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PENALIZED LOG-LIKELIHOOD ESTIMATION FOR
PARTLY LINEAR TRANSFORMATION MODELS

WITH CURRENT STATUS DATA1

BY SHUANGGE MA AND MICHAEL R. KOSOROK

University of Wisconsin–Madison

We consider partly linear transformation models applied to current status
data. The unknown quantities are the transformation function, a linear regres-
sion parameter and a nonparametric regression effect. It is shown that the
penalized MLE for the regression parameter is asymptotically normal and
efficient and converges at the parametric rate, although the penalized MLE
for the transformation function and nonparametric regression effect are only
n1/3 consistent. Inference for the regression parameter based on a block jack-
knife is investigated. We also study computational issues and demonstrate the
proposed methodology with a simulation study. The transformation models
and partly linear regression terms, coupled with new estimation and inference
techniques, provide flexible alternatives to the Cox model for current status
data analysis.

1. Introduction. Partly linear transformation models are flexible semipara-
metric regression models where a continuous outcome U , conditional on covari-
ates Z ∈ R

d and W ∈ R, is modeled as

H(U) = β ′Z + h(W) + e,(1.1)

where H is an unknown nondecreasing transformation, h is an unknown smooth
function, and e has a known distribution F with support R. The setting we fo-
cus on in this paper is when U is not observed directly, but only its current status
is observed at a random censoring point V ∈ R. More specifically, we observe
X = (V ,�,Z,W), where � = 1(U≤V ). We assume that U and V are independent
given (Z,W). Although it is not difficult to extend our approach to allow multi-
variate h, we restrict our attention to univariate h for simplicity of exposition.

Linear transformation models, having the form (1.1) without the nonparametric
regression term h, have a long history. A parametric version of this model, with H

specified up to a finite-dimensional parameter vector, was initially investigated by
Box and Cox [8]. Dabrowska and Doksum [13] studied the generalized odds-rate
model for the two-sample problem, a special case of transformation models with
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nonparametric H . Cheng, Wei and Ying [10] proposed a class of estimating func-
tions for the regression parameter β , with possibly right censored observations, and
verified that the resulting estimator is asymptotically normal. Bickel and Ritov [7]
developed efficient methods for linear transformation models with covariates in
the uncensored setting.

The model (1.1) can be readily applied to a failure time T by letting U = logT .
The partly linear Cox model, for example, is obtained by changing the sign of
β and h, letting F(s) = 1 − exp{−es}, and by taking H(u) = logA(eu), where A

is an unspecified integrated baseline hazard. More specifically, the hazard function
of T , given the covariates Z = z and W = w, is assumed to have the form

λ(t |z,w) = exp{β̃ ′z + h̃(w)}a(t),(1.2)

where

β̃ = −β, h̃ = −h,

and where a is the baseline hazard. This model has been studied for right censored
data by Huang [23]. The partly linear proportional odds survival regression model
has the same form only with F(s) = es/(1 + es). If Y is a current status time, or
“case 1” interval censoring time, then letting V = logY will yield the data structure
described in the first paragraph.

Statistical methodology for current status data also has a long history. An im-
portant early example of current status data comes from tumor studies in animals,
where the time of tumor onset is of interest, but not directly observable, as dis-
cussed in [15]. Current status data may occur due to study design or measurement
limitations. Examples of such data arise in several fields, including demography,
epidemiology, econometrics and bioassay. Research into statistical methods for
current status data appears to have begun with the paper by Ayer, Brunk, Ew-
ing, Reid and Silverman [2] on estimating a distribution function from a single
sample. Other early approaches to current status data analysis include the use of
generalized linear regression models [3, 14, 24, 50]. Andrews, van der Laan and
Robins [1] investigate locally efficient estimators of parametric regression models
with current status data.

Over the past decade, the fascinating asymptotic properties of estimators in the
single sample case [19], and the similarity to more general kinds of interval censor-
ing, have kindled significant interest in nonparametric approaches to estimation in
current status regression [4, 16, 17, 20, 22, 28, 32, 34–36, 38, 40–42, 44–46, 52].

Our goal in this paper is to study estimation in the model (1.1), with special at-
tention on inference for β . Our results extend the nonparametric likelihood-based
approach of Huang [22, 23] in two ways. First, a smooth nonparametric covari-
ate effect is added to the Cox model for current status data. Second, results are
obtained for general transformation models with arbitrary but known residual dis-
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tribution F . The approach we take is to use nonparametric maximum penalized
log-likelihood.

Several interesting issues arise from carrying through this extension. First, the
convergence rates for the estimators of h and H , ĥn and Ĥn, appear to interfere
with each other so as to require oversmoothing of ĥn and thus force the conver-
gence rates to both equal Op(n−1/3). Second, Ĥn has a bias which does not vanish
asymptotically, even when no regression terms are present. This bias arises from
an assumption we make that the support of the current status value V is a finite
interval. This assumption is also made by Huang [22]. In spite of this persistent
bias, Ĥn is L2 consistent and bounded in probability, and thus is sufficiently con-
sistent to enable weak convergence of the estimator of β , β̂n. Third, inference
for β is challenging because estimation of the covariance directly is impractical
and there exists no generally applicable method of inference for penalized esti-
mators of partly linear models. The likelihood ratio expansion results of Murphy
and van der Vaart [31] cannot be used in our setting since the penalized compo-
nent of the objective function is larger than Op(n−1) and thus not negligible in the
limit. To resolve the inference problem, we use a block jackknife estimator which
is computationally simple and which applies, in general, to asymptotically linear
statistics.

There is an interesting connection between the model (1.1) and semiparametric
binary choice models studied in econometrics [9, 11, 12, 21, 26]. The model (1.1)
can also be expressed as the probability of a consumer choosing “� = 1” instead
of “� = 0,” given covariates (Z,W,V ), via the expression

P [� = 1|Z,W,V ] = F
(
β ′Z + h(W) + H(V )

)
,(1.3)

where H is assumed to be a monotone covariate effect, F is a known function, and
the other covariate effects are as defined previously. Without the H term, (1.3) is
precisely the model studied by Härdle, Mammen and Müller [21]. This connection
has also been observed in other settings of current status data study, for example,
[1, 41, 42, 46].

The next section, Section 2, presents the data and model assumptions, along
with several examples of residual distributions F which satisfy the given require-
ments. The maximum penalized log-likelihood estimation procedure is presented
in Section 3. Results on consistency of the estimators and the persistent bias in Ĥn

are given in Section 4. Section 5 presents results on rates of convergence for pa-
rameter estimators, and Section 6 presents asymptotic normality and efficiency
of β̂n. A block jackknife inference procedure for β is presented in Section 7. Sev-
eral computational issues are discussed in Section 8, and a simulation study eval-
uating the moderate sample size performance of the proposed methods is given in
Section 9. Proofs are given in Section 10.
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2. The data setup and model assumptions.

2.1. Data and model assumptions. The data {Xi = (Vi,�i,Zi,Wi), i =
1, . . . , n} consists of n i.i.d. realizations of X = (V ,�,Z,W), as described in the
Introduction, generated by the model (1.1). Recall that � = 1(U≤V ), where U is
a real-valued outcome of interest. We make the following additional assumptions
about the covariates and censoring distribution.

A1. (a) The covariate Z belongs to a bounded subset Z ⊂ R
d . (b) The support for

W is [a, b], where −∞ < a < b < ∞. (c) The support for V is an interval
[lv, uv], where −∞ < lv < uv < ∞.

A2. E var[Z|V,W ] is positive definite.
A3. With probability > 0, the conditional distribution of W given V dominates

the unconditional distribution of W .
A4. U and V are independent given (Z,W).

Define the function class �ν ≡ {h : [a, b] �→ R with J (h) < ∞}, where J 2(h) ≡∫ b
a [h(ν)(w)]2 dw for some positive integer ν, and where h(j) is the j th derivative

of h. Also define the following subset of �ν : �c
ν,0 ≡ {h :h ∈ �ν, supw |h(w)| < c

and E[h(W)] = 0}, where c is a positive constant. When c = ∞, the superscript is
omitted. We make the following additional model assumptions.

B1. The distribution of U given the covariates has the transformation model form
given in (1.1).

B2. The true regression parameter β0 belongs to a known, bounded open subset
B0 of R

d .
B3. The true nonparametric covariate effect h0 ∈ �c0

ν,0, for some known c0 < ∞.
B4. The true transformation H0 : R �→ R is strictly monotone increasing and

bounded on compacts.
B5. (a) The residual error distribution F is known. (b) F has first and second

derivatives f and ḟ , respectively, where the support of f is R and where |ḟ |
is bounded. (c) For each compact K ⊂ R, there exist constants c ∈ (0,∞) and
α ∈ (1/2,1] and an increasing isomorphic function ξ : [0,1] �→ [0,1] so that

sup
s∈K

sup
u,v∈[0,1] : |ξ(u)−ξ(v)|≤ε

∣∣F (
F−1(u) + s

) − F
(
F−1(v) + s

)∣∣ ≤ cεα,

for all ε ∈ (0,1). (d) [f 2(v) − ḟ (v)F (v)] ∧ [f 2(v) + ḟ (v)(1 − F(v))] > 0,
for all v ∈ R.

REMARK 1. In condition B3 it is assumed that the unknown nonparametric
covariate effect h0 is bounded by c0. In the theoretical proofs and numerical calcu-
lations the exact value of c0 is not necessary. Instead, only the boundedness con-
dition is needed. The condition B5(c) is used to control the entropy of the model
in order to obtain consistency. Condition B5(d) ensures convexity of the function
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s �→ δ logF(s) + (1 − δ) log(1 − F(s)) for δ = 0,1. This convexity is used in the
proof of Theorem 2 below to establish that the estimator of the transformation
function is bounded above and below in probability.

REMARK 2. It is not hard to verify that if u �→ F(u) satisfies B5(b)–B5(d),
then for any a ∈ (0,∞) and b ∈ R, u �→ F(au + b) also satisfies B5(b)–B5(d).

2.2. Examples of transformation models. The following are several examples
of residual error distribution functions.

1. F(u) = 1 − exp[−eu] is the extreme value distribution and corresponds to the
complementary log-log transformation.

2. F(u) = eu[1 + eu]−1 is the logistic distribution and corresponds to the logit
transformation.

3. F(u) = 1 − [1 + γ eu]−1/γ is a Pareto distribution with parameter γ ∈ [0,∞)

and corresponds to the odds-rate transformation family. Taking the limit as
γ ↓ 0 yields the extreme value distribution, while γ = 1 gives the logistic dis-
tribution.

4. F(u) = 
(u) ≡ (2π)−1/2 ∫ u
−∞ exp[−s2/2]ds is the standard normal distribu-

tion which corresponds to the probit link.
5. F(u) = γ [2�(1/γ )]−1 ∫ u

−∞ exp[−|s|γ ]ds, for γ ∈ [1,∞), is a family of dis-
tributions which, after appropriate rescaling as justified in Remark 2 above,
includes 
(u) (corresponding to γ = 2).

6. F(u) = 1/2 + π−1 tan−1(u) is the Cauchy distribution.

The following lemma gives a few examples which satisfy B5.

LEMMA 1. Examples 1–4 and example 5 with γ ∈ (1,∞) satisfy conditions
B5(b)–B5(d).

