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ABSTRACT

Motivation: Model-based clustering has been widely used, e.g. in
microarray data analysis. Since for high-dimensional data variable
selection is necessary, several penalized model-based clustering
methods have been proposed tørealize simultaneous variable
selection and clustering. However, the existing methods all assume
that the variables are independent with the use of diagonal
covariance matrices.
Results: To model non-independence of variables (e.g. correlated
gene expressions) while alleviating the problem with the large number
of unknown parameters associated with a general non-diagonal
covariance matrix, we generalize the mixture of factor analyzers to
that with penalization, which, among others, can effectively realize
variable selection. We use simulated data and real microarray data
to illustrate the utility and advantages of the proposed method over
several existing ones.
Contact: weip@biostat.umn.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Clustering is a popular tool for exploratory data analysis in many
fields, including for high-dimensional microarray data. For example,
Eisen et al. (1998) found that, for both the budding yeast and human,
genes with similar functions were likely to be grouped together
based on their expression profiles, suggesting that clustering genes
with their expression profiles might help predict gene functions.
Golub et al. (1999) clustered human leukemia samples with their
expression profiles and discovered distinct groups corresponding to
subtypes of leukemia. Thalamuthu et al. (2006) compared various
clustering methods and found that model-based clustering (Fraley
and Raftery, 2002) performed well for microarray gene expression
data. On the other hand, for high-dimensional and low sample-
sized data, several authors (Pan and Shen, 2007; Wang and Zhu,
2008; Xie et al., 2008a, b) have shown that variable selection is
necessary for uncovering underlying clustering structures, and that
penalized model-based clustering is effective in realizing variable
selection and clustering simultaneously. However, in their penalized
model-based clustering approaches, all variables are assumed to
be independent with diagonal covariance matrices being used in a
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mixture of normals. In practice, some variables, e.g. genes, may
be related to each other, leading to non-negligible correlations
among them, violating the independence assumption with the use
of diagonal covariance matrices.

Here we aim to generalize existing penalized model-based
clustering approaches to the case with non-diagonal covariance
matrices. For high dimensional and low sample sized data, if a
general and unrestricted covariance matrix is used, there will be a
large number of unknown parameters (i.e. its off-diagonal elements)
to be estimated. In addition, there will be some computational issues
in implementing the constraint that the resulting covariance matrix
estimate is positive definite (Huang et al., 2006; Yuan and Lin, 2007).
As an intermediate between a diagonal and a general covariance
matrix, we model a covariance matrix using some latent variables
as done in the mixture of factor analyzers (MFAs) (McLachlan and
Peel, 2000). Hinton et al. (1997) proposed the MFA as a natural
extension of a single factor analysis model, by adopting a finite
mixture of single factor analysis models. Ghahramani and Hinton
(1997) provided an exact EM algorithm for MFA. In clustering
tissue samples with microarray gene expression data, McLachlan
et al. (2002, 2003) first selected a subset of the genes by univariate
screening, and then used a MFAs to effectively reduce the dimension
of the feature space; see McLachlan et al. (2007), Baek and
McLachlan (2008), Baek et al. (2009) for more recent applications
and extensions. Here we extend penalized model-based clustering
with diagonal covariance matrices to penalized mixtures of factor
analyzers (PMFA) to capture a more general covariance structure
for high-dimensional data. Variable selection and model fitting can
be realized simultaneously in PMFA as proposed below.

In the next section, we first review the MFA and its EM algorithm
as proposed by Ghahramani and Hinton (1997), and then propose a
PMFA and derive its EM algorithm. This is followed in Section 3
by numerical results to illustrate the utility and advantages of our
proposed PMFA over the MFA and the penalized mixture of normals
with a diagonal covariance matrix (PMND) (Pan and Shen, 2007).
We end with a short discussion in Section 4.

2 METHODS

2.1 Mixture of factor analyzers and its EM algorithm
Factor analysis can be used to explain the correlations between variables and
for dimension reduction for multivariate observations. In a single-component
factor analysis, a K-dimensional observation xj,j=1, ... ,n is modeled using
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a q-dimensional vector of real-valued factors Uj (latent or unobservable
variables), where q is generally much smaller than K (Everitt, 1984). Each
observation xj is modeled as

xj =µ+BUj +ej,

where B is an unknown K ×q factor loading matrix. The factors Uj are
assumed to be N(0,Iq) distributed, and independent of the K-dimensional
random variable ej from N(0,D), where Iq, D=diag(σ2

1 ,...,σ2
K ) are a q×q

identity matrix and a K ×K diagonal matrix, respectively. According to this
model, xj therefore follows a normal distribution with mean µ and covariance
matrix BB′ +D. Note that BB′ +D is in general non-diagonal.

