorem 3, (4.12) is unbiased for (4.10):

E
(
d̂f

)
= df(µ̂). (4.13)
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Figure 8: Approximations of E‖µ̂(λ) − µ‖2/n (solid) and EĈp(λ)/n ± 2
{
EVar

(
Ĉp(λ)/n

∣∣X,β
)}1/2

(dashed) as functions of λ/
√

(log p)/n for the MC+ based on the same simulations as in Figure 6.

Consequently, (4.11) is an unbiased estimator of the risk ‖µ̂ − µ‖2 with the σ̂2 in (4.8).

Furthermore, if ρ(t;λ) = λt for the LASSO or |β̂j | > γλ for all β̂j 6= 0 under (1.9), then

d̂f = #
{
j : β̂j 6= 0

}
. (4.14)

Under a positive cone condition on X , Efron et al (2004) proved the unbiasedness of

#
{
j : β̂j 6= 0

}
as an estimator for the degrees of freedom for the LARS estimator (not the

LASSO) at a fixed k. Our definition of the degrees of freedom and Cp is slightly different,

since we use ‖µ̃ − µ̂‖2 and rank(X) in (4.10) and (4.11) for variance reduction, instead of

‖y − µ̂‖2 and n. We prove E#
{
j : β̂j 6= 0

}
= df(µ̂) for the LASSO for fixed λ, not for fixed

k with a stochastic λ. We defer the proofs of Theorems 3 and 4 to Subsection 4.4 as we first

need to prove the continuity of the penalized LSE. The performance of (4.11) for the LASSO

is similar to that of the MC+ as reported in Figure 8. Figure 9 compares the simulated MSE

E‖µ̂− µ‖2/n between the MC+ and LASSO in Experiments 4 and 5.

4.3. Continuity and convexity. The continuity of β̂, demanded by Stein (1981), is

a property of independent interest on its own right for robust estimation. Here we prove the

equivalence of the continuity of the penalized LSE and the global convexity condition for full

rank designs. We have considered (1.12) for unbiased selection and the slightly stronger (1.9).

For the continuity of (1.2), we only need

lim
t→∞

ρ(t;λ)/t2 = 0, 0 ≤ ρ̇(0+;λ) <∞. (4.15)
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Figure 9: Average of ‖µ̂(λ) − µ‖2/n for the MC+ (solid) and LASSO (dashed) as functions of

λ/
√

(log p)/n, with dotted verticals at λ/
√

(log p)/n =
√

2, based on the same simulations as in Figure 6.

Theorem 5. Let λ be fixed. Suppose that ρ(t;λ) is a continuously differentiable function of

t satisfying (4.15) and that X is of rank p. Then, the following three statements are equivalent

to each other:

(i) The global minimizer of (1.2) is continuous in y ∈ R
n;

(ii) The global convexity condition (2.3) holds;

(iii) The penalized loss (1.11) is strictly convex in β ∈ R
p.

Proof. Since (ii) ⇒ (iii) has been done in the proof of Theorem 2 (iii), we have two steps.

(iii) ⇒ (i): Since the penalized loss is ‖y‖2/(2n) for β = 0, y → β̂ maps bounded sets of

y in R
n to bounded sets of β̂ in R

p. Since the penalized loss L(β;λ) is continuous in both y

and β and strictly convex in β for each y, its global minimum is unique and continuous in y.

(i) ⇒ (ii): Since β̂ depends on y only through z̃ = X ′y/n and X is of rank p, the map

z̃ → β̂ is continuous from R
p to its range I . Since β̂ is the global minimum, (2.2) must hold

and the inverse

β̂ → z̃ = Σβ̂ + sgn(β̂)ρ̇(|β̂|;λ)

is continuous for β̂ ∈ (0,∞)p∩I , with per component application of functions and the product

operation. It follows that (0,∞)p ∩I is open and does not have a boundary point in (0,∞)p.

Let 1 ≡ (1, . . . , 1)′ ∈ R
p. For z̃ = xΣ1 with x > 0, L(x1;λ) = o(x2) for the ordinary LSE x1

by the first condition of (4.15), and L(β;λ) is at least cmin(Σ)x2 for any β outside (0,∞)p.

Thus, (0,∞)p ∩ I is not empty. As the only nonempty set without any boundary point in

(0,∞)p, (0,∞)p ∩I = (0,∞)p. Moreover, the map z̃ → β̂ is one-to-one for β̂ ∈ (0,∞)p.
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We have proved that all points β in (0,∞)p are unique global minimum of (1.11) for some

z ∈ R
p. Let β̂ = x1 ∈ (0,∞)p and b be the eigenvector with Σb = cmin(Σ)b and ‖b‖ = 1.