REMARK 3. Actually, many residual error distributions satisfy B5, but exam-
ple 5 with γ = 1 and example 6 do not satisfy condition B5(d) [although they do
satisfy B5(b) and B5(c)]. Consider first the Cauchy example. To see that B5(d)
is not satisfied, note that, for sufficiently large u, 1 − F(u) = [πu]−1 + o(1/u).
Since f (u) = [π(1 + u2)]−1 and ḟ (u) = −2πuf 2(u), we have for u > 0 that
ḟ (u)(1 − F(u)) + f 2(u) = −f 2(u)(1 + o(1/u)) and, thus, B5(d) is not satisfied.
In example 5 with γ = 1, we have that ḟ (u)(1 − F(u)) + f 2(u) = 0 for all u > 0
and, thus, B5(d) is again not satisfied.

Condition B5(c) can sometimes be assessed directly for a given error distribu-
tion. In the proof of Lemma 1 this approach is taken to verify B5(c) for examples
1–3. In other settings the condition is hard to use directly, and the sufficient con-
ditions given in the following lemma are more easily established. This approach is
used to establish B5(c) for examples 4 and 5 [or γ ∈ (1,∞)].
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LEMMA 2. Let F satisfy condition B5(b) and:

(i) For every τ ∈ [0,∞), there exists a c
(τ)
1 ∈ [0,∞) such that ḟ (−u) < 0 <

ḟ (u) and

f (−u)ḟ (−u + τ) − ḟ (−u)f (−u + τ) ≤ 0 ≤ f (u)ḟ (u − τ) − ḟ (u)f (u − τ),

for all u ∈ (c
(τ)
1 ,∞).

(ii) For every τ ∈ [0,∞), there exist a c
(τ)
2 ∈ (0,∞), an ατ ∈ (1/2,1] and an

increasing isomorphic function ξ
(τ)∗ : [0,1] �→ [0,1] such that

F
(
F−1(

ξ (τ)∗ {ε}) + τ
) ∨ [

1 − F
(
F−1(

ξ (τ)∗ {1 − ε}) − τ
)] ≤ c

(τ)
1 εατ ,

for all ε sufficiently small.

Then F satisfies B5(c).

3. Maximum penalized log-likelihood estimation. Under model (1.1) the
log-likelihood for a single observation at X = x ≡ (v, δ, z,w) for the parameter
choice (β,h,H) is

l(x;β,h,H) ≡ δ log{F [β ′z + h(w) + H(v)]}
(3.1)

+ (1 − δ) log{1 − F [β ′z + h(w) + H(v)]}.
Intuitively, we will need some mechanism to control the smoothness of esti-

mates of h0. One approach is to use sieve estimates with assumptions on the deriv-
atives, as in [23]. However, we use instead a penalized approach based on splines.
An advantage is that the degree of smoothness is controlled by a single number, the
penalty term. Specifically, we use the following penalized log-likelihood function
based on n observations:

lpn (β,h,H) ≡ Pnl(x;β,h,H) − λ2
nJ

2(h),

where Pn is the empirical measure based on the n observations X1, . . . ,Xn and
λn is the (possibly data-dependent) smoothing parameter. We maximize l

p
n un-

der the constraints that β ∈ �B0, h ∈ �ν with |h| ≤ c0 and Pnh(W) = 0, and that
H is nondecreasing, where �B denotes the closure of the set B . We also define
ln(β,h,H) ≡ Pnl(x;β,h,H) to be the ordinary log-likelihood function. The max-
imum penalized log-likelihood estimators β̂n, ĥn and Ĥn are the ones that maxi-
mize the penalized log-likelihood function under the stated constraints. We make
the following assumption about the penalty term λn:

C. λn = Op(n−1/3) and λ−1
n = Op(n1/3).

REMARK 4. The tuning parameter λn is usually selected through certain cross
validation techniques (see [49] for reference). However, for the asymptotics to
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hold, we only require λn to be of the correct order. One way of achieving this is to
simply set λn = n−1/3, as we do for the simulation studies shown in Section 9. In
addition, while our theoretical results require specification of c0, it appears from
our experience that c0 does not actually need to be specified for implementation
with moderate sample sizes. Numerical studies show for finite sample sizes that
this strategy usually yields satisfactory results. Note that we are oversmoothing in
our choice of penalty term. This is a consequence of interference from estimation
of H . In Theorem 4 presented in Section 5, and in the proof of the theorem given
in Section 10, it is demonstrated that the entropy for the model is driven by the
entropy of the class of monotone functions which parameterizes H , resulting in
an overall rate of Op(n−1/3). Although we can refine the rate for estimation of β

to Op(n−1/2), it is unclear how to improve the rate of Op(n−1/3) for estimating h

when ν > 1. It is an open question whether achieving the optimal rate for h in
model (1.1) is even possible using penalized log-likelihood.

REMARK 5. Let y(1), . . . , y(n) be the order statistics of y1, . . . , yn. Let
δ(i), w(i) and z(i) correspond to y(i). Since only the values of H at y(i) matter
in the log-likelihood function, we will take the maximum likelihood estimator Ĥn

as the right-continuous nondecreasing step functions with jump points at y(i).

REMARK 6. From time to time, it will be convenient to assume that δ(1) = 1
and δ(n) = 0. Such an assumption usually has little impact on results. To see this,
note that if δ(1) = 0, then this observation makes a contribution of zero to the log-
likelihood function after maximizing over H . Similarly, if δ(n) = 1, then the cor-
responding observation also makes no contribution to the log-likelihood. We will
make our use of this assumption clear. Further discussion about this assumption
can be found in Section 3.1 of [19].

4. Consistency. The following lemma establishes existence of the maximum
penalized log-likelihood estimators.

LEMMA 3. Under the assumptions A1–A4, B1–B5, the assumption of Re-
mark 6, and provided 0 < λn < ∞, a maximum penalized log-likelihood esti-
mator ψ̂n ≡ (β̂n, ĥn, Ĥn) exists, with β̂n ∈ �B0, ĥn ∈ �ν , sups∈[a,b] |ĥn(s)| ≤ c0,

Pnĥn(W) = 0 and −∞ < Ĥn(y(1)) ≤ Ĥn(y(n)) < ∞.

REMARK 7. Provided δ(j) = 1 and δ(j+1) = 0 for some j ∈ {1, . . . , n − 1},
Lemma 3 implies that −∞ < Ĥn(y(k)) ≤ Ĥn(y(l)) < ∞, where k = inf{j ∈
{1, . . . , n} : δ(j) = 1} and l = sup{j ∈ {1, . . . , n} : δ(j) = 0}. Note that the log-
likelihood contributions for the observations corresponding to δ(j) for j /∈
{k, . . . , l} are zero.
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Define the following distance between parameters (h1,H1) and (h2,H2):
dF ((h1,H1), (h2,H2)) ≡ ‖h1 − h2‖2 + ‖H1 − H2‖F,2, where ‖h1 −
h2‖2 ≡ [∫ b

a |h1(w) − h2(w)|2 dw]1/2 and ‖H1 − H2‖F,2 ≡ [∫ uv

lv
|F(H1(v)) −

F(H2(v))|2 dv]1/2. Note that since F has a bounded derivative, ‖ · ‖F,2 is some-
what weaker than the usual L2 norm. We use ‖ · ‖ to denote Euclidean distance.
The following is the main consistency result.

THEOREM 1. Under the assumptions A1–A4, B1–B5 and C, dF ((ĥn, Ĥn),

(h0,H0)) + ‖β̂n − β0‖ = op(1).

REMARK 8. We will show in Section 5 that J (ĥn) = Op(1) and, thus, The-
orem 1 combined with condition A1(b) will imply supw∈[a,b] |ĥn(w) − h0(w)| =
op(1), since the ĥn’s are smooth functions defined on a compact set with asymp-
totically bounded first-order derivatives.

Under the provision given in Remark 7, and with k and l as given in that remark,
define

H̃n(t) ≡


Ĥn

(
y(k)

)
, t ∈ [

lv, y(k)

)
,

Ĥn(t), t ∈ [
y(k), y(l)

]
,

Ĥn

(
y(l)

)
, otherwise,

and let H̃n = 0 if the provision is not met. Theorem 1 clearly implies that
‖H̃n − H0‖F,2 = op(1); and although L2-convergence does not imply uniform
convergence, the following theorem ensures that |H̃n| is bounded.

THEOREM 2. Under the conditions of Theorem 1, we have |H̃n(lv)| ∨
|H̃n(uv)| = Op(1).

REMARK 9. Theorems 1 and 2 jointly imply that
∫ uv

lv
|H̃n(v) − H0(v)|2 dv =

op(1). It appears that this cannot be strengthened to uniform consistency. In the
following theorem, we prove in the setting where covariate effects are not included
in the model that uniform consistency of H̃n is impossible under conditions A1(c)
and B4 and when the distribution of V is continuous.

THEOREM 3. Assume the nonparametric current status model [model (1.1)
without β or h] holds, and let G0 denote the unknown true distribution of U .
Assume condition A1(c) holds for the current status time and that G0 is continuous
with 0 < G0(lv) ≤ G0(uv) < 1 (essentially condition B4). Assume also that the
distribution of V is continuous. Let Ĝn be the nonparametric maximum likelihood
estimator of G0 (no penalization is involved since h is not in the model), and
assume that the condition in Remark 6 holds. Then:
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(i) for any ε ∈ (0,G0(lv)), lim infn→∞ P {Ĝn(V(1)) ≤ G0(lv) − ε} > 0, and
(ii) for any ε ∈ (0, {1−G0(uv)}), lim infn→∞ P {Ĝn(V(n)) ≥ G0(uv)+ ε} > 0.

REMARK 10. Through simulation studies involving up to 20,000 observa-
tions, we have verified that the bias predicted in Theorem 3 does persist as n gets
large. This does not contradict the uniform consistency result in Section II.4.1
of [19]. In their consistency proof, they require the probability measure for the
current status value V to dominate the distribution of U . Thus, the total variation
of Ĝn over the support of V is bounded by 1, and the total variation of G0 over
the support of V is equal to 1. Thus, in this setting, L2-convergence of Ĝn with
respect to the measure G0 will indeed imply uniform convergence.

REMARK 11. By expression (10.5) in the proof of Theorem 1, and by the
results of Theorems 1 and 2, it is clear that if

P(V = lv) ∧ P(V = uv) > 0,(4.1)

then H̃n is uniformly consistent for H0 over the interval [lv, uv]. Unfortunately,
the assumption (4.1) does not seem to be very realistic. Fortunately, for the results
that follow, L2 convergence of H̃n is sufficient.

5. Rates of convergence. For this section we will use the usual L2 distance
between parameters (h1,H1) and (h2,H2): d((h1,H1), (h2,H2)) ≡ ‖h1 − h2‖2 +
‖H1 −H2‖2, where ‖H1 −H2‖2 ≡ [∫ uv

lv
|H1(v)−H2(v)|2 dv]1/2. We now establish

the rate of convergence for all parameters.

THEOREM 4. Rate of convergence: Suppose that assumptions A1–A5, B1–B4
and C are satisfied. Then J (ĥn) = Op(1) and ‖β̂n−β0‖+d((ĥn, H̃n), (h0,H0)) =
Op(n−1/3).