In the context of mixture modeling, Hinton et al. (1997) and Ghahramani
and Hinton (1997) provided a local dimension reduction by assuming that
the distribution of xj can be modeled as

xj =µi +BiUij +eij, (1)

for j=1,2, ... ,n, with prior probability πi,i=1, ... ,g, where Bi is a K ×q
factor loading matrix. The factors Uij and random variable eij are assumed
to be independently distributed as N(0,Iq) and N(0,D), respectively, and Uij

is independent of eij .
The observations xj’s are assumed to be iid from a mixture distribution

with g components:
∑g

i=1πiHi(xj;θi), where θi is a vector representing all
unknown parameters in the distribution for component i, while πi is the prior
probability for component i. Denote

hi(xj,Uij;θi)= fi(xj|Uij;θi)g(Uij;θi),

where fi(xj|Uij;θi) and g(Uij;θi) are the density functions of normal
distributions N(µi +BiUij,D) and N(0,Iq), respectively. According to
model (1), Hi(xj;θi) can be obtained by marginalizing hi(xj,Uij;θi) over
Uij , yielding Hi(xj;θi) as the density function for normal distribution
N(µi,BiB′

i +D).
The log-likelihood is

logL(�)=
n∑

j=1

log

[ g∑
i=1

πiHi(xj;θi)

]
,

where �={(θi,πi) : i=1, ... ,g} represents all unknown parameters. The
maximum likelihood estimate (MLE) �̃ is obtained by maximizing logL(�).
A commonly used algorithm is the E-M (Dempster et al., 1977). Denote by
zij the indicator of whether xj is from component i. Because we do not know
beforehand which component an observation comes from, zij’s are regarded
as missing data. If latent variables zij’s and Uij’s could be observed, then the
complete-data log-likelihood is

logLc(�)=
∑

i

∑
j

zij[logπi +loghi(xj,Uij;θi)] (2)

Let X ={xj : j=1, ... ,n} represent the observed data. Given the current

estimate �̃(r) ={(θ̃(r)
i ,π̃

(r)
i ) : i=1, ... ,g} at iteration r, the E-step of the EM

calculates

Q(�;�̃(r))=E�̃(r) (logLc|X)

=
∑

i

∑
j

τ̃
(r)
ij [logπi +E(loghi(xj,Uij;θi)|X,θ̃

(r)
i )], (3)

where τ̃
(r)
ij is the estimated posterior probability of xj’s coming from

component i:

τ̃
(r)
ij = π̃

(r)
i Hi(xj;θ̃(r)

i )∑g
i=1 π̃

(r)
i Hi(xj;θ̃(r)

i )
, (4)

and

E(loghi(xj,Uij;θi)|X,θ
(r)
i )

= − 1

2

[
log(|D|)+(xj −µi)

′D−1(xj −µi)
]

+(xj −µi)
′D−1BiE(Uij|X,θ

(r)
i )

− 1

2

[
tr(B′

iD
−1BiE(UijU

′
ij|X,θ

(r)
i ))+tr(E(UijU

′
ij|X,θ

(r)
i ))

]
,

up to some additive constant, and tr() is the trace operator. The M-step
maximizes Q to update �.

The E-step involves the calculation of E(Uij|X,θi) and E(UijU ′
ij|X,θi),

which can be derived from the fact that random vector (x′
j,U

′
ij)

′ has a
multivariate normal distribution with mean and covariance matrix(

µi

0

)
,

(
BiB′

i +D Bi

B′
i Iq

)
,

respectively. By applying the standard results of multivariate normal
distribution, the conditional expectations can be obtained as following:

E(Uij|X,θi)=γ ′
i (xj −µi),

E(UijU
′
ij|X,θi)= Iq −γ ′

i Bi +γ ′
i (xj −µi)(xj −µi)

′γi,

where γi = (BiB′
i +D)−1Bi.