The quantity

t−1 ∂

∂t
L(β̂ + tb;λ) =

∥∥Xb
∥∥2

+

p∑

j=1

t−1sgn(β̂j)bj

{
ρ̇(|β̂j + tbj|;λ)− ρ̇(|β̂j |;λ)

}

= cmin(Σ) +

p∑

j=1

t−1bj

{
ρ̇(x+ tbj ;λ)− ρ̇(x;λ)

}
(4.16)

must have nonnegative lower limit as t→ 0+. Integrating over x ∈ [t1, t2] and then taking the

limit, we find

cmin(Σ)(t2 − t1) + ρ̇(t2;λ)− ρ̇(t1;λ) = lim
t→0+

∫ t2

t1

t−1 ∂

∂t
L(x1 + tb;λ)dx ≥ 0. (4.17)

It remains to prove that (4.17) holds with strict inequality. If (4.17) holds with equality for

certain 0 < t1 < t2, then for t1 < x < t2 and small t (4.16) becomes

t−1 ∂

∂t
L(β̂ + tb;λ) = cmin(Σ) +

p∑

j=1

t−1bj

{
− cmin(Σ)tbj

}
= 0.

This is contradictory to the uniqueness of β̂. �

4.4. Almost differentiability and the proofs of Theorems 3 and 4. The proofs of

Theorems 3 and 4 requires the following proposition, which provides the almost differentiability

of β̂. In fact, we prove the stronger Liptchitz condition for β̂ under the conditions of Theorem 3.

Proposition 2. Let λ and X be fixed and treat β̂ as a function of y. Suppose (2.5) holds

with d∗ = p . Then, β̂ = h(z̃) for z̃ = X ′y/n ∈ R
p and certain almost differentiable function

h : R
p → R

p, such that for all z and v in R
p

h(z + v) = h(z) +
{ ∫ 1

0

(
P ′Q−1P

)
(h(z + xv);λ)dx

}
v, (4.18)

where Q is as in (4.6) and P (β;λ) : b → (bj : βj 6= 0)′ is the projection as in (3.12) and

Theorem 3. Moreover, cmin

(
Q(b;λ)

)
≥ cmin(Σ)− κ(ρ;λ) > 0 for all 0 6= b ∈ R

p, so that h(z)

satisfies the Lipschitz condition: for all z and v in R
p

∥∥∥h(z + v)− h(z)
∥∥∥ ≤ ‖P̂ v‖

cmin(Σ)− κ(ρ;λ)
≤ ‖v‖
cmin(Σ)− κ(ρ;λ)

. (4.19)
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Proof of Proposition 2. Let P̂ be as in Theorem 3. We write (2.2) as




P̂Σβ̂ + P̂ sgn(β̂)ρ̇(|β̂|;λ) = P̂ z̃
∣∣z̃j − x′

jXβ̂/n
∣∣ ≤ λ

(4.20)

with per component application of univariate functions and operations. Let δ ∈ {−1, 0, 1}p

be fixed. It follows from Theorem 5 that the map P̂ z̃ → P̂ β̂ is continuous in z̃ ∈ R
p and

continuously invertible given a fixed sgn(β̂) = δ. Let H(δ) ≡ {z̃ : sgn(β̂) = δ}. The boundary

of H(δ) has zero Lebesgue measure, since it is contained in the set of z̃ satisfying δj β̂j = 0+

for δj 6= 0 or z̃j − x′
jXβ̂/n = ±λ for δj = 0, j = 1, . . . , p, according to (4.20). In the interior

of H(δ), (4.20) gives (∂/∂z̃j)β̂ = 0 and (∂/∂z̃)β̂j = 0 for δj = 0 and

P̂
∂

∂β̂

(
P̂ z̃

)′
= P̂ΣP̂ + P̂diag

(
ρ̈(|β̂j |;λ)

)
P̂

′
= Q(β̂;λ).

Since (2.5) holds with d∗ = p, cmin

(
Q(β;λ)

)
≥ cmin(Σ)− κ(ρ;λ) > 0 for all β 6= 0. Thus, the

differentiation of the inverse map yields (∂/∂z̃)β̂
′
= P̂

′
Q−1(β̂;λ)P̂ . �

Proof of Theorem 3. It follows from Proposition 2 that β̂−Σ−1z̃ is almost differentiable

in z̃ with derivative

∂

∂z̃

(
β̂ −Σ−1z̃

)′
= P̂

′
Q−1(β̂;λ)P̂ −Σ−1.

Since z̃ ≡X ′y/n ∼ N(Σβ,Σσ2/n), this and (4.5) imply

E
(
β̂ −Σ−1z̃

)(
Σ−1z̃ − β

)′
= E

(
β̂ −Σ−1z̃

)(
z̃ −Σβ

)′
Σ−1

=
σ2

n

{
EP̂

′
Q−1(β̂;λ)P̂ −Σ−1

}
.