REMARK 12. In ordinary spline settings, λn = Op(n−ν/(2ν+1)) and the op-
timal rate of convergence for a smooth function of the covariate w is Op(λn)

(see, e.g., [49]). Typically, λn is a data driven smoothing parameter selected by
cross validation, GCV, LP or LC , as discussed in [27]. However, in our case the
rate of convergence for Ĥn cannot exceed n1/3, which slows down the convergence
of ĥn. In particular, the rate for ĥn does not achieve the optimal convergence rate
of Op(λn) when ν > 1, as is achieved in [30]. It is also worth pointing out that it
appears we cannot achieve a better convergence rate by modifying the smoothness
assumptions.

REMARK 13. As discussed in Section 1, a special case of the general trans-
formation models is the proportional hazard model. It is shown by Groeneboom
and Wellner [19] that the convergence rate of the NPMLE of a distribution func-
tion is n1/3 for current status data. So we have shown that, under reasonable model
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assumptions, the convergence rate of H̃n achieves the optimal rate, despite the
presence of an additional infinite-dimensional parameter h.

In some cases it is reasonable to assume that the transformation function is
also continuously differentiable. In [29] penalized estimation of the transformation
function is investigated under certain smoothness assumptions. A sharper conver-
gence rate can be achieved if we assume the transformation function belongs to a
certain Sobolev space. In our case, if we assume the transformation function H0
and the nonparametric effect h0 belong to the same Sobolev space, then we can
achieve optimal convergence rates for both parameters by using doubly penalized
estimators. However, if it is assumed that h and H belong to different Sobolev
spaces, then it is unclear whether we can achieve the optimal convergence rate for
both estimators.

6. Weak convergence of the parametric covariate effect.

6.1. Information calculation. It is well known that in most parametric mod-
els we can estimate the finite-dimensional parameter at the n1/2 convergence rate.
However, this is not necessarily true for semiparametric models. A necessary con-
dition is that we have positive information, which is not a trivial condition. Next
we show that, for our model, indeed, we have positive information. The following
extra model assumptions will be needed:

D1. ∃ h̃ ∈ �ν,0 such that

E

{
[Z − h̃(W)] ×

[
h(W) − E(h(W)Q2

ψ0
(X)|V )

E(Q2
ψ0

(X)|V )

]
Q2

ψ0
(X)

}
= 0

for every h ∈ �ν,0, where

Qψ(x) ≡ f (v)

{
δ

F (θψ(x))
− 1 − δ

1 − F(θψ(x))

}
,

ψ ≡ (β,h,H),ψ0 ≡ (β0, h0,H0), θψ(x) ≡ β ′z + h(w) + H(v) and

q̃(v) ≡ E(ZQ2
ψ0

(X)|V = v)

E(Q2
ψ0

(X)|V = v)
− E(h̃(W)Q2

ψ0
(X)|V = v)

E(Q2
ψ0

(X)|V = v)

has a derivative which is uniformly bounded on [lv, uv].
D2. I0 ≡ E(l̇l̇′) is positive definite, where l̇ ≡ {Z − h̃(W) − q̃(V )}Qψ0(X).

Before giving the main result of this section, Theorem 5, we present a
lemma which provides sufficient conditions for achieving D1 and determining h̃.
Let D0(v,w) ≡ E[Q2

ψ0
(X)|V = v,W = w],D1(v,w) ≡ E[ZQ2

ψ0
(X)|V = v,

W = w],D01(v) ≡ E[Q2
ψ0

(X)|V = v] and D02(w) ≡ E[Q2
ψ0

(X)|W = w]; and
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define S0 to be the class of functions g : [lv, uv] × [a, b] �→ R with E[g2(V ,W) ×
D0(V ,W)] < ∞. For any g ∈ S0, let �1 be the projection operator

g �→ E[g(V,W)Q2
ψ0

(X)|V = v]
E[Q2

ψ0
(X)|V = v]

and let �2 be the projection operator

g �→ E[g(V,W)Q2
ψ0

(X)|W = w]
E[Q2

ψ0
(X)|W = w] .

Also define D∗ ≡ D1/D0,D
∗
1 ≡ �1D

∗,D∗
2 ≡ �2D

∗,R(v,w) ≡
D0(v,w)/D01(v), S(v,w) ≡ D0(v,w)/D02(w), Ḋ∗

1(v) ≡ (∂/(∂v))D∗
1(v),

Ṙ1(v,w) ≡ (∂/(∂v))R(v,w),D
∗(ν)
2 (w) ≡ (∂/(∂w))νD∗

2(w) and S
(ν)
2 (v,w) ≡

(∂/(∂w))νS(v,w).

LEMMA 4. Assume the model conditions of Section 2.1. Also assume that V

and W are independent with the density of W being bounded above and below
on [a, b], that Ḋ∗

1(v) and E[Ṙ1(v,W)]2 are uniformly bounded on [lv, uv], and

that both E[D∗(ν)
2 (W)]2 < ∞ and E[S(ν)

2 (V ,W)]2 < ∞. Then D1 is satisfied with
h̃ = h∗ − Eh∗(W), where h∗ ≡ limm→∞[∑m

j=0(�2�1)
j ]�2(1 − �1)D

∗.

REMARK 14. We note that while the conditions of Lemma 4 are somewhat
stronger than our previous model assumptions, the conditions are still reasonable.
The most arduous of the new assumptions involve bounding the derivatives of
several well-defined functions. Note that the denominators of the ratios that define
these functions are D01(v) and D02(w). Since D01 and D02 are bounded below on
[lv, uv] and [a, b], respectively, the task of bounding the necessary derivatives is
simplified somewhat.

THEOREM 5. Calculation of efficient information: Under model assumptions
A1–A4, B1–B5 and D1–D2, I0 is the efficient information matrix for β .

REMARK 15. Knowledge about the degree of smoothness for h cannot cur-
rently be utilized to improve the rate of convergence for ĥn or the asymptotic pre-
cision of β̂n. This is a consequence of the fact that the Sobolev space �ν1 is dense
in �ν2 when ν1 > ν2. However, it is unclear whether such knowledge can result in
small sample improvements in the accuracy of β̂n.

6.2. Asymptotic normality and efficiency.

THEOREM 6. Asymptotic normality and efficiency: Assume conditions A1–A4,
B1–B5, C and D1–D2. Also assume that the inverse of H0, H−1

0 , has a derivative

bounded on compacts. Then n1/2(β̂n − β0) = I−1
0

√
nPnl̇ + op(1)

d→ N(0, I−1
0 ).
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Since β̂n is asymptotically linear with efficient influence function, and the model
is sufficiently smooth (Hellinger differentiable), it is asymptotically efficient in the
sense that any regular estimator has asymptotic covariance matrix no less than
that of β̂n [6]. The additional assumption on the smoothness of H−1

0 is needed to
construct an approximately least-favorable submodel (see Section 25.11 of [47])
under which the given estimator satisfies the efficient score equation.

Another important issue for statistical modeling with current status data is the
degree of robustness achieved under model misspecification. Yu and van der Laan
[53] investigate doubly robust estimation in longitudinal marginal structural mod-
els. Their results allow one to construct locally efficient estimators of the regres-
sion parameters, under the misspecification of either the unknown regression func-
tion or the conditional distribution of the linear variables. The question of whether
double robustness holds in our setting is also of interest, but is beyond the scope
of the current paper.

7. The block jackknife. One potential method of inference for β is to use
the nonparametric bootstrap. Unfortunately, there is no sufficiently general theory,
as far as we are aware, available for the nonparametric bootstrap in the penalized
maximum likelihood estimation setting. Alternative approaches are the m within n

bootstrap (see [5]) or subsampling (see [33]). Since
√

n(β̂n −β0) has a continuous
limiting distribution L, Theorem 2.1 of [33] yields that the m out of n subsampling
bootstrap converges—conditionally on the data—to the same distribution L, pro-
vided m/n → 0 and m → ∞ as n → ∞. Because of the requirement that m → ∞
as n → ∞, the subsampling bootstrap potentially involves many calculations of the
estimator. Fortunately, the asymptotic linearity given in Theorem 6 can be used to
formulate a computationally simpler method of inference.

Let β̃n be any asymptotically linear estimator of a parameter β0 ∈ R
d , based

on an i.i.d. sample X1, . . . ,Xn, having square-integrable influence function φ

for which E[φφT ] is nonsingular. Let m be a fixed integer > d , and, for each
n ≥ m, define km,n to be the largest integer satisfying mkm,n ≤ n. Also de-
fine Nm,n ≡ mkm,n. For the data X1, . . . ,Xn, compute β̃n based on the pro-
posed estimation method and randomly sample Nm,n out of the n observa-
tions without replacement, to obtain X∗

1, . . . ,X∗
Nm,n

. For j = 1, . . . ,m, let β̃∗
n,j

be the estimate of β based on the observations X∗
1, . . . ,X∗

Nm,n
after omitting

X∗
j ,X

∗
m+j ,X

∗
2m+j , . . . ,X

∗
(km,n−1)m+j . Compute

β̄∗
n ≡ m−1

m∑
j=1

β̃∗
n,j and S∗

n ≡ (m − 1)km,n

m∑
j=1

(β̃∗
n,j − β̄∗

n)(β̃∗
n,j − β̄∗

n)T .

The following lemma provides a method of obtaining asymptotically valid confi-
dence ellipses for β0.
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LEMMA 5. Let β̃n be an estimator of β0 ∈ R
d , based on an i.i.d. sample

X1, . . . ,Xn, which satisfies n1/2(β̃n − β0) = √
nPnφ + op(1), where E[φφT ] is

nonsingular. Then n(β̃n − β0)
T [S∗

n]−1(β̃n − β0) converges weakly to d(m − 1) ×
Fd,m−d/(m−d), where Fr,s has an F distribution with degrees of freedom r and s.

The key to the proof of Lemma 5 is the simultaneous validity of the asymptotic
linearity expansion for all of the jackknife estimates. The details of the proof are
given in the Appendix.

REMARK 16. Let S∗∗
n be S∗

n with β̄∗
n replaced by the estimator of β based on

X∗
1, . . . ,X∗

Nm,n
(which we denote β̃∗

n ). Using arguments in the proof of Lemma 5, it
is straightforward to show that replacing S∗

n with S∗∗
n will not affect the conclusions

of Lemma 5. Those same arguments also lead to the conclusion that one cannot, in
general, replace β̄∗

n with β̂n, except when Nm,n = n (in which case β̂n = β̃∗
n ).

REMARK 17. The block jackknife procedure only requires computing the es-
timator m+ 1 times (or m+ 2 times when S∗∗

n is used as discussed in Remark 16).
In our simulation studies we have found that for the proposed estimator m = 10
works for sample sizes n = 400 and 1600. The fact that m remains fixed as n → ∞
in the proposed approach results in a potentially significant computational savings
over subsampling, which requires m to grow increasingly large as n → ∞. A po-
tential challenge for the proposed approach is in choosing m for a given data set.
The larger m is, the larger the denominator degrees of freedom in Fd,m−d and the
tighter the confidence ellipsoid. On the other hand, m cannot be so large that the
asymptotic linearity of Theorem 6 does not hold simultaneously for all jackknife
components.