The detailed EM derivation of MFA can be found in Ghahramani and
Hinton (1997). In the following, we just list the updates of �: for the prior
probability of an observation from the i-th component Hi,

π̃
(r+1)
i =

n∑
j=1

τ̃
(r)
ij /n, (5)

for the factor loading matrix Bi,

B̃(r+1)
i =

∑
j

τ̃
(r)
ij (xj −µ̃

(r)
i )E(U ′

ij|X,θ̃
(r)
i )

⎛
⎝∑

j

τ̃
(r)
ij E(UijU

′
ij|X,θ̃

(r)
i )

⎞
⎠

−1

, (6)

for the diagonal variance matrix D,

D̃(r+1) = 1

n
Diag

⎛
⎝∑

i,j

τ̃
(r)
ij (xj −µ̃

(r)
i )(xj −µ̃

(r)
i )′

−
∑
i,j

τ̃
(r)
ij (xj −µ̃

(r)
i )E(U ′

ij|X,θ̃
(r)
i )B̃(r)′

i

⎞
⎠, (7)

where Diag(A) extracts the diagonal elements of any matrix A to form a
diagonal matrix, and for the mean parameter µi of the i-th component,

µ̃
(r+1)
i =

∑
j

τ̃
(r)
ij [xj −B̃(r)

i E(Uij|X,θ̃
(r)
i )]/

∑
j

τ̃
(r)
ij . (8)

The above E- and M-steps are iterated; at the convergence, we obtain the
MLE �̃=�̃(∞).

2.2 PMFAs and its EM algorithm
Before clustering analysis, it is assumed throughout that the data have been
standardized to have sample mean 0 and sample variance 1 across the n
observations for each variable. As discussed by Pan and Shen (2007), with
high-dimensional data, the presence of many noise variables may severely
mask clustering structures, suggesting the necessity of conducting variable
selection. Their study has shown that, when clustering high-dimensional
data, variable selection and model fitting can be realized simultaneously
by adding an L1 penalty of mean parameters to the (complete data) log-
likelihood under a common diagonal covariance matrix for each cluster.
Denote the center (or mean) of cluster i as µi = (µi1, ... ,µiK )′. With a
common diagonal covariance matrix, variable k is irrelevant to clustering
if and only if all the cluster centers are the same across the g clusters:
µ1k =µ2k = ··· =µgk ; by the data standardization of the grand sample mean
at 0 for each variable, we then have µ1k =µ2k = ··· =µgk =0. Thus, we can
use an L1 penalty on the mean parameters µik’s to shrink some of them to
be 0 to realize variable selection. Note that, by standardizing each variable
to have variance 1, we can treat these variables in a similar scale and thus
penalize their mean parameters together by an L1 penalty. Similarly, we can
realize variable selection in a MFAs by selecting a proper penalty function. In
addition to that all µik,i=1, ... ,g are 0, all bik. = (bik1, ... ,bikq),i=1, ... ,g
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are required to be 0 to guarantee the irrelevance of variable k to all clusters.
Note that our proposed approach can eliminate irrelevant variables, but not
redundant variables; if the latter is desired, one can take a supervised learning
approach with the discovered clusters as classes and the selected variables
as candidate predictors. Alternatively, Raftery and Dean (2006) proposed a
Bayesian approach to eliminate both irrelevant and redundant variables, but
it is computationally too demanding for high-dimensional data.

We use L1 penalty function p1(µ)=∑
i

∑
k |µik | for mean parameters and

p2(B)=∑
i

∑
k ||bik.||2 for factor loading Bi’s, where B is the set of all Bi’s,

and ||bik.||2 =
√∑

l b
2
ikl . Hence the penalty is

pλ1,λ2 (µ,B) = λ1p1(µ)+λ2p2(B)

= λ1

∑
i

∑
k

|µik |+λ2

∑
i

∑
k

||bik.||2. (9)

The L1 norm p1(µ), as in Pan and Shen (2007), is used to shrink a small
estimate of µik to be exactly 0, while p2(B), serving as a grouped variable
penalty as in Yuan and Lin (2006) and Xie et al. (2008a), is used to shrink
an estimate of factor loading vector bik. that is close to 0 to be exactly 0.
Therefore, if a variable k, having common mean 0 and common variance σ2

k
across clusters, is independent of all other variables with bik. =0 for any i,
this variable is effectively treated as irrelevant; this can be verified in (4),
where an irrelevant variable does not contribute to the posterior probability
τij , thus irrelevant to all clusters. Note that other penalty functions of the
mean and factor loading parameters could be used as in Xie et al. (2008a)
and Wang and Zhu (2008).