Since the ordinary LSE is β̃ = Σ−1z̃ ∼ N(β,Σ−1σ2/n), it follows that

E
(
β̂ − β

)(
β̂ − β

)′

= E
(
β̂ − β̃

)(
β̂ − β̃

)′ − E
(
β − β̃

)(
β − β̃

)′
+ 2E

(
β̂ − β̃

)(
β̃ − β

)′

= E
(
β̂ − β̃

)(
β̂ − β̃

)′
+

2σ2

n

{
EP̂

′
Q−1(β̂;λ)P̂ −Σ−1

}
+
σ2

n
Σ−1.

This proves (4.7). The rest of the theorem follows immediately. �

Proof of Theorem 4. Since trace(bb′) = ‖b‖2, (4.7) gives

E
∥∥µ̂− µ

∥∥2
= E

{∥∥µ̂− µ̃
∥∥2

+
2σ2

n
trace

(
XP̂

′
Q−1(β̂;λ)P̂X ′

)}
− σ2

n
trace

(
XΣ−1X ′

)
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= E
{∥∥µ̂− µ̃

∥∥2
+ 2σ2d̂f− σ2rank(X)

}
,

which implies (4.13) via (4.10). For (4.14), we observe that Q(β̂;λ) = P̂ΣP̂
′
by (4.6) when

ρ̈(|β̂j |;λ) = 0 for all β̂j 6= 0. �

5. Variable selection consistency. In this section, we provide two lower bounds for

the probability of correct selection P{Â = Ao} for the sparsest PLUS solution: one for p ≤ n

under the global convexity condition and one for general p under the sparse Riesz condition.

These lower bounds imply the selection consistency (1.5) as max(n, p)→∞. In fact, we prove

the stronger sign consistency in the sense of

P
{
sgn(β̂) = sgn(β)

}
→ 1, (5.1)

where sgn(x) is the sign of x with the convention sgn(0) = 0 and per component application on

vectors. An analytic upper bound for the dimension #{j : β̂j(λ) 6= 0} of the PLUS selection

is also provided.

5.1. Consistency and non-asymptotic probability bounds. Our consistency results

are proved by showing that the sparsest PLUS solution is identical to an oracle LSE with high

probability. Let XA and ΣA ≡ X ′
AXA/n be as in (2.4). Given the knowledge of the pattern

Ao in (1.1), the oracle LSE β̂
o ≡ (β̂o

1 , . . . , β̂
o
p)′ is given by

(
β̂o

j , j ∈ Ao
)′

= Σ−1
AoX

′
Aoy/n,

(
β̂o

j , j 6∈ Ao
)′

= 0, (5.2)

provided rank(XAo) = do with the do in (1.6). Let

(wo
j , j ∈ Ao)′ = the diagonal elements of Σ−1

Ao , (5.3)

so that Var(β̂o
j ) = wo

jσ
2/n, j ∈ Ao. We first present non-asymptotic bounds for p ≤ n.

Theorem 6. Let λ > 0 be fixed and β̂ be the penalized LSE in (1.2) with a penalty ρ(t;λ)

satisfying (1.9). Suppose (2.3) holds and ε ∼ N(0, σ2In) in (1.3). Let Ao, do, β̂
o
, β∗ and Φ(·)

be as in (1.1), (1.6), (5.2), (1.10) and (2.7) respectively. Suppose β∗ ≥ γλ. Then,

P
{
Â 6= Ao

}
≤ P

{
β̂ 6= β̂

o
or sgn(β̂) 6= sgn(β)

}

≤
∑

j∈Ao

Φ
( γλ− |βj |
σ(wo

j/n)1/2

)
+ 2

∑

j 6∈Ao

Φ
(
− nλ

σ‖xj‖
)
. (5.4)
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In particular, if ‖xj‖2/n = 1 and |βj | ≥ γλ+
√
wo

jλ with λ = σ
√

2(1 + ǫn)(log p)/n, then

P
{
β̂ 6= β̂

o
or sgn(β̂) 6= sgn(β)

}
≤ (2p− do)Φ

(
−√nλ/σ

)

≤ 1

pǫn(π(1 + ǫn) log p)1/2
, ∀ǫn > −1. (5.5)

It follows from Theorem 2 (iii) that the solution of (2.2) is unique under (2.3), so that

Theorem 6 is applicable to the PLUS solution. For the MC+, (5.3) and (2.3) implies wo
j ≤

cmax(Σ
−1
Ao) ≤ 1/cmin(Σ) < γ, so that (5.5) implies (2.7) for β∗ ≥ (γ +

√
γ)λ. For the SCAD,

we need γ > 1 + 1/cmin(Σ) for (2.7). For do ≪ p, the right-hand side of (5.4) is small for

λ ≥ √2 log pmaxj ‖xj‖/n and β∗ ≈ γλ. Thus, Theorem 6 provides theoretical support to the

heuristic condition (1.10) for selection consistency.