8. Computational techniques.

8.1. Overall strategy. Computationally, finding the penalized MLE for β ,
h and H is a maximization problem subject to the boundedness constraint for h

and the nondecreasing constraint for H . It is unlikely that there exists an analytic
solution for this model. So we propose the following iterative maximization tech-
nique.

S1. For a given β̂
(k)
n and ĥ

(k)
n , estimate Ĥ

(k)
n by maximizing l

p
n with respect to H

under the constraint that Ĥ
(k)
n is a nondecreasing step function.

S2. For a given Ĥ
(k)
n , find β̂

(k+1)
n and ĥ

(k+1)
n that maximize the penalized log-

likelihood function.

We have found that almost any reasonable initial values will work. The above
two-step maximization procedure is repeated until certain convergence criteria are
satisfied. The global convexity of the log-likelihood function guarantees that we
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can reach the maximum by the above technique. For step S2, our experience indi-
cates that, in applications involving moderate sample sizes, specification of c0 is
not needed and λn = n−1/3 appears to work most of the time. Perhaps using cross
validation to choose λn may improve the performance of the estimator in some
settings, but evaluating this issue requires further study and is beyond the scope of
the current paper.

REMARK 18. After finite iterations, what we get is not exactly the penalized
MLE. However, a very nice property of the efficiency theorem is that we only
need approximate maximization to achieve asymptotic efficiency for β , that is,
Pnk̃β̂n,ĥn,Ĥn

= op(n−1/2), where k̃ is the estimating function as defined in the proof
of Theorem 6.

8.2. Sieve approximation for the nonparametric covariate effect. For the spe-
cial case of ν = 2, we can use a cubic spline for estimating h. Suppose a func-
tion ĥ∗

n maximizes the penalized log-likelihood function. Then there exists a cubic
spline function ĥn such that ĥ∗

n(wi) = ĥn(wi) for i = 1, . . . , n and J (ĥn) ≤ J (ĥ∗
n).

For a proof, see page 18 of [18]. The number of basis functions of a cubic spline
increases at the rate O(n). Computationally this can be quite time consuming for
a moderate or large set of observations. Hence, we take a computational sieve ap-
proach suggested by Xiang and Wahba [51], which states that an estimate with the
number of basis functions growing at least at the rate n1/5 can achieve the same
asymptotic precision as the full space. The K-mean clustering technique (see [25]
for reference) is used to select the proper positions of knots, and B-spline basis
functions are utilized. Because of the accuracy of this sieve approximation and
the fact that the degree of smoothness is still controlled by the penalty term, the
theoretical properties of the resulting estimators should be unmodified from the
previously derived theory.

8.3. Estimation of the transformation function. The maximization over the
nondecreasing function H can be solved by some commercial software package,
such as NPSOL. However, we show that the cumulative sum diagram approach,
as discussed by Groeneboom and Wellner [19] and Huang [22], works for general
transformation models. First we observe the following properties of Ĥn.

LEMMA 6. Assume that δ(1) = 1, δ(n) = 0. Then for any fixed β̂n and ĥn the
maximum likelihood estimator Ĥn satisfies

∑
j≥i

{
δi

f (β̂ ′
nz(j) + ĥn(w(j)) + Ĥn(v(j)))

F (β̂ ′
nz(j) + ĥn(w(j)) + Ĥn(v(j)))

(8.1)

− (1 − δi)
f (β̂ ′

nz(j) + ĥn(w(j)) + Ĥn(v(j)))

1 − F(β̂ ′
nz(j) + ĥn(w(j)) + Ĥn(v(j)))

}
≤ 0
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for i = 1, . . . , n, and

n∑
i=1

{
δi

f (β̂ ′
nz(i) + ĥn(w(i)) + Ĥn(v(i)))

F (β̂ ′
nz(i) + ĥn(w(i)) + Ĥn(v(i)))

(8.2)

− (1 − δi)
f (β̂ ′

nz(i) + ĥn(w(i)) + Ĥn(v(i)))

1 − F(β̂ ′
nz(i) + ĥn(w(i)) + Ĥn(v(i)))

}
Ĥn(v(i)) = 0.

This lemma can be proved in a manner similar to Proposition 1.1 of [19], and we
omit the details. These properties motivate us to consider the following iterative,
but computationally efficient algorithm.

Define the process WH , GH and OH by

WH(v) =
∫
v′∈[0,v]

{
�

f (θψ)

F (θψ)
− (1 − �)

f (θψ)

1 − F(θψ)

}
dRn,

GH(v) =
∫
v′∈[0,v]

�
f 2(θψ)

F 2(θψ)(1 − F(θψ))
dRn,

OH(v) = WH(v) +
∫

H(v′) dGH ,

where v ≥ 0 and Rn is the unobserved empirical measure of (U,V,Z,W).

LEMMA 7. Self-induced calculation of Ĥn. Assume that δ(1) = 1 and δ(n) = 0.
Then for any fixed β̂n and ĥn, the maximum likelihood estimator Ĥn is the left
derivative of the greatest convex minorant of the “self-induced” cumulative sum
diagram, consisting of the points (GĤn

(V(j)),OĤn
(V(j))) and the origin (0,0).

The proof of Lemma 7 is analogous to that of Proposition 1.4 of [19] and is omit-
ted. This lemma gives an iterative procedure for finding Ĥn, as discussed in [19].
Suppose Ĥ

(k)
n is the result of the kth iteration; then Ĥ

(k+1)
n is computed as the left

derivative of the greatest convex minorant of the cumulative sum diagram, consist-
ing of the points (G

Ĥ
(k)
n

(V(j)),OĤ
(k)
n

(V(j))) and the origin (0, 0).

9. Simulation study. To evaluate the finite-sample performance of our es-
timators, we conduct a small simulation study with current status data for the
partly linear Cox model. As discussed in Section 1, the Cox model is a special
case of general transformation models, where H(u) = log(A(eu)) and F(s) =
1 − exp(−es). The event times are generated from equation (1.2), with regres-
sion coefficients β1 = 0.3 and β2 = 0.25. The covariate Z1 is Uniform[0.5,1.5]
and Z2 is Bernoulli with probability of success 0.5. For simplicity we take
h(w) = sin(w/1.2 − 1) − k0, with W Uniform[1,10] and k0 = 0.06516, and
A(u) = ek0(exp(u/3)− 1). Censoring times are standard exponentially distributed
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conditional on being in the interval [0.2,1.8]. For computational simplicity we
leave c0 unspecified and do not use a data driven mechanism to select λn. Instead,
we use λn = n−1/3. ĥn and Ân are estimated based on the computational strategies
discussed in Section 8. We simulate 200 realizations for sample sizes equal to 400
and 1600.

The summary statistics for our estimators are shown in Table 1. It can be seen
that the sample means are quite close to the true values. The sample standard devia-
tion for β̂1 based on sample size 400 is 0.284, compared with 0.139 for sample size
1600, resulting in a ratio of 2.04. According to the asymptotic normality property
(Theorem 6), the ratio should be 2. Hence, the ratio estimated from the simulations
matches the theory quite well in this instance. The same property can be observed
for estimators of β̂2. Inference based on the block jackknife, as discussed in Sec-
tion 7, with the modification given in Remark 16, is also presented in this table.
The 95% confidence intervals generally have coverage within two Monte Carlo
standard errors (0.03 = 2

√
0.05 × 0.95/200 ) of 0.95, except when m = 40 and

the sample size n = 400. This is possibly because m is too large for the asymptotic
linearity property to hold simultaneously for all m block jackknifes at this sample
size, as hinted at in Remark 17.

Histograms of β̂1 and β̂2 and a plot of β̂1 versus β̂2 are shown in Figure 1. We
can see clearly that the marginal distributions and the joint distribution of β̂1 and
β̂2 appear to be Gaussian. Estimates and pointwise 95% confidence intervals for h

and A based on sample size 1600 and 200 realizations are shown in Figure 2 and
Figure 3. It can be seen that true values for h and H both lie in the 95% pointwise
confidence intervals.

TABLE 1
Simulation results for the partly additive Cox model with current status data. Sample sizes are equal
to 400 and 1600. Sample means, standard deviations and confidence region coverages are based on

200 replicates. Confidence intervals are based on the block jackknife with m = 10 and 40 blocks.
The true values of the regression parameters are β1 = 0.3 and β2 = 0.25

Sample size 400 Sample size 1600

β̂1 Mean (SD) 0.297 (0.284) 0.291 (0.139)
Coverage

for m = 10,40 0.960, 0.970 0.960, 0.970

β̂2 Mean (SD) 0.247 (0.168) 0.246 (0.083)
Coverage

for m = 10,40 0.970, 0.990 0.970, 0.955

Joint Coverage
for m = 10,40 0.975, 0.990 0.960, 0.955



2272 S. MA AND M. R. KOSOROK

FIG. 1. Histogram of estimations of β1 and β2. Scatter plot of β̂1,n versus β̂2,n. The sample size
is 1600. Based on 200 replicates.
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FIG. 2. Estimate and pointwise confidence interval for h. The solid line is the true value. The
dashed line is the estimated mean value. The dotted lines are the pointwise 95% confidence intervals.
The sample size is 1600, based on 200 replicates.

FIG. 3. Estimation and pointwise confidence intervals for A. The solid line is the true value. The
dot-dashed line by the solid line is the estimated mean value. The dashed lines are the mean value
plus (minus) one standard deviation. The dotted lines are pointwise 95% confidence intervals. The
sample size is 1600, based on 200 replicates.
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10. Proofs.

PROOF OF LEMMA 1. By the inclusions contained in examples 3 and 4,
and by Remark 2, it suffices to check example 1, example 3 for γ ∈ (0,∞),
and example 5 for γ ∈ (1,∞). It is straightforward to verify B5(b) for each of
these distributions. We now verify B5(d). For F(u) = 1 − exp[−eu], f (u) =
eu exp[−eu] and ḟ (u) = −eu(eu − 1) exp[−eu]. Thus, f 2(u) − ḟ (u)F (u) =
eu exp[−eu](exp[−eu]+eu −1) > 0 for all u ∈ R, since e−v +v is strictly increas-
ing on (0,∞). Also, f 2(u) + ḟ (u)(1 − F(u)) = eu exp[−eu] > 0 for all u ∈ R.
Hence, B5(d) is satisfied for example 1. Similar arguments establish the condi-
tion for example 3. Consider now F(u) = rγ

∫ u
−∞ e−|s|γ ds for γ ∈ (1,∞), where

rγ ≡ γ [2�(1/γ )]−1. Since f (u) = rγ e−|u|γ , ḟ (u) = −sign(u)γ rγ |u|γ−1e−|u|γ

and, thus,

f 2(u) + ḟ (u)
(
1 − F(u)

)
(10.1)

= r2
γ e−2|u|γ

(
1 − sign(u)γ |u|γ−1 ∫ u

−∞ e−|s|γ ds

e−|u|γ
)
,

which is clearly > 0 for all u ∈ (−∞,0]. Since
∫ ∞
v e−sγ

ds < γ −1v−(γ−1)e−vγ

for all v ∈ (0,∞), (10.1) > 0 for all u ∈ (0,∞). Similar techniques verify that
f 2(u) − ḟ (u)F (u) > 0 for all u ∈ R and, thus, B5(d) is satisfied yet again.