The penalized log-likelihood is

logLP(�)=
n∑

j=1

log

[ g∑
i=1

πiHi(xj;θi)

]
−pλ1,λ2 (µ,B). (10)

In order to compute the maximum penalized likelihood estimate (MPLE)
�̂ from (10), we derived the following EM algorithm. First, the penalized
complete-data log-likelihood is

logLc,P(�)=
∑

i

∑
j

zij[logπi +loghi(xj,Uij;θi)]−pλ1,λ2 (µ,B). (11)

Accordingly, at iteration r, the E-step of the EM calculates

QP(�;�̂(r))=E
�̂(r) (logLc,P|X)

=
∑

i

∑
j

τ̂
(r)
ij [logπi +E(loghi(xj,Uij;θi)|X,θ̂

(r)
i )]

−pλ1,λ2 (µ,B), (12)

while the M-step maximizes QP to update � to �̂(r+1), resulting in the same
updating formulas for τij , πi and D as given in (4), (5) and (7), respectively.
Similar to that in Xie et al. (2008a, b), we show in Supplementary Materials
the following sufficient and necessary conditions for µ̂ik to be a global
maximizer of QP:

µ̂
(r+1)
ik = µ̃

(r+1)
ik

⎛
⎝1− λ1σ̂

2,(r)
k∑

j τ̂
(r)
ij |µ̃(r+1)

ik |

⎞
⎠

+
(13)

where µ̃
(r+1)
ik has the form of the MLE of µik (without penalty) as given in

(8), and x+ = (|x|+x)/2.
For the factor loading matrix Bi, we have the following theorem (with a

proof in Supplementary Materials):

Theorem 1. The sufficient and necessary conditions for b̂(r+1)
ik. =

(b̂(r+1)
ik1 ,...,b̂(r+1)

ikq ) to be a global maximizer of QP are: (i) if b̂(r+1)
ik. �=0,∑

j

τ̂
(r)
ij (xj −µ̂

(r)
i )E(U ′

ij|X,θ̂
(r)
i )

− B̂(r+1)
i

∑
j

τ̂
(r)
ij E(UijU

′
ij|X,θ̂

(r)
i )

= λ2
√

qĜ(r+1)B̂(r+1)
i , (14)

where Ĝ(r+1) =diag(σ̂2,(r)
1 /||b̂(r+1)

i1. ||2,...,σ̂2,(r)
K /||b̂(r+1)

iK . ||2), and (ii) if

b̂(r+1)
ik. =0, ⎛

⎜⎝∑
l

⎛
⎝∑

j

τ̂
(r)
ij (xjk −µ̂

(r)
ik )E(Uijl|X,θ̂

(r)
i )

⎞
⎠

2
⎞
⎟⎠

1/2

≤ λ2
√

qσ̂
2,(r)
k . (15)

If we focus on bik., (14) becomes: if b̂(r+1)
ik. �=0,∑

j

τ̂
(r)
ij (xjk −µ̂

(r)
ik )E(U ′

ij|X,θ̂
(r)
i )−

b̂(r+1)
ik.

∑
j

τ̂
(r)
ij E(UijU

′
ij|X,θ̂

(r)
i )

= λ2
√

qσ̂
2,(r)
k b̂(r+1)

ik.

||b̂(r+1)
ik. ||2

. (16)

Naturally formulas (16) and (15) suggest the following updating algorithm
for B̂(r+1)

i :

(1) if (15) is satisfied, then b̂(r+1)
ik. =0;

(2) if (15) is not satisfied, then the Newton-Raphson algorithm is used to
obtain a non-zero b̂(r+1)

ik. from (16);

(3) steps 1 and 2 are repeated for k =1,2, ... ,K .

The above iterative process is continued; at the convergence, we obtain
the MPLE �̃=�̃(∞).