We now consider selection consistency for general p, including p≫ n. For positive constants

{c∗, c∗} and differentiable ρ, define

C
(
c∗, c

∗, ρ
)
≡ max

0≤w≤1
inf
t≥0

{
wρ̇2(t)/c∗ + c∗(1− w)t2

}
. (5.6)

For quadratic spline penalty (3.1) and c∗ ≥ 1 in (2.6), C(c∗, c
∗, ρ) ≤ ρ̇2(0+) = 1. Set

M1 ≡M1

(
c∗, c

∗, ρ
)
≡ 4/

√
C(c∗, c∗, ρ), M2 ≡M2

(
c∗, c

∗, ρ
)
≡ 2 +M2

1 /c∗. (5.7)

Theorem 7. For each λ let β̂ ≡ β̂(λ) be the sparsest PLUS solution of (2.2) with a

quadratic spline penalty ρ(t;λ) = λ2ρm(t/λ) with tm = γ <∞ in (3.1). Let Ao, do, β̂
o
, β∗ and

Φ(·) be as in Theorem 6. Suppose the sparse convexity condition (2.5) holds with M2d
o+1 ≤ d∗

and ε ∼ N(0, σ2In) in (1.3). Let an,p be positive constants and define

λn,p ≡M1σ
√

(1 + an,p + 2 log p)/n.

Suppse β∗ ≥ γλn,p. Then, for λ ≤ λn,p and ǫn,p = e−an,p/2
√

1 + an,p + 2 log p,

P
{
Â 6= Ao

}
≤ P

{
β̂ 6= β̂

o
or sgn(β̂) 6= sgn(β)

}

≤
∑

j∈Ao

Φ
(γλn,p − |βj |
σ(wo

j/n)1/2

)
+ 2

∑

j 6∈Ao

Φ
(
− nλ

σ‖xj‖
)

+ eǫn,p − 1. (5.8)

In particular, if ‖xj‖2/n = 1, |βj | ≥ γλn,p +
√
wo

jλ with λ = σ
√

2(1 + ǫn)(log p)/n, and

an,p = 2{ǫn log p+ log((1 + ǫn) log p)} → ∞ with ǫn ≥ 0, then

P
{
β̂ 6= β̂

o
or sgn(β̂) 6= sgn(β)

}
≤ π−1/2 +

√
2 + o(1)

pǫn((1 + ǫn) log p)1/2
= o(1). (5.9)
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Figure 10: The mean (solid) of the minimum eigenvalue cmin(X
′
AXA/n) for a random set A of design

vectors and the mean minus two standard deviations (dashed) as functions of the dimension |A|, each

point based on 100 replications, with horizontal dotted lines at κ(ρ2) = 1/γ for γ ∈ {1.4, 1.7, 2.652}.
Left: the design X in Experiments 1 and 2. Right: the design X in Experiments 3 and 4.

Theorems 6 and 7 immediately implies the following asymptotic result.

Theorem 8. Under the conditions of either Theorem 6 or Theorem 7, (1.5) and (5.1)

hold, provided that ǫn = 0 for p→∞ and ǫn →∞ for fixed p in (5.5) and (5.9).

We prove Theorems 6 and 7 after providing our upper bound for the dimension of the

PLUS selection in Subsection 5.2. Since (2.5) allows c∗ > cmin(Σ), Theorem 7 provides greater

level of concavity κ(ρ;λ) for the penalty than Theorem 6 does, e.g. smaller value of γ for the

MC+, and thus requires smaller separation zone β∗.

The SRC and constant factors in Theorems 6 and 7 are quite conservative compared with

our simulation results. Technically this is due to the following two reasons: (a) The sparse

minimum and maximum eigenvalues, or c∗ and c∗ respectively in (2.6), are used to bound the

effects of matrix operations in the worst case scenario given the dimension/rank of the matrix;

(b) The proofs do not consider the possibility that the paths of individual bj = β̂j(λ)/λ pass

the bias/concave zone {b : 0 < |b| < γ} in different steps, which is harder to track analytically

but intuitively requires sparse convexity of smaller ranks. This suggests that the penalized loss

with the MCP possesses sufficient convexity if

P ∗
{
cmin(ΣA) ≥ κ(ρ2) = 1/γ

∣∣∣ |A| = d,X
}
≈ 1 (5.10)
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Figure 11: The normalized total miss TM/do of the MC+ (solid) and LASSO (dashed) as functions

of λ/
√

(log p)/n based on the same simulations as in Figure 6.

at a reasonable dimension d, where P ∗ is the probability under which A is a random subset of

{1, . . . , p}. In practice, we may substitute the SRC (2.6) with (5.10) and a similar probabilistic

upper bound on cmax(ΣA) under P ∗, which are weaker and easy to check. Figure 10 plots the

mean and a lower confidence bound of cmin(ΣA) under P ∗ as functions of given |A| = d. We

observe that (5.10) holds for quite a few possible combinations of (d, γ) in our experiments.