Establishing condition B5(c) is more challenging. For F(v) = 1 − exp[−ev],
F(F−1(u) + s) = ues

. Let η1 = infs∈K es , η2 = sups∈K es and ξ(s) = sη1 . Note
that ξ : [0,1] �→ [0,1] is increasing and isomorphic. Furthermore, |ues − ves | =
|{ξ−1ξ(u)}es − {ξ−1ξ(v)}es | ≤ (η2/η1)|ξ(u) − ξ(v)|, since infs∈K η−1

1 es = 1 and
sups∈K η−1

1 es = η2/η1. Thus, (c) is satisfied for example 1 when α = 1. For ex-
ample 3 with γ ∈ (0,∞), F(u) = 1 − [1 + γ eu]−1/γ and, thus, F(F−1(u) + s) =
1 − [1 − es + es(1 − u)−γ ]−1/γ . Hence, after some derivation,

∂

∂s
F

(
F−1(u) + s

) = es

γ
{1 + es[(1 − u)−γ − 1]}−1/γ−1[(1 − u)−γ − 1]

≤ es

γ
{1 + es[(1 − u)−γ − 1]}−1/γ

× [1 − (1 − u)γ ]{(1 − u)γ + [1 − (1 − u)γ ]es}−1

≤ es ∨ e−s

γ
≡ c∗,

which is uniformly bounded over s ∈ K . Thus, B5(c) is also satisfied in this in-
stance, with c = c∗, α = 1 and ξ equal to the identity.

It appears to be quite difficult to establish B5(c) directly for example 5 with
γ ∈ (1,∞), so we will use Lemma 2. In this case, we have that, for u, τ ≥ 0,
f (−u)ḟ (−u + τ) − ḟ (−u)f (−u + τ) ≤ 0 if and only if 0 ≥ sign(u − τ) ×
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|u − τ | − u = −τ , but this last inequality is always true. Similarly, f (u)ḟ (u −
τ) − ḟ (u)f (u − τ) ≥ 0 if and only if 0 ≤ −sign(u − τ)|u − τ | + u = τ , but,
again, this last inequality is always true whenever τ ≥ 0. Hence, condition (i) of
Lemma 2 holds with c

(τ)
1 = 0 for all τ ∈ [0,∞). Establishing condition (ii) is

more challenging. Condition (ii) is trivially true when τ = 0. Fix τ ∈ (0,∞) and
η ∈ (0,1/3). Let G : [0,∞) �→ [0,1] be strictly increasing with F(u) ≤ G(u) for
all u > 0. Then u ≥ G−1(F (u)) for all u > 0 and, thus, 1 − F(F−1(1 − ε) − τ) ≤
1 − F(G−1(1 − ε) − τ). Note that, for u > 0,

rγ

∫ ∞
u

e−sγ

ds = rγ

∫ ∞
u

sγ−1e−(1+η)sγ [
s−(γ−1)eηsγ ]

ds

≥ c1

∫ ∞
u

γ (1 + η)sγ−1e−(1+η)sγ

ds

= c1e
−(1+η)uγ ≡ 1 − G(u),

where c1 ∈ (0,∞) does not depend on u and the inequality follows since
infs>0[s−(γ−1)eηsγ ] > 0. Solving for G(u∗) = 1 − ε, we obtain u∗ = [log(c1/ε)/

(1 + η)]1/γ . Since it is also true that 1 − F(u) ≤ c2e
−uγ

when u > 0 for some
c2 ∈ (0,∞) which does not depend on u,

1 − F
(
F−1(1 − ε) − τ

) ≤ 1 − F
(
G−1(1 − ε) − τ

)
≤ c2 exp

(
−

{[
log(c1/ε)

1 + η

]1/γ

− τ

}γ )
(10.2)

= c2 exp
{
−(1 − η)

[
log(c1/ε)

1 + η

]
− q(ε)

}
,

where

q(ε) ≡
[

log(c1/ε)

1 + η

]1/γ

− (1 − η)

[
log(c1/ε)

1 + η

]
is bounded below for all ε small enough. Hence, 1 − F(F−1(1 − ε) − τ) ≤
k∗ε(1−η)/(1+η) for some k∗ ∈ (0,∞) not depending on ε, for all ε small enough.
Thus, condition (ii) is satisfied, and the lemma yields that B5(c) is satisfied in this
setting. �

PROOF OF LEMMA 2. Fix a compact K ⊂ R, and set τ = sup{|s| : s ∈ K}.
Choose ε1 ∈ (0,1/3) so that condition (ii) of the lemma is satisfied for all ε ≤ ε1

and F−1(1 − ε1) ∧ [−F−1(ε1)] > τ + c
(τ)
1 . Note that, for all u ∈ [1 − ε1,1] and

ρ ∈ [0,1 − u],
∂

∂s

[
F

(
F−1(

ξ (τ)∗ {u + ρ}) + s
) − F

(
F−1(

ξ (τ)∗ {u}) + s
)]∣∣

s=t

= f
(
F−1(

ξ (τ)∗ {u + ρ}) + t
) − f

(
F−1(

ξ (τ)∗ {u}) + t
) ≤ 0,
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for all t ∈ K , which implies F(F−1(ξ
(τ)∗ {u + ρ}) + t) − F(F−1(ξ

(τ)∗ {u}) + t) ≤
F(F−1(ξ

(τ)∗ {u+ρ})−τ)−F(F−1(ξ
(τ)∗ {u})−τ) for all t ∈ K . Arguing in a similar

manner, we obtain for all u ∈ [0, ε1] and ρ ∈ [0, u] that F(F−1(ξ
(τ)∗ {u}) + t) −

F(F−1(ξ
(τ)∗ {u − ρ}) + t) ≤ F(F−1(ξ

(τ)∗ {u}) + τ) − F(F−1(ξ
(τ)∗ {u − ρ}) + τ) for

all t ∈ K .
By condition (i) of Lemma 2, we have for all ε ∈ [0, ε1] that

sup
t∈K,u1,u2∈[0,ε1] : |u1−u2|≤ε

∣∣F (
F−1(

ξ (τ)∗ {u1}) + t
) − F

(
F−1(

ξ (τ)∗ {u2}) + t
)∣∣

≤ sup
0≤u2−ε≤u1≤u2≤ε1

F
(
F−1(

ξ (τ)∗ {u2}) + τ
) − F(F−1(

ξ (τ)∗ {u1}) + τ
)

≤ F
(
F−1(

ξτ∗ {ε}) + τ
)

and

sup
t∈K,u1,u2∈[1−ε1,1] : |u1−u2|≤ε

∣∣F (
F−1(

ξ (τ)∗ {u1}) + t
) − F

(
F−1(

ξτ∗ {u2}) + t
)∣∣

≤ sup
1−ε1≤u1≤u2≤u1+ε≤1

F
(
F−1(

ξ (τ)∗ {u2}) − τ
) − F

(
F−1(

ξ (τ)∗ {u1}) − τ
)

≤ 1 − F
(
F−1(

ξ (τ)∗ {1 − ε}) − τ
)
.

Since both F and F−1 have bounded derivatives on compacts,

sup
t∈K,u1,u2∈[ε1,1−ε1] : |u1−u2|≤ε

∣∣F (
F−1(

ξτ∗ {u1}) + t
) − F

(
F−1(

ξ (τ)∗ {u2}) + t
)∣∣ ≤ c̃ε

for some c̃ ∈ (0,∞). Hence,

sup
s∈K

sup
u,v∈[0,1] : |u−v|≤ε

∣∣F (
F−1(

ξ (τ)∗ {u}) + s
) − F

(
F−1(

ξ (τ)∗ {v}) + s
)∣∣ ≤ cεα,

where c = (1/ε1) ∨ c
(τ)
1 ∨ c̃ and α = ατ . Since the compact set K was arbitrary,

the desired result follows with ξ chosen so that ξ−1 = ξ
(τ)∗ . �

PROOF OF LEMMA 3. Since l(x;β,h,H) ≤ 0, λn > 0 forces ĥn ∈ �ν since
otherwise l

p
n (β̂n, ĥn, Ĥn) = −∞. Since B0 is bounded, β̂n is obviously bounded.

Since ĥn is also bounded by assumption, limH↓−∞ F(β̂ ′
nz(1) + ĥn(w(1))+H) = 0

and limH↑∞ F(β̂ ′
nz(n) + ĥn(w(n)) + H) = 1 and, thus, l

p
n (β̂n, ĥn, Ĥn) = −∞ if

either Ĥn(v(1)) = −∞ or Ĥn(v(n)) = ∞. �

PROOF OF THEOREM 1. Define

l∗(x;β,h,H) ≡ δF
(
β ′z + h(w) + H(v)

)
+ (1 − δ)

{
1 − F

(
β ′z + h(w) + H(v)

)}
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and fix γ ∈ (0,1). Note that since l
p
n (β̂n, ĥn, Ĥn) ≥ l

p
n (β0, h0,H0), λ2

nJ
2(ĥn) =

Op(1) and, thus, J (ĥn) = Op(n1/3). Also, ln(β̂n, ĥn, Ĥn) ≥ ln(β0, h0,H0) +
Op(n−2/3), which implies by the concavity of s �→ log(s) that

Op(n−2/3) ≤ Pn log
[
1 + γ

{
l∗(X; β̂n, ĥn, Ĥn)

l∗(X;β0, h0,H0)

}]
(10.3)

≡ Pnζ(X; β̂n, ĥn, Ĥn).

These facts, combined with the result from Lemma 8 below that

F0 = {[1 + J (h)]−1ζ(X;β,h,H) :β ∈ �B0,H ∈ MR, h ∈ �ν}(10.4)

is P -Donsker, where MA is the collection of all nondecreasing functions mapping
from R to A ⊂ R, imply that (Pn − P)ζ(X; β̂ ′

nZ, ĥn(W), Ĥn(V )) = Op(n−1/6).
Thus, Pζ(X; β̂n, ĥn, Ĥn) ≥ Op(n−1/6). However, by the concavity of s �→
log(s), Pζ(X; β̂n, ĥn, Ĥn) ≤ 0 and, thus, Pζ(X; β̂n, ĥn, Ĥn) = Op(n−1/6). Since
Un(x) ≡ l∗(x; β̂n, ĥn, Ĥn)/ l∗(x;β0, h0,H0) satisfies 0 ≤ Un(x) ≤ m < ∞ for
some m not depending on n or x, Prohorov’s theorem now implies for every
subsequence n′ that there exists a further subsequence n′′ so that Un′′(X) con-
verges in distribution to some U(X) satisfying P log{1 + γ (U(X) − 1)} = 0 and
PU(X) = 1. But this implies U(X) = 1, almost surely, by the strict concavity of
s �→ log{1 + γ (s − 1)}. Since this result is true for every subsequence, we have
that P |Un(X) − 1| = op(1). This now implies that

P
{
F

(
Ĥn(V ) + β̂ ′

nZ + ĥn(W)
)

(10.5)
− F

(
H0(V ) + β ′

0Z + h0(W)
)}2 = op(1).