To compare the MPLE of loading vector bik. with its MLE, we consider
an iteration with other parameters fixed: from (6) we have MLE

b̃ik. =
∑

j

τij(xjk −µik)E(U ′
ij|X,θi)

⎛
⎝∑

j

τijE(UijU
′
ij|X,θi)

⎞
⎠

−1

,

and from (16) we have MPLE

b̂ik. = b̃ik.

⎛
⎜⎝Iq + λ2

√
qσ2

k

||bik.||2

⎛
⎝∑

j

τijE(UijU
′
ij|X,θi)

⎞
⎠

−1
⎞
⎟⎠

−1

for b̂ik. �=0. Note that
∑

j τijE(UijU ′
ij|X) is positive definite, and

λ2
√

qσ2
k /||bik.||2 ≥0. Hence, if b̂ik. �=0, b̂ik. is shrunken from MLE b̃ik.

towards 0; b̂ik. can be exactly 0 if, for example, λ2 is sufficiently large
as shown in (15).

2.3 Model selection
Commonly used model selection methods, such as cross-validation, can be
used to select tuning parameters (g,q,λ1,λ2). To save computing time, we
propose using the predictive log-likelihood based on an independent tuning
dataset as our model selection criterion. For any given (g,q,λ1,λ2), the
predictive log-likelihood for the tuning data can be obtained by plugging-
in the tuning data into logL(θ̂), where θ̂ is the MPLE (or MLE for
MFA) estimated from the training data. We propose using a grid search
to estimate the optimal (ĝ,q̂,λ̂1,λ̂2) as the one with the maximum predictive
log-likelihood for the tuning data.

For any given (g,q,λ1,λ2), because of the possible existence of many local
maxima for the mixture model, we have to run an EM algorithm multiple
times with random starts. For our numerical examples, we randomly started
the K-means and used the K-means’ results for initial mean µ and variance
D, and factor loading matrices B’s generated from U[0,1] as input to the EM.
From the multiple runs, we selected the one giving the maximum penalized
log-likelihood (10) as the final result for the given (g,q,λ1,λ2).
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3 RESULTS

3.1 Simulated data
We are interested in the performance of the proposed PMFA, the
standard MFA as proposed by Ghahramani and Hinton (1997)
and outlined in Equations (4–8), and L1-PMND (Pan and Shen,
2007) in clustering high-dimensional data. We considered several
simulation set-ups, each with 50 independent datasets. Each dataset
had n observations, and each observation had K variables. For
each simulated dataset, there were two clusters, with the first n1
observations forming one cluster and the rest the other. Among
all K variables, the first K1 were informative variables, which
were generated according to model (1), with µ1 =0 for the first
cluster and µ2 �=0 for the second, each observation having q=2
loading factors (Bi for cluster i=1 or 2), and latent variables U’s and
error terms e’s generated from N(0,1) independently; the remaining
K −K1 variables were noises, which were generated from N(0,1)
independently across both clusters. The elements of the first 20 rows
(corresponding to informative variables) of B1 and that of B2 were
iid from N(

√
c/2,0.3

√
c) and N(

√
c/4,0.3

√
c), respectively, while

the remaining ones (i.e. for the noise variables) were all 0. The
simulation set-ups corresponded to different combinations of the
values of n, n1, K , K1, µ2 and c. For each training dataset, an
independent tuning dataset with ntu =100 was generated for model
selection. The predictive log-likelihood based on the tuning data was
used to estimate the optimal (ĝ,λ̂1,λ̂2) with fixed q=2 for PMFA,
ĝ for MFA and (ĝ,λ̂) for PMND, respectively.

3.1.1 Case I First we investigated the performance of the
standard MFA without variable selection in clustering high-
dimensional data. Three set-ups were generated with fixed n=100,
n1 =60, K1 =20, µ2 =6.0 and c=2, but with differing K , the total
number of variables: K =60, 80 and 100, respectively.

Table 1 lists the the number of datasets identified with ĝ clusters
for the three set-ups; the Rand (1971) index and adjusted Rand
index (Hubert and Arabie, 1985) are used to indicate the quality of
clustering results as compared with the truth. With 20 informative
variables, as the number of noise variables (K −K1) increased from
40 to 80, the performance of MFA deteriorated. When the number
of noise variables was 40, MFA worked quite well with the Rand
and adjusted Rand indices as high as 0.97 and 0.94, respectively.
However, with 80 noise variables, the indices decreased dramatically
to 0.60 and 0.18, respectively. This confirms the need for variable
selection for high-dimensional data.