Theorem 7 compares favorably with the existing results for the selection consistency of the

LASSO (Meinshausen and Buhlmann, 2006; Zhao and Yu, 2006), which require

β∗ ≥Mnǫ0
√
doσ

√
(log p)/n (5.11)

for a finite constant M and a small ǫ0 > 0 and the strong irrepresentable condition

max
j 6∈Ao

∣∣∣n−1x′
jXAoΣ−1

Aos
o
∣∣∣ < 1− η0

for a small η0 > 0, where so ≡ (sgn(βj) : βj 6= 0)′. Zhang and Huang (2006) proved the rate

consistency in variable selection for the LASSO under the SRC (2.6) and (5.11) with ǫ0 = 0.

The adverse effects of the factor
√
do in (5.11) on the LASSO selection are evident in our

simulation studies.

Figure 11 plots the average of the total miss TM= |Â \ Ao| + |Ao \ Â| of the MC+ and

LASSO in Experiments 4 and 5. The MC+ performs well in Experiment 4 as the signal is

strong. In Experiment 5, the performance of the MC+ is slightly worse than the LASSO for

high correlation and slightly better for low correlation, but variable selection is most probably

infeasible in this experiment due to weak signal. The two procedures have nearly identical
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MSE for high correlation and the MC+ has significantly smaller MSE for low correlation in

Experiment 5, shown in Figure 9. As exhibited in Figure 11 and Tables 1, 2 and 3, the universal

penalty level λ = σ
√

2(log p)/n is nearly the optimal choice for variable selection in all our

simulation experiments. This further confirms the results in Theorems 6 and 7. Other aspects

of the simulation results in Experiments 4 and 5 have been reported in Figures 6, 7 and 8.

5.2. The sparsity of the selected model. In this subsection we provide an analytic

upper bound on the dimension |Â| = #{j : β̂j(λ) 6= 0} of the selected model (1.4). This allows

the sparse Riesz condition (2.6) to apply. Define

ζ∗ = max
1≤m≤p

ζ∗m, ζ∗m ≡ max
{‖P 1(A)ε‖

(mn)1/2
: A ⊆ {1, . . . p}, |A| = m

}
. (5.12)

Theorem 9. Let do, {M1,M2} and ζ∗ be as in (1.6), (5.7) and (5.12) respectively. Suppose

the sparse Riesz condition (2.6) holds with M2d
o + 1 ≤ d∗. Let β̂(λ) be the PLUS path as in

(2.1) and (3.15) with a quadratic penalty ρ(t;λ) = λ2ρ(t/λ) in (3.1). Then,

#
{
j : β̂j(λ) 6= 0 or βj 6= 0} ≤M2d

o

always holds before λ first reaches the level λ = M1ζ
∗.

We need a lemma for the proof of Theorem 9. For A ⊆ {1, . . . , p}, define

P 1(A) ≡ the projection of R
n to the linear span of {xj : j ∈ A}. (5.13)

Lemma 1. Let do ≡ |Ao| be as in (1.6). Let β̂ ≡ β̂(λ) be a solution of (2.2) and

{
j : β̂j 6= 0

}
∪Ao ⊆ A1 ⊆

{
j : β̂j 6= 0 or |x′

j(y −Xβ̂)| = λ
}
∪Ao. (5.14)

Let X1 = XA1 as in (2.4) and Σ11 ≡X ′
1X1/n. Then, for all 0 ≤ w ≤ 1,

w‖X ′
1(y −Xβ̂)‖2

ncmax(Σ11)
+

(1− w)‖β̂ − β‖2
c−1
min(Σ11)

≤
{

2
( λ2do

cmin(Σ11)

)1/2
+ 2
‖P 1(A1)ε‖

n1/2

}2
. (5.15)

Proof. Assume cmin(Σ11) > 0. Set A2 ≡ {1, . . . , p} \ A1, A3 ≡ Ao and A4 ≡ A1 \ Ao.

Define bk = (bj , j ∈ Ak), ∀b ∈ R
p. For k = 3, 4, let Qk be the matrix representing the selection

of variables in Ak from A1, defined as Qkb1 = bk. Define matrices Σjk ≡ n−1X ′
jXk.

Since β̂2 = β2 = 0, the A1 components of the gradient g ≡ g(λ) ≡ X ′(y −Xβ̂(λ))/n

satisfy g1 = X ′
1(y −X1β̂1)/n = X ′

1ε/n+ Σ11(β1 − β̂1), so that

Σ−1
11 g1 + (β̂1 − β1) = Σ−1

11 X
′
1ε/n. (5.16)
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Since Q4β1 = 0 and g′4Q4β̂1 = g′4β̂4 ≥ 0, it follows that

g′4Q4Σ
−1
11 g1 ≤ g′4Q4Σ

−1
11 g1 + g′4β̂4 = g′4Q4Σ

−1
11 X

′
1ε/n.