Expression (10.5) implies that

P
[{(β̂n − β0)

′(Z − E[Z|V,W ]) + cn(V,W)}2|V,W
] = op(1),

for almost surely all V and W , where cn(V,W) ≡ (β̂n − β0)
′E[Z|V,W ] +

Ĥn(V ) − H0(V ) + ĥn(W) − h0(W) is a sequence uncorrelated with Z −
E[Z|V,W ]. Condition A2 now implies that β̂n − β0 = op(1), and, furthermore,
that

P
{
F

(
Ĥn(V ) + ĥn(W)

) − F
(
H0(V ) + h0(W)

)}2 = op(1).(10.6)

Let V be the set of all V such that the distribution of W given V dominates the
unconditional distribution of W . Condition A3, combined with (10.6), implies that
for some v ∈ V ,

op(1) = P [{Ĥn(V ) + ĥn(W) − H0(V ) − h0(W)}2|V = v]
(10.7)

≥ PW1

{
ĥn(W1) − h0(W1) − PW2 ĥn(W2)

}2
,
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where PWj
is the marginal probability measure of W applied to Wj , j = 1,2. Since

{h/[1 + J (h)] : h ∈ �ν} is Donsker (see Theorem 2.4 of [43]), J (ĥn) = Op(n1/3)

and PW1h0(W1) = 0, we have that PW1 ĥn(W1) = Op(n−1/6). Thus, the last term
in (10.7) implies

PW1{ĥn(W1) − h0(W1)}2 = op(1)

and, thus, by condition A1(b), ‖ĥn − h0‖2 = op(1). This now implies that ‖Ĥn −
H0‖F,2 = op(1). �

PROOF OF THEOREM 2. Assume without loss of generality that �(1) = 1 and
�(n) = 0 as discussed in Remark 6. Divide the observations into contiguous dis-
joint segments Mk ⊂ {1, . . . , n}, k = 1, . . . ,K , where 1 = min(M1) < max(M1) =
min(M2) − 1 < min(M2) < · · · < max(Mk−1) = min(Mk) − 1 < min(Mk) <

max(Mk) = n, so that {�(j), j ∈ Mk} consists of all 1’s followed by all 0’s. Hence,
there are at least two observations in each Mk , k = 1, . . . ,K . Note that Ĥn(V(i)) =
Ĥn(V(j)) for all i, j ∈ Mk , k = 1, . . . ,K . To see this, suppose that it is not true, and
let j ′ be the index in Mk which corresponds to the first time δ(j) = 0 over j ∈ Mk .
Now the profile log-likelihood l

p
n (β,h, Ĥn) can be increased by replacing Ĥn with

Ĥ ∗
n , where Ĥ ∗

n (V(i)) = Ĥn(V(j ′)) for all i < j ′, i ∈ Mk [since this would increase
the value of log{F(Ĥn(V(i))+ β̂ ′

nZ(i) + ĥn(W(i)))}]. The profile log-likelihood will
also be increased by setting Ĥ ∗

n (V(i)) = Ĥn(V(j ′)) for all i ≥ j ′, i ∈ Mk [since this
would lower log{F(Ĥn(V(i)) + β̂ ′

nZ(i) + ĥn(W(i)))} and, hence, increase log{1 −
F(Ĥn(V(i)) + β̂ ′

nZ(i) + ĥn(W(i)))}]. Thus, l
p
n (β̂n, ĥn, Ĥ

∗
n ) > l

p
n (β̂n, ĥn, Ĥn), and

the MLE Ĥn(V(i)) is therefore constant over the indices i ∈ Mk , k = 1, . . . ,K .
Define v0 ≡ H0(lv) and p0 ≡ F(v0 − 2m) ∧ [1 − F(v0)], where m is the max-

imum possible value of |β̂ ′
nz(i) + ĥn(w(i))| over 1 ≤ i ≤ n, and let q(δ, t) ≡

δ log(F (t)) + (1 − δ) log(1 − F(t)). Note that condition 5(d) implies that q(δ, t)

is strictly convex over t ∈ R for δ ∈ {0,1}. Accordingly, Ĥn(V(1)) is piecewise
constant for all indices in Mk , k = 1, . . . , k∗, for some k∗ ≤ K and, thus, for any
ε ∈ (0,p0),

P
{
Ĥn

(
V(1)

) ≤ F−1(ε)
}

≤ P

{
inf

1≤j≤K

[
arg max

a∈R

( j∑
l=1

∑
i∈Ml

�(i) logF
(
a + β̂ ′

nZ(i) + ĥn

(
W(i)

))

+ (
1 − �(i)

)
log

{
1 − F

(
a + β̂ ′

nZ(i) + ĥn

(
W(i)

))})]

≤ F−1(ε)

}
(10.8)
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≤ P

{
sup

a≤F−1(ε),1≤j≤K

[ j∑
l=1

∑
i∈Ml

(
�(i) log

{
F(a + β̂ ′

nZ(i) + ĥn(W(i)))

F (v0 − m + β̂ ′
nZ(i) + ĥn(W(i)))

}

+ (
1 − �(i)

)
log

{
1 − F(a + β̂ ′

nZ(i) + ĥn(W(i)))

1 − F(v0 − m + β̂ ′
nZ(i) + ĥn(W(i)))

})]
≥ 0

}

≤ P

{
sup

a≤F−1(ε)

sup
1≤j≤n

[ j∑
l=1

∑
i∈Ml

(
�(i) logF(a + m) − logp0

)] ≥ 0

}

≤ P

{
inf

1≤j≤n

�Q(j) ≤ log(1/p0)

log[1/F (F−1(ε) + m)]
}
,

where �Q(j) = j−1 ∑j
i=1 �(i).

Let �Q∗
j = (j + 1)−1[1 + ∑j−1

i=1 Q∗
j ], where Q∗

1,Q
∗
2, . . . are i.i.d. Bernoulli with

probability of success F(H0(lv) − m). Then (10.8) is bounded above by

P

{
inf
j≥1

�Q∗
j ≤ log(1/p0)

log[1/F (F−1(ε) + m)]
}
.(10.9)

For every τ ∈ (0,F (H0(lv)−m)), the strong law of large numbers yields that Nτ =
sup{j : j−1 ∑j

i=1 Q∗
j ≤ τ } is a bounded random variable. This now implies that

the probability in (10.8) can be made arbitrarily small by taking ε small enough.
Hence, |Ĥn(V(1))| = Op(1). The proof that |Ĥn(V(n))| = Op(1) is obtained in a
virtually identical manner after reversing the order of the indices. �

PROOF OF THEOREM 3. By the isotonic regression results in Section II.1.1
of [19],

Ĥn

(
V(1)

) = min
1≤k≤n

∑k
i=1 �(i)

k
≤ 1

Mn

,

where Mn = max{j ≤ n :
∑j

i=1 �(i) = 1}. In this setting �(1) = 1 and �(n) = 0 al-
most surely (by assumption); but �(2), . . . ,�(n−1) conditional on V(2), . . . , V(n−1)

are independent Bernoullis with probabilities of success G0(V(i)), i = 2, . . . ,

n − 1. Thus, Mn is bounded below in probability by M∗
n ≡ 1 + max{j ≤ n −

1 :
∑j

i=1 �∗
i = 0}, where the �∗

i ’s are i.i.d. Bernoullis with probability of suc-
cess G0(uv) < 1. Let M∗ ≡ limn→∞ M∗

n . Since for any k < ∞, P {M∗ ≥ k} =
{1 − G0(uv)}k−1 > 0, we now have for any η > 0 that lim infn→∞ P {Ĝn(V(1)) ≤
η} ≥ P {1/M∗ ≤ η} > 0. Thus, (i) follows. The same argument can be used to
verify (ii) after noting that

1 − Ĥn

(
V(n)

) = 1 − max
1≤k≤n

∑n
i=k �(i)

n − k + 1
= min

1≤k≤n

∑k
i=1{1 − �(n−i+1)}

k
. �

PROOF OF THEOREM 4. We make use of the following technical tools.
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T1. Denote � = {θ : θ = g + H,g ∈ G,H ∈ �}, where � = {H :H is a nonde-
creasing function and −∞ < M1 ≤ H ≤ M2 < ∞}, for constants M1 and M2,
and where G = {g :g = β ′z + h(w) :β ∈ �B0, |h| ≤ c0, J (h) < ∞}. The argu-
ments in Lemma 8 yield that logN[·](ε,�/(1 + J (h)),P ) ≤ A1ε

−1, where A1
is a constant.

T2. (Theorem in [43], page 79.) Consider a uniformly bounded class of func-
tions G, with supg∈G |g−g0|∞ < ∞ and logN[·](ε,G,P ) ≤ Aε−α for all ε > 0,
and where α ∈ (0,2).

Then for δn = n−1/(2+α),

sup
g∈G

|(Pn − P)(g − g0)|
‖g − g0‖1−α/2

2 ∨ √
nδ2

n

= Op(n−1/2),

where ‖ · ‖2 is the L2(P ) norm.

Denote θ̃n(x) ≡ β̂ ′
nz + ĥn(w) + H̃n(v), θ0(x) ≡ β ′

0z + h0(w) + H0(v) and
q(δ, t) ≡ δ log(F (t)) + (1 − δ) log(1 − F(t)). Then l(β,h,H)(x) = q(δ, θ(x)).
Denote the second-order derivative of q as −m(δ, t) ≡ (∂2/(∂t2))q(δ, t).

Since (g0,H0) maximizes the expectation of the log-likelihood function, we
have

P [l(g0,H0) − l(ĝn, H̃n)] = P

[
m(δ, t∗)

2
(θ̃ − θ0)

2
]
,(10.10)

where t∗(X) is on the line segment between θ̃n(X) and θ0(X). From the compact-
ness of θ̃n and θ0, as given in the assumptions and as a consequence of Theorem 2,

∃ ε1, ε2 : 0 < ε1 < ε2 < ∞ and ε1 < m(δ, t∗) < ε2 a.s.(10.11)

Combining (10.10) and (10.11),

ε1‖θ̃n − θ0‖2
2 ≤ P [l(g0,H0) − l(ĝn, H̃n)] ≤ ε2‖θ̃n − θ0‖2

2.(10.12)

The penalized MLE estimators satisfy

λ2
nJ

2(ĥn) ≤ λ2
nJ

2(h0) + Pn[l(θ̂n) − l(θ̃n)]
(10.13)

+ (Pn − P)[l(θ̃n) − l(θ0)] + P [l(θ̃n) − l(θ0)],
where θ̂n(x) ≡ β̂ ′

nz + ĥn(w) + Ĥn(v). However, if we let k and l be as defined in
Remark 7, then

Pn[l(θ̂n) − l(θ̃n)] = n−1

[
k−1∑
i=1

log
{
1 − F

(
ĝn

(
x(i)

) + Ĥn

(
y(k)

))}

+
n∑

i=l+1

logF
(
ĝn

(
x(i)

) + Ĥn

(
y(l)

))]

= Op(n−1)
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by arguments given in the proof of Theorem 2. This, combined with (10.12)
and (10.13), yields

λ2
nJ

2(ĥn) + ε1‖θ̃n − θ0‖2
2

(10.14)
≤ λ2

nJ
2(h0) + (Pn − P)[l(θ̃n) − l(θ0)] + Op(n−1).

Combined with the results in T1 and T2 (for α = 1), (10.14) gives us

λ2
nJ

2(ĥn) + ε1‖θ̃n − θ0‖2
2

≤ λ2
nJ

2(h0) + Op(n−1/2)
(
1 + J (ĥn)

)
(‖θ̃n − θ0‖1/2

2 ∨ n−1/6).