Table 1. Case I: performance of MFA for three simulation set-ups with g=2
clusters and K variables, of which K1 =20 variables were informative

Cluster (ĝ) K =60 K =80 K =100

N N N

1 2 7 41
2 48 43 9
3 0 0 0

RI/aRI 0.97/0.94 0.92/0.83 0.60/0.18

Among n=100 observations, n1 =60 were in one cluster. N represents the numbers of
datasets identified with ĝ clusters; RI and aRI represent the averages of the Rand index
and adjusted Rand index, respectively.

3.1.2 Case II Now we compare the performance of the proposed
PMFA with that of the standard MFA and PMND, illustrating the
effectiveness of penalization for variable selection and the need
of using non-diagonal covariance matrices. Five simulation set-ups
were explored with fixed n=50, n1 =30, K =100 and K1 =20, but
differing µ2 and c as follows: 1) Set-up 0: µ2 =0 and c=0; 2) Set-
up 1: µ2 =4.5 and c=1; 3) Set-up 2: µ2 =4.5 and c=2; 4) Set-up
3: µ2 =6.0 and c=1; 5) Set-up 4: µ2 =6.0 and c=2. Set-up 0 was
the null case with only one cluster underlying the simulated data and
none of the variables was informative; Set-ups 1–4 had two clusters
underlying the data and only the first 20 variables were informative.

Table 2 gives the simulation results. MFA obtained ĝ=1 for all
datasets in all set-ups, failing to uncover clustering structures for
set-ups 1–4 because of no variable selection and the effects of noise
variables. As expected, both PMFA and PMND correctly identified
the one cluster and all noise variables in set-up 0. For set-ups 1–4, we
notice that the larger the mean difference between the two clusters,
or the stronger (to some extent) the correlations among variables,
the more likely for the PMFA to correctly identify the two clusters.
Although the simulated dataset had two true clusters, PMND tended
to identify far more clusters than the truth when there were very
strong correlations among variables. In addition, PMND kept much
more noise variables in the final model than PMFA. For example in
set-up 4, PMFA kept <8 noise variables for those datasets identified
to have two or three clusters, while PMND kept 80−51.44≈29
noise variables.

Table 3 listed the Rand indices and adjusted Rand indices for the
clusters identified by PMFA and PMND for the simulated datasets.
For PMND, as c increased from 1 to 2, the adjusted Rand index
decreased from 0.50 to 0.46 for µ2 =4.5 and from 0.57 to 0.46
for µ2 =6.0. It was reasonable since the larger the c, the larger the
correlations among informative variables and thus the independence
assumption (with the use of a diagonal covariance matrix) in the
PMND method was more severely violated. In contrast, for PMFA,
the adjusted Rand index had a different trend: as c increased from
1 to 2, the adjusted Rand index increased from 0.06 to 0.21 for
µ2 =4.5 and from 0.64 to 0.76 for µ2 =6.0. It seems that the larger
the correlations among variables, the more likely the PMFAcorrectly
discovered underlying clustering structures, while the performance
of PMND went down. In summary, the results for set-ups 1–4
demonstrated that for datasets with correlated informative variables,
PMFA performed better than PMND in identifying true clustering
structures.

3.1.3 Case III To investigate the effect of the sample size, we
used a larger n=100 with n1 =60; all other aspects were the same
as in Case II. Table 4 gives the results for the five set-ups. The Rand
indices and adjusted Rand indices are also provided in Table 5.
The results demonstrated that PMFA worked better than PMND
in identifying clustering structures with correlated variables, and
that PMFA performed much better than MFA. In particular, as for
Cases I & II, with the presence of many noise variables, MFA most
often selected only one cluster. On the other hand, as for Case
II, PMND tended to select a larger number of clusters than the
truth, which can be explained by the use of a diagonal covariance
matrix by PMND. Because of the independence assumption implied
by the diagonal covariance matrix in PMND, the orientation (i.e.
major axis) of a cluster ellipsoid identified by PMND paralleled
with a coordinate axis, whereas that for the true clusters did not.
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Table 2. Case II: performance of PMFA and PMND for five simulation set-ups