Let v1 ≡ Σ
−1/2
11 g1 and vk ≡ Σ

−1/2
11 Q′

kgk, k = 3, 4. Since g′4Q4Σ
−1
11 X

′
1ε/n = v′4Σ

−1/2
11 X ′

1ε/n ≤
‖v4‖ · ‖P 1(A1)ε‖/

√
n and v1 = v3 + v4,

∥∥Σ−1/2
11 g1

∥∥ = ‖v1‖ ≤ 2‖v3‖+
v′4v1

‖v4‖
≤ 2‖v3‖+ ‖P 1(A1)ε‖/

√
n. (5.17)

Insert this bound to the product of Σ
1/2
11 and (5.16), we find

∥∥Σ1/2
11 (β̂1 − β1)

∥∥ ≤ ‖v1‖+
∥∥Σ−1/2

11 X ′
1ε

∥∥/n ≤ 2‖v3‖+ 2‖P 1(A1)ε‖/
√
n. (5.18)

Since cmin(Σ11)‖v3‖2 ≤ ‖g3‖2 ≤ ‖g‖2∞do ≤ λ2do by (2.2), the summation of the squares of

(5.17) and (5.18) with weights w ≥ 0 and 1− w ≥ 0 yields (5.15). �

Proof of Theorem 9. Since β̂ = 0 in the initial section with λ ≥ λ(0) and M2 ≥ 1, we

only need to consider the case λ(0) > M1ζ
∗. Let w be the optimal choice in (5.6). It follows

from (2.2) and (5.14) that βj = 0 for j 6∈ A1 and λ|ρ̇(β̂j/λ)| = |ρ̇(β̂j ;λ)| = |x′
j(y −Xβ̂)/n| for

j ∈ A1 \Ao , so that by (5.6)

C
(
c∗, c

∗, ρ
)
λ2

∣∣A1 \Ao
∣∣ ≤

∑

j∈A1\Ao

w{ρ̇(β̂j ;λ)}2/c∗ + c∗(1− w)β̂2
j

≤ w‖X ′
1(y −Xβ̂)‖2/(nc∗) + c∗(1− w)‖β̂ − β‖2. (5.19)

By (2.6), cmin(Σ11) ≥ c∗ and cmax(Σ11) ≤ c∗ for |A1| ≤ d∗. Thus, by Lemma 1 and (5.19)

C
(
c∗, c

∗, ρ
)
λ2

(
|A1| − do

)
≤

{
2
(λ2do

c∗

)1/2
+ 2ζ∗

√
|A1|

}2
≤ 8

c∗
λ2do + 8

(
ζ∗

)2|A1|

in the event {|A1| ≤ d∗}. For λ ≥M1ζ
∗, this implies

|A1| ≤
C(c∗, c

∗, ρ) + 8/c∗
C(c∗, c∗, ρ)− 8/M2

1

do = M2d
o.

Now, beginning from λ = λ(0), the set A1 is allowed to change one-at-a-time in the PLUS path

due to the continuity of the path and the flexibility in the choice of A1 in (5.14), in view of

(2.2). Thus, since |A1| ≤ d∗ implies |A1| ≤ M2d
o and M2d

o + 1 ≤ d∗, |A1| can never jump

from [0,M2d
o] to (d∗,∞) before λ reaches M1ζ

∗. �
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5.3. Proofs of Theorems 6 and 7. We are now ready to prove the theorems stated in

Subsection 5.1. The proof of Theorem 6 is relatively simple due to the uniqueness result in

Theorem 2 (iii). The proof of Theorem 7 requires both Theorems 6 and 8.

Proof of Theorem 6. Since β̂
o

is the oracel LSE, x′
j(y − Xβ̂

o
) = 0 for j ∈ Ao. If

|β̂o
j | ≥ λγ, then ρ̇(|β̂o

j |;λ) = 0 by (1.9). Thus, β̂
o

is a solution of (2.2) in the event

Ωo(λ) ≡
{

min
j∈Ao

sgn(βj)β̂
o
j > γλ

}
∩

{
max
j 6∈Ao

|xj(y −Xβ̂
o
)/n| < λ

}
. (5.20)

Moreover, β̂(λ) = β̂
o

by the uniqueness of β̂(λ) in Theorem 2 (iii). Thus, it suffices to show

that the right-hand sides of (5.4) and (5.5) are upper bounds for 1− P{Ωo(λ)}.
By (5.2), (5.3) and the normality assumption, β̂o

j ∼ N(βj , σ
2wo

j/n) for all j ∈ Ao. Since

|βj | ≥ β∗ ≥ γλ, this implies

P
{

sgn(βj)β̂
o
j ≤ γλ

}
≤ Φ

( γλ− |βj |
σ(wo

j/n)1/2

)
, j ∈ Ao.