Thus, we conclude

λ2
nJ

2(ĥn) ≤ λ2
nJ

2(h0)
(10.15)

+ Op(n−1/2)
(
1 + J (ĥn)

)
(‖θ̃n − θ0‖1/2

2 ∨ n−1/6),

as well as

ε1‖θ̃n − θ0‖2
2 ≤ λ2

nJ
2(h0)

(10.16)
+ Op(n−1/2)

(
1 + J (ĥn)

)
(‖θ̃n − θ0‖1/2

2 ∨ n−1/6).

A few further calculations give us J (ĥn) = Op(1) and ‖θ̃n − θ0‖2 = Op(n−1/3).
Following arguments similar to those used in the proof of Theorem 1, we conclude
‖β̂n −β0‖+d((ĥn, H̃n), (h0,H0)) = Op(n−1/3). Moreover, since J (ĥn) = Op(1),
we can now conclude uniform consistency of ĥn as discussed in Remark 8. �

PROOF OF LEMMA 4. Note that the model assumptions ensure that D0 is
bounded above and below on [lv, uv] × [a, b]. Let S1 be the the class of functions
g : [lv, uv] �→ R with E[g2(V )D0(V ,W)] < ∞, and let S2 be the class of functions
g : [a, b] �→ R with E[g2(W)D0(V ,W)] < ∞. Because D0 is bounded above and
below, it is not hard to show that the score spaces S∗

0 ≡ {g(V,W)Qψ0(X) :g ∈ S0}
and S∗

1 ≡ {g(V )Qψ0(X) :g ∈ S1} are closed in L2(P ), and that the L2(P ) clo-
sure of the score space {g(W)Qψ0(X) :g ∈ �ν,0} is S∗

2 ≡ {g(W)Qψ0(X) :g ∈ S2}.
The reason we can drop the requirement Eg(W) = 0 in the latter case is that
E[Qψ0(X)|V,W ] = 0. We also note that now both S∗

1 and S∗
2 are closed subspaces

of S∗
0 . We can also see that, for any g(V,W)Qψ0(X) ∈ S∗

0 , (�1g)(V )Qψ0(X) is
the projection onto S∗

1 and (�2g)(W)Qψ0(X) is the projection onto S∗
2 .

Define a new score space S∗
3 ≡ {[g(V )+h(W)]Qψ0(X) :g ∈ S1, h ∈ S2}. Since

D0 is bounded below and V and W are independent, there exists a constant c > 0
such that for all g ∈ S1 with E[g(V )] = 0 and all h ∈ S2,

E
{[g(V ) + h(W)]2Q2

ψ0
(X)

} ≥ cE[g(V ) + h(W)]2 ≥ cEg2(V ) + cEh2(W).

Thus, S∗
3 is also a closed subspace of S∗

0 . This means that we can use the al-
ternating projections theorem (Theorem A.4.2 of [6]) to establish that there exist
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a q ′ ∈ S1 and an h′ ∈ S2 so that D∗(V ,W) − q ′(V ) − h′(W) = limm→∞[(1 −
�2)(1 − �1)]mD∗ and

E
{[D∗(V ,W) − q ′(V ) − h′(W)][q(V ) + h(W)]Q2

ψ0
(X)

} = 0,(10.17)

for all q ∈ S1 and h ∈ S2. If we can show that∫ b

a

[(
∂

∂w

)ν

h′(w)

]2

dw < ∞(10.18)

and that h∗ = h′, then the first expression in D1 will hold for all h ∈ �ν,0.
This last assertion follows by setting q(V ) = −(�1h)(V ) in (10.17) and not-
ing that q ′(V )Qψ0(X) is uncorrelated with [h(W) − (�1h)(V )]Qψ0(X) for any
h ∈ S2 ⊃ �ν,0.

We first establish that h′ = h∗. For each k ≥ 0, let qk ∈ S1 and hk ∈ S2 be defined
by the equation

D∗(V ,W) − qk(V ) − hk(W) = [(1 − �2)(1 − �1)]kD∗.(10.19)

To see that this makes sense, begin with q0 = h0 = 0, and note that, for any
k ≥ 0, (1−�1)[D∗(V ,W)−qk(V )−hk(W)] = D∗−(�1D

∗)(V )+(�1hk)(V )−
hk(W) and (1 − �2)[D∗ − qk+1(V ) − hk(W)] = D∗ − qk+1(V ) − (�2D

∗)(W) +
(�2qk+1)(W). Thus, by setting qk+1(V ) = (�1D

∗)(V ) − (�1hk)(V ) and

hk+1(W) = (�2D
∗)(W) − (�2qk+1)(W)

(10.20)
= [�2(1 − �1)D

∗](W) + (�2�1hk)(W),

we have a method of defining qk and hk which is consistent with (10.19). By solv-
ing the recursive formula in (10.20), we obtain that hk(W) = [∑k−1

j=0(�2�1)
j ] ×

�2(1 − �1)D
∗ for any k ≥ 1. Thus, h′ in (10.17) is the limiting value of hk , as

k → ∞, where the limit is in S2 since S∗
3 is closed. But this is precisely how h∗ is

defined. Thus, h′ = h∗, and the limit in the definition of h∗ is well defined.
Now we will establish (10.18). Recall from above that q ′ ∈ L2(V ). Note also

that the above recursive arguments imply that h∗ = �2D
∗ − �2q

′. Thus, if we let
P1 be the probability measure for V ,

‖h∗‖P,ν = ‖�2D
∗ − �2q

′‖P,ν

≤ ‖�2D
∗‖P,ν +

∥∥∥∥∫ uv

lv

q ′(v)S2(v,w)dP1(v)

∥∥∥∥
P,ν

≤ (
E

[
D

∗(ν)
2 (W)

]2)1/2 +
(∫ uv

lv

[q ′(v)]2 dP1(v) × E
[
S

(ν)
2 (V ,W)

]2
)1/2

< ∞
by the boundedness assumptions on D

∗(ν)
2 and S

(ν)
2 . Since the density of W is

bounded below, we now have that
∫ b
a [(∂/(∂w))νh∗(w)]2 dw < ∞. Thus, the first
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part of D1 is established and all that remains is to establish the required differen-
tiability of q̃ .

Because of the asumptions about Ḋ∗
1 , all that remains is establishing that

(�1h
∗)(v) has a derivative which is uniformly bounded on [lv, uv]. Letting p2(w)

be the density of W , we have that (�1h
∗)(v) = ∫ b

a h̃(w)R1(v,w)p2(w)dw. Thus,

|(�1h
∗)(v)| ≤

(∫ b

a
h̃2(w)p2(w)dw × E[Ṙ1(v,W)]2

)1/2

,

and the desired result follows from the assumptions on Ṙ1. This completes the
proof. �

PROOF OF THEOREM 5. The information calculation is based on the non-
orthogonal projection approach discussed by Sasieni [37]. The log-likelihood func-
tion takes the form

l(x;β,h,H) = δ log{F [β ′z + h(w) + H(v)]}
+ (1 − δ) log{1 − F [β ′z + h(w) + H(v)]}.

The score function for β is simply the derivative of the log-likelihood with respect
to β , which is

l̇β = δZ
f (θψ)

F (θψ)
+ (1 − δ)Z

−f (θψ)

1 − F(θψ)
= Zf (θψ)

(
δ

F (θψ)
− 1 − δ

1 − F(θψ)

)
,

where θψ(x) ≡ β ′z + h(w) + H(v).
Assume hη(w) = h(w) + ηξ(w), where ξ ∈ �ν,0. Then (∂/∂η)hη(w) = ξ(w).

Thus, the score operator for h(w) is

l̇h(ξ)(x) = ξ(w)f (θψ(x))

(
δ

F (θψ(x))
− 1 − δ

1 − F(θ(x))

)
.

For the H part, assume (∂/∂η)Hη(v) = a(v), where a ∈ L2(V ), and where
L2(V ) is the set of functions of the random variable V which are square-integrable.
Then

l̇H (a)(x) = a(v)f (θψ(x))

(
δ

F (θψ(x))
− 1 − δ

1 − F(θψ(x))

)
.

Step 1. As suggested by Sasieni [37], we first project l̇β (X) onto the space gen-
erated by l̇H (X). We will need to find a function a∗ ∈ L2(V ) so that l̇β − l̇H (a∗) ⊥
l̇H (a) for all a ∈ L2(V ), which is equivalent to requiring

E
[(

Z − a∗(V )
)
a(V )Q2

ψ(X)
] = 0(10.21)

for all a ∈ L2(V ), where Qψ is as defined in assumption D1. Since E[(Z −
a∗(V ))a(V )Q2

ψ(X)] = E[a(V )E((Z − a∗(V ))Q2
ψ(V )|V )] = 0, then if E((Z −
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a∗)Q2|V ) = 0 almost surely, (10.21) will definitely be true. Thus, we can con-
clude that

a∗(v) = E(ZQ2
ψ(X)|V = v)

E(Q2
ψ(X)|V = v)

.(10.22)

Hence, we have

l̇β (X) − l̇H (a∗)(X) =
(
Z − E(ZQ2

ψ(X)|V )

E(Q2
ψ |V )

)
Qψ(V ).(10.23)

Step 2. We next project l̇h(ξ) onto the space generated by l̇H , using similar
calculations, to obtain a b∗ ∈ L2(V ) so that

l̇h(X) − l̇H (b∗)(X) = Qψ(X)

{
ξ(W) − E(ξ(W)Q2

ψ(X)|V )

E(Q2
ψ(X)|V )

}
.(10.24)

Step 3. Next, we project the space generated by l̇β − l̇H (a∗) onto the space
generated by l̇h − l̇H (b∗), which is equivalent to finding h̃ ∈ �ν,0 such that

E

{([
Z − E(ZQ2

ψ(X)|V )

E(Q2
ψ(X)|V )

]
−

[
h̃(W) − E(h̃(W)Q2

ψ(X)|V )

E(Q2
ψ(X)|V )

])

×
[
h(W) − E(h(W)Q2

ψ(X)|V )

E(Q2
ψ(X)|V )

]
Q2

ψ(X)

}
= 0

for all h ∈ �ν,0. That this is equivalent to the first conditional expectation in con-
dition D1 follows from the fact that r(V )Qψ0(X) is uncorrelated with[

h(W) − E(h(W)Q2
ψ0

(X)|V )

E(Qψ0(X)|V )

]
Qψ0(X)

for any r ∈ L2(V ) and any h ∈ L2(W).
This proves Theorem 5. �

PROOF OF THEOREM 6. The proof of asymptotic normality and efficiency
is based on Theorem 7 below, which is a modification of van der Vaart’s Theo-
rem 25.54 in [47].

As shown in Theorem 5, the efficient score function for β takes the form
[z − h̃(w) − q̃(v)]Qψ0(x), where h̃, q̃ and Qψ are as defined in assumption D1.
Formally, this function is the derivative at t = 0 of the log-likelihood function eval-
uated at (β0 + t, h0 − t h̃,H0 − t q̃). However, the last coordinate of the latter path
may not define a nondecreasing function for every t in a neighborhood of 0 and,
hence, cannot be used to obtain a stationary equation for the maximum likelihood
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estimator. To overcome this difficulty, we will replace the efficient score with an
approximation based on an approximately least-favorable submodel.