Method Set-up 0 Set-up 1 Set-up 2 Set-up 3 Set-up 4

µ2 =0,c=0 µ2 =4.5,c=1 µ2 =4.5,c=2 µ2 =6.0,c=1 µ2 =6.0,c=2

ĝ N z1 z2 N z1 z2 N z1 z2 N z1 z2 N z1 z2

1 50 20 80 37 0 34.4 33 0 38.1 15 0 44.1 10 0 60.0
2 – – – 8 0 76.8 5 0 78.8 14 0 70.9 18 0 72.0

PMFA 3 – – – 5 0 73.0 11 0 70.9 21 0 70.9 22 0 73.6
4 – – – – – – – – – – – – – – –
5 – – – – – – – – – – – – – – –

1 50 20 80 – – – – – – – – – – – –
2 – – – – – – – – – – – – – – –

PMND 3 – – – – – – – – – – – – – – –
4 – – – 5 0 59.8 – – – 5 0 52.8 – – –
5 – – – 45 0 46.2 50 0 36.1 45 0 45.4 50 0 51.44

Among K =100 variables, K1 =20 were informative; among n=50 observations, n1 =30 were in one cluster. N represents the number of datasets
identified with ĝ clusters; z1 and z2 represent the average number of deleted informative and noise variables, respectively, among datasets identified
with ĝ clusters.

Table 3. Case II: The averages of the Rand indices and adjusted Rand indices
of PMFAs and PMND for simulated datasets

Method Set-up 1 Set-up 2 Set-up 3 Set-up 4

µ2 =4.5 µ2 =4.5 µ2 =6.0 µ2 =6.0
c=1 c=2 c=1 c=2

RI aRI RI aRI RI aRI RI aRI

PMFA 0.54 0.06 0.61 0.21 0.82 0.64 0.88 0.76
PMND 0.75 0.50 0.73 0.46 0.79 0.57 0.73 0.46

Hence, two or more axis-parallel ellipsoids were needed in PMND
to approximate a non-axis-parallel ellipsoid. Figure 1 shows the
results from a representative dataset for set-up 4. Compared with
Table 2, clearly both PMFA and PMND had improved performance
with a larger sample size.

We also applied the penalized normal mixture model with cluster-
specific diagonal covariance matrices to Set-up 3 (Xie et al., 2008b).
As for PMND, it over-selected the number of clusters, but to a lesser
degree: it selected ĝ=4 for 40 datasets with z1 =0 and z2 =23.0,
while choosing ĝ=5 for the remaining 10 datasets with z1 =0 and
z2 =35.5. The method not only retained more noise variables but
also performed less well with a smaller average Rand index RI =
0.75 and adjusted Rand index aRI =0.52.

We also considered selecting both g and q, rather than fixed q=2
as done before, in PMFA in two simulation set-ups. For the first
one similar to set-up 2, among 50 simulated datasets, for nearly
a half we correctly selected q̂=2 (Table 6). A possible reason for
incorrectly selecting q was that other incorrect q>0 values also led
to good clustering results with high (adjusted) Rand index values.
In a new set-up with more dispersed elements of the loading matrices
B1 and B2 (simulated from two normals with SD=0.6, instead of
SD=0.42 in Set-up 2 of Case III while other aspects remained the

same), implying larger effects of q, we could select q̂=2 correctly
for all 50 datasets.

3.2 Real data
We applied the methods to a gene expression dataset of lung cancer
patients (Beer et al., 2002). The original authors identified a set of
genes that could predict survival in early stage lung adenocarcinoma
and thus discovered a high-risk patient group who might benefit from
adjuvant therapy. The data contained gene expression profiles for 86
primary lung adenocarcinomas, including 67 stage I and 19 stage III
tumors.

To minimize the potential influence of the genes with little or
no expression on any clustering algorithm, we did a preliminary
gene screening by excluding any gene if the 75th percentile of its
observed expression levels was <100. Then we included only the top
300 genes with the largest sample variances across the 86 samples.

We randomly divided the 86 samples into three parts for training,
tuning and testing with sizes 29, 29 and 28 samples, respectively. The
training dataset was used to fit the model, and the tuning dataset was
used to select the tuning parameters. Finally, the selected model was
applied to the test dataset to determine the cluster memberships of
the test samples. For simplicity, we fixed q=2 for MFA and PMFA.