Let P o
1 be the projection from R

n to the linear span of {xj, j ∈ Ao}. Since y − Xβ̂o
=

(In − P o
1)ε, x

′
j(y −Xβ̂

o
)/n are normal variables with zero mean and

Var
(
x′

j(y −Xβ̂
o
)/n

)
= Var

(
x′

j(In − P o
1)ε/n

)
≤ Var(x′

jε/n) = σ2‖xj‖2/n2,

we have P
{∣∣x′

j(y −Xβ̂
o
)/n

∣∣ ≥ λ
}
≤ 2Φ(−nλ/(σ‖xj‖)) for all j 6∈ Ao. Thus, (5.4) follows by

summing the above two probability bounds over all j ≤ p. The inequalities in (5.5) follows

from (5.4) and the fact that Φ(−t) ≤ t−1e−t2/2/
√

2π. �

Proof of Theorem 7. It follows from Theorem 9 that before λ first reaches [0,M1ζ
∗],

|A1(λ)| ≡ #
{
j : β̂j(λ) 6= 0 or βj 6= 0} ≤M2d

o ≤ d∗ − 1 (5.21)

By the proof of Theorem 6, the oracle LSE β̂
o

is a solution of (2.2) for β∗ > γλ in the event

Ωo(λ) in (5.20). Thus, since β∗ ≥ γλn,p, in the event Ωo(λn,p) ∩ {M1ζ
∗ < λn,p}, both β̂(λn,p)

and β̂
o

are solutions of (2.2) when λ first hit λn,p in the PLUS path, say in segment k, with

λ(k) ≤ λn,p ≤ λ(k−1) necessarily. By (5.21) and the sparse uniqueness of (2.2) in Theorem 2

(ii), we have β̂(λn,p) = β̂
o
, so that (z̃ ⊕ β̂o

)/λn,p is a point in ℓ(η(k)|z̃) in (3.8). Moreover,

since the inequalities in (5.20) are strict, (z̃ ⊕ β̂o
)/λn,p is not a boundary point of ℓ(η(k)|z̃)

and by (2.2), (z̃ ⊕ β̂o
)/λ ∈ ℓ(η(k)|z̃) until λ hits λ(k) = maxj 6∈Ao |xj(y −Xβ̂

o
)/n|. It follows

that

β̂(λ) = β̂
o

in Ωo(λ) ∩ Ωo(λn,p) ∩ {M1ζ
∗ < λn,p}.
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Therefore, the inequalities in the proof of Theorem 6 yield

P
{
β̂ 6= β̂

o
or sgn(β̂) 6= sgn(β)

}

≤ P
{
M1ζ

∗ ≥ λn,p

}
+

∑

j∈Ao

Φ
(γλn,p − |βj |
σ(wo

j/n)1/2

)
+ 2

∑

j 6∈Ao

Φ
(
− nλ

σ‖xj‖
)
. (5.22)

It remains to bound P
{
M1ζ

∗ ≥ λn,p

}
. By (5.12), ζ∗ = max1≤m≤p ζ

∗
m and mn(ζ∗m)2/σ2

is the maximum of
( p
m

)
chi-square variables with m degrees of freedom. Thus, since λn,p =

M1σ
√

(1 + an,p + 2 log p)/n,

P
{
M1ζ

∗ ≥ λn,p

}
≤

p∑

m=1

(
p

m

)
P

{
χ2

m > m(1 + an,p + 2 log p)
}
.

It follows from the standard large deviation method that for x > 0 and t = x/{2(1 + x)},

P
{
χ2

m > m(1 + x)
}
≤ Eetχ2

m−tm(1+x) = e−mx/2(1 + x)m/2.

Thus, for ǫn,p = e−an,p/2
√

1 + an,p + 2 log p,

P
{
M1ζ

∗ ≥ λn,p

}
≤

p∑

m=1

(
p

m

)
e−m(an,p/2+log p)(1 + an,p + 2 log p)m/2

≤
p∑

m=1

(m!)−1ǫmn,p = exp(ǫn,p)− 1.

This and (5.22) imply (5.8).

Finally, for an,p = 2{ǫn log p+ log((1 + ǫn) log p)} → ∞, 1 + an,p + 2 log p = (2 + o(1))(1 +

ǫn) log p, so that

eǫn,p − 1 = (1 + o(1))ǫn,p =
(1 + o(1))

√
2(1 + ǫn) log p

pǫ0(1 + ǫn) log p
.