For t ∈ R
d , define Ht(v) ≡ H(v) − t ′q̃[H−1

0 (H0(a) ∨ [H(v) ∧ H0(b)])]. Then
for t close enough to zero, Ht defines a nondecreasing function, since v �→
q̃(H−1

0 (v)) is Lipshitz continuous on [H0(a),H0(b)] as a consequence of con-
dition D1 and the assumed differentiability of H−1

0 . Now plug (β + t, h0 − t h̃,Ht)

into the log-likelihood function and differentiate with respect to t at t = 0. We
then get the score function k̃ψ (X) ≡ (Z − h̃(W) − q̃[H−1

0 (H0(a) ∨ [H(V ) ∧
H0(b)])])Qψ(X), for which k̃ψ0 is the efficient score for β at ψ0.

We now have the following results.

1. The model is differentiable in quadratic mean with respect to β at (β0, h0,H0).
2. As shown in Theorem 5, the efficient information matrix is nonsingular.
3. Note that, by the uniform consistency of ĥn, we have for large enough n that

ĥn is in the interior of �c0
ν with high probability and satisfies Pnĥn(W) = 0.

Hence, the derivative in the direction h̃ − Pnh̃(W) of the log-likelihood will be
zero for large enough n. This implies that

Pnk̃β̂n,ĥn,Ĥn
− Pn[h̃]Pn

[
Q

β̂n,ĥn,Ĥn

] = 0.

Since |Pn(Qβ̂n,ĥn,Ĥn
−Q

β̂n,ĥn,H̃n
)| = Op(n−1) by arguments given in the proof

of Theorem 2 and since PnQβ̂n,ĥn,H̃n
= op(1), we now have that Pnk̃β̂n,ĥn,Ĥn

=
op(n−1/2). Hence, also Pnk̃β̂n,ĥn,H̃n

= op(n−1/2).

4. (β̂n, ĥn, H̃n) is consistent for (β0, h0,H0) (in an L2 sense for H̃n) and asymp-
totically bounded.

5. Since J (ĥn) = Op(1), and by results given in the proof of Theorem 5 and
the Lipschitz continuity of the function ψ �→ k̃ψ , we can see that there ex-
ists a neighborhood of (β0, h0,H0) such that the functions k̃

β̂n,ĥn,H̃n
belong to

a Pβ0,h0,H0 Donsker class with a square integrable envelope function with high
probability for large enough n.

6. Denote ζ ≡ (h,H), with ζ0 ≡ (h0,H0) and ζ̃n ≡ (ĥn, H̃n). Let Bβ,ζ be the
score operator for ζ under the assumed model, but without the requirement
that Pβ,ζ h(W) = 0. From the orthogonality of k̃β,ζ and Bβ,ζD for any D ∈
�ν × L2(V ), we can now write

P
β̂n,ζ0

k̃
β̂n,ζ̃n

= (
P

β̂n,ζ0
− P

β̂n,ζ̃n

)(
k̃
β̂n,ζ̃n

− k̃β0,ζ0

)
−

∫
k̃β0,ζ0

[
pβ0,ζ̃n

− pβ0,ζ0 − Bβ0,ζ0(ζ̃n − ζ0)pβ0,ζ0

]
dµ(10.25)

+
∫

k̃β0,ζ0

[
pβ0,ζ̃n

− pβ0,ζ0 − p
β̂n,ζ̃n

+ p
β̂n,ζ0

]
dµ,

where µ is a suitable dominating measure. To verify the “no bias” condi-
tion (10.27) of Theorem 7 below, we use the decomposition (10.25). By
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the boundedness of the second derivative of logpβ,ζ in a neighborhood
of (β0, ζ0), the first term on the right-hand side of (10.25) is bounded
by Op(1)d(ζ̃n, ζ0)[d(ζ̃n, ζ0) + ‖β̂n − β0‖]; the second term on the right-
hand side is bounded by Op(1)d2(ζ̃n, ζ0); and the third term is bounded by
Op(1)d(ζ̃n, ζ0)‖β̂n −β0‖. Thus, (10.27) follows from the fact that d2(ζ̃n, ζ0) =
Op(n−2/3) by Theorem 4.

7. Pβ0,h0,H0‖k̃β̂n,ĥn,H̃n
− k̃β0,h0,H0‖2 → 0 in probability as a consequence of the

previously stated Lipschitz continuity of ψ �→ k̃ψ and consistency results in
item 1 above. Furthermore, P

β̂n,h0,H0
‖k̃

β̂n,ĥn,H̃n
‖2 = Op(1) from the bounded-

ness assumptions. Thus, condition (10.28) of Theorem 7 below is satisfied.

Now all the conditions of Theorem 7 below are satisfied and, hence, β̂n is efficient
for β0. �

PROOF OF LEMMA 5. Fix m > d . Without loss of generality, we can assume
by the i.i.d. structure that X∗

i = Xi for i = 1, . . . ,Nm,n. Let ε0,n ≡ √
n(β̃n − β0) −

n−1/2 ∑n
i=1 φi and

εj,n ≡ (Nm,n − m)1/2(β̃∗
n,j − β0) − (Nm,n − m)−1/2

∑
i∈Kj,n

φi,

where Kj,n ≡ {1, . . . , n} − {j,m + j,2m + j, . . . , (km,n − 1)m + j}, for j =
1, . . . ,m; and note that max0≤k≤m |εk,n| = op(1) by asymptotic linearity. Now let

Z∗
j,n ≡ k

−1/2
m,n

∑km,n

i=1 φ(i−1)m+j for j = 1, . . . ,m, and define �Z∗
n ≡ m−1 ∑m

j=1 Z∗
j,n.

Thus, S∗
n = (m − 1)−1 ∑m

j=1(Z
∗
j,n − �Z∗

n)(Z∗
j,n − �Z∗

n)T + op(1). Hence, S∗
n and√

n(β̃n −β0) are jointly asymptotically equivalent to Sm ≡ (m− 1)−1 ∑m
j=1(Zj −

�Zm)(Zj − �Zm)T and Z0, respectively, where �Zm ≡ m−1 ∑m
j=1 Zj and Z0, . . . ,Zm

are i.i.d. mean zero Gaussian deviates with variance E[φφT ]. Now the results fol-
low by standard normal theory (see Appendix V of [39]). �

LEMMA 8. The class F0 in expression (10.6) is P -Donsker.

PROOF. Let k0 be the maximum possible value of |β ′Z + h(W)| whose exis-
tence is guaranteed by conditions A1(a), B2 and B3. Let K in condition B5(c)
be [−k0, k0], and let c1, α1 and ξ1 be the choices of c, α and ξ which sat-
isfy the condition for this K . By condition B5(b), F is one-to-one and, hence,
MR = {F−1(ξ−1

1 G) :G ∈ M[0,1]}. Thus,

F0 =
{
ζ(X;β,h,F−1(ξ−1

1 G))

1 + J (h)
:β ∈ �B0,G ∈ M[0,1], h ∈ �ν

}
,
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where ζ is as defined in (10.3). Furthermore, for any G1,G2 ∈ M[0,1], β1, β2 ∈ �B0,
and any h1, h2 ∈ �ν , we have∣∣∣∣ζ(X;β1, h1,F

−1(ξ−1
1 G1))

1 + J (h1)
− ζ(X;β2, h2,F

−1(ξ−1
1 G2))

1 + J (h2)

∣∣∣∣
≤ m|β ′

1Z − β ′
2Z|

(10.26)

+
∣∣∣∣ζ(X;β1, h1,F

−1(ξ−1
1 G1)) − ζ(X;β1, h1,F

−1(ξ−1
1 G2))

1 + J (h1)

∣∣∣∣
+

∣∣∣∣ζ(X;β2, h1,F
−1(ξ−1

1 G2))

1 + J (h1)
− ζ(X;β2, h2,F

−1(ξ−1
1 G2))

1 + J (h2)

∣∣∣∣,
where m < ∞ by B5(b) and the form of ζ . By B5(c), the second term on the
right-hand side of (10.26) is bounded above by c1|G1(V ) − G2(V )|α1 . Defining
h̃j ≡ hj/(1 + J (hj )), j = 1,2, there exist constants 0 < c2, c3 < ∞ so that, for
the last term on the right-hand side of (10.26),∣∣∣∣ζ(X;β2, h1,F

−1(ξ−1
1 G2))

1 + J (h1)
− ζ(X;β2, h2,F

−1(ξ−1
1 G2))

1 + J (h2)

∣∣∣∣
≤ c2|h1(W) − h2(W)|

(1 + J (h1))
+ c3

∣∣∣∣ 1

1 + J (h1)
− 1

1 + J (h2)

∣∣∣∣
≤ c2|h̃1(W) − h̃2(W)| + {c3 + c2h2(W)}

∣∣∣∣ J (h1) − J (h2)

(1 + J (h1))(1 + J (h2))

∣∣∣∣,
where |h2(W)| ≤ c0 by constraint. Let N[·](ε,F ,Q) be the bracketing number
for the class F using L2(Q) brackets of size ε. Note that the minimum number
of points S = {s1, . . . , sν} ⊂ [0,∞) needed to ensure that supr∈[0,∞) infs∈S |r − s|/
[(1 + r)(1 + s)] < ε is O(ε−1). Combining this with the facts that
logN[·](ε,M[0,1],Q) = c4ε

−1, where c4 does not depend on Q (Theorem 2.7.5
of [48]), and that both {h/{1 + J (h)} :h ∈ �ν} ⊂ H ≡ {h ∈ �ν :J (h) ≤ 1} and
logN[·](ε,H ,Q) = c5ε

−1, where 0 < c5 < ∞ does not depend on Q (see Theo-
rem 2.4 of [43]), we have that logN[·](ε,F0,P ) ≤ c6ε

−1/α1 for some 0 < c6 < ∞
and all ε ∈ (0,1). Since this implies that the entropy integral with bracketing is
bounded, the desired result follows. �

THEOREM 7 (Modification of Theorem 25.54 of [47]). Suppose that the model
{Pβ,ζ :β ∈ B0} is differentiable in quadratic mean with respect to β at (β0, ζ0) and
let the efficient information matrix Ĩβ0,ζ0 be nonsingular. Let (β, ζ ) �→ k̃β,ζ be an
estimating function satisfying k̃β0,ζ0 = l̃β0,ζ0 , where l̃β0,ζ0 is the efficient influence
function for β at (β0, ζ0). Let β̂n satisfy

√
nPnk̃β̂n,ζ̃n

= op(1) and be consistent for
β0. In addition, suppose there exists a Pβ0,ζ0 -Donsker class with square-integrable
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envelope function that contains every function k̃
β̂n,ζ̃n

with probability tending to 1.

Assume further that k̃ satisfies√
nP

β̂n,ζ0
k̃
β̂n,ζ̃n

= op

(
1 + √

n‖β̂n − β0‖)
(10.27)

and

Pβ0,ζ0

∥∥k̃
β̂n,ζ̃n

− k̃β0,ζ0

∥∥2 = op(1), P
β̂n,ζ0

∥∥k̃
β̂n,ζ̃n

∥∥2 = Op(1).(10.28)

Then β̂n is asymptotically efficient at (β0, ζ0).

PROOF. The proof is almost identical to van der Vaart’s proof of his Theo-
rem 25.54 in [47]. �
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