Clustering the data with all the 300 genes simultaneously, MFA
selected only one cluster. Alternatively, we applied a two-step
procedure: as in McLachlan et al. (2002), we first conducted a
univariate gene screening before applying the MFA to the selected
genes. Specifically, we applied a univariate model-based clustering
on each of the 300 genes as implemented in R package Mclust
(Fraley and Raftery, 2007): we fitted a series of normal mixture
models with one to nine normal components, and selected the best
model based on BIC; if a model with more than one component was
selected for a gene, then the gene was retained. When applied to the
training data alone, the screening yielded 190 genes; if applied to
a combined training and tuning dataset, it selected 211 genes. We
applied the MFA with the selected 190 or 211 genes to the training
data, resulting in only one cluster in either case.
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Table 4. Case III: performance of PMFA, MFA and PMND for five simulation set-ups

Method Set-up 0 Set-up 1 Set-up 2 Set-up 3 Set-up 4

µ2 =0,c=0 µ2 =4.5,c=1 µ2 =4.5,c=2 µ2 =6.0,c=1 µ2 =6.0,c=2

ĝ N z1 z2 N z1 z2 N z1 z2 N z1 z2 N z1 z2

1 50 20 80 4 0 34.8 – – – – – – – – –
2 – – – 20 0 46.8 37 0 52.9 29 0 51.8 26 0 53.1

PMFA 3 – – – 26 0 57.9 13 0 58.5 21 0 59.5 24 0 67.7
4 – – – – – – – – – – – – – – –
5 – – – – – – – – – – – – – – –

1 50 0 0 49 0 0 49 0 0 45 0 0 41 0 0
2 – – – 1 0 0 1 0 0 5 0 0 9 0 0

MFA 3 – – – – – – – – – – – – – – –
4 – – – – – – – – – – – – – – –
5 – – – – – – – – – – – – – – –

1 50 20 80 – – – – – – – – – – – –
2 – – – – – – – – – – – – – – –

PMND 3 – – – – – – – – – – – – – – –
4 – – – – – – – – – – – – – – –
5 – – – 50 0 35.3 50 0 30.4 50 0 28.8 50 0 53.4

Among K =100 variables, K1 =20 were informative; among n=100 observations, n1 =60 were in one cluster. N represents the number of datasets
identified with ĝ clusters; z1 and z2 represent the average number of deleted informative and noise variables, respectively, among datasets identified
with ĝ clusters.

Table 5. Case III: The averages of the Rand indices and adjusted Rand
indices of PMFAs, MFA and PMND for simulated datasets

Method Set-up 1 Set-up 2 Set-up 3 Set-up 4

µ2 =4.5 µ2 =4.5 µ2 =6.0 µ2 =6.0
c=1 c=2 c=1 c=2

RI aRI RI aRI RI aRI RI aRI

PMFA 0.94 0.87 0.97 0.94 0.99 0.99 0.99 0.98
MFA 0.53 0.02 0.52 0.02 0.56 0.10 0.60 0.18
PMND 0.75 0.51 0.74 0.48 0.72 0.45 0.71 0.44

We applied the normal mixture model-based clustering, as
implemented in R package Mclust, to the training data with all
the 300 genes simultaneously. Mclust only fits mixture models with
various types of diagonal covariance matrices if the data dimension
is larger than the sample size, as was the case here. It selected a final
model with two clusters with the two diagonal covariance matrices
with varying volume but equal shape (i.e. ‘VEI’ in Mclust notation).
The final selected model was applied to the test data to yield two
clusters; comparing the survival curves for the two clusters, a log-
rank test gave a chi-squared statistic of 2.4 with one degree of
freedom, resulting in a P-value of 0.124.

In comparison, PMFA identified two clusters with 24 and 4
samples, respectively, while PMND chose three clusters. PMFA
retained 258 genes, while PMND kept 276 genes, among which
240 genes appeared in the final models of both PMFA and PMND.
For PMFA, the first cluster contained four patients, two of whom
died early while the other two were censored, and the remaining 24

Fig. 1. Clusters identified by PMFA (right panels) and PMND (left panels)
from a dataset in simulation set-up 4. Three informative variables (X3, X6
and X16) were plotted. The five types of the symbols represent the cluster-
memberships in the five clusters identified by