This and the proof of (5.5) give (5.9). �

6. Discussion. We have introduced and studied the MC+ methodology for unbiased

penalized selection. Our theoretical and simulation results have shown the superior selection

accuracy of this new method and the computational efficiency of the PLUS algorithm. We

have also provided formulas for the estimation of the MSE and the noise level. In this section,

we briefly discuss adaptive penalty, general loss, and the estimation of β and µ.
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6.1. Adaptive penalty. The PLUS algorithm applies to the penalized loss

1

2n

∥∥∥y −Xβ
∥∥∥

2
+

p∑

j=1

λ2ρm

(
|βj |rj/λ

)
, rj > 0 ∀ j, (6.1)

through the scale change {xj , βj} → {xjrj, βj/rj}. It can be easily modified to accommodate

different quadratic ρm of the form (3.1) for different j . For example, different γ = γj can be

used with the MP+, so that the j-th path β̂j(λ) reaches the unbiased region when |β̂j(λ)|rj/λ ≥
γj . This allows rj and γj to be data dependent. For rj = 1, the unbiasedness condition

γjλ ≤ |βj | allows a higher level of convexity than (1.10) does.

Zou (2006) proposed an adaptive LASSO with λ2ρm

(
|βj |rj/λ

)
= λrj|βj |, where rj is a

decreasing function of certain consistent initial estimate of βj . This approach also reduces the

estimation bias of the LASSO and was proven for fixed p to provide consistent selection (1.5)

and efficient estimation of β and µ = Xβ. For p > n, the choice of the initial estimate is

unclear for the adaptive LASSO.

6.2. General loss functions. Consider the general penalized loss

L(β;λ) ≡ ψ(β) +

p∑

j=1

λ2ρ(|βj |/λ), (6.2)

where ψ(v) ≡ ψn(v;X,y) is a convex function of v ∈ R
n given data (X ,y). In generalized

linear models, nψn(β;X ,y) is the negative log-likelihood. Let ψ̇ ∈ R
n and Ψ̈ ∈ R

n×n be the

gradient vector and Hessian matrix of ψ. With τ = 1/λ and b(τ) = β̂(λ)/λ, (3.5) becomes




τψ̇j

(
b(τ)/τ

)
+ sgn

(
bj(τ)

)
ρ̇
(
|bj(τ)|

)
= 0, bj(τ) 6= 0

τ |ψ̇j

(
b(τ)/τ

)
| ≤ 1, bj(τ) = 0.

(6.3)

Let P τ be the projection β → (βj , bj(τ) 6= 0)′ and

Q(τ) ≡ P ′
τ Ψ̈

(
b(τ)/τ

)
P τ + diag

(
ρ̈(|bj(τ)|), bj(τ) 6= 0

)
.

Let s(τ) ≡ (d/dτ)b(τ). Differentiation of (6.3) with respect to τ yields

Q(τ)s(τ) = w(τ), w(τ) = P τ

(
Ψ̈

(
b(τ)/τ

)
b(τ)/τ − ψ̇

(
b(τ)/τ

))
. (6.4)

With Q(k) ≡ Q(τ (k)) and w(k) ≡ w(τ (k)), (6.4) leads to the recursion

Q(k−1)s(k) = w(k−1), b(k) = b(k−1) + ξ(k)s(k)∆(k), τ (k) = τ (k−1) + ξ(k)∆(k), (6.5)
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where ξ(k) = −1 if sgn(s(k))sgn(s(k−1)) ∈ {−1, 0}p and ξ(k) = 1 otherwise. We set the entrance

and exist policy for the active set of variables according to (6.3). We may invert the matrix

Q(k−1) in (6.5) or update s(k) one component at a time. This extends the PLUS algorithm

to (6.2). The main difference of (6.5) from the PLUS algorithm for (1.11) is that ∆(k) has to

be small when ψ(t) is not a quadratic spline. The main difference of (6.5) from the existing

algorithms for computing the LASSO for the generalized linear models (Genkin, Lewis and

Madigan 2004; Zhao and Yu, 2004) is the possibility of the sign change ξ(k) = ±1 to allow the

path to traverse from one local minimum to another. Extensions of the LARS with large step

size ∆(k) have been considered by Rosset and Zhu (2003) for support vector machine and by

Zhang (2005) for continuous generalized gradient descent.

6.3. Penalized estimation. Although we considered both variable selection and the

estimation of the regression coefficients β and the mean vector µ ≡Xβ, our theoretical results

are focused on selection accuracy and risk estimation. Donoho and Johnstone (1994) showed

that selection and estimation demand different optimal penalty levels for orthonormal designs.

This is also the case in Figures 9 and 11 for Experiment 5. Thus, selection and estimation are

closely related but different problems. We note that our selection consistency results do imply

the estimation efficiency in the sense of P
{
β̂ = β̂

o} → 1. For recent advances in the LASSO

or LASSO-like estimations of β and µ, we refer to Greenshtein and Ritov (2004), Candés and

Tao (2005), van de Geer (2006), and Meinshausen and Yu (2006).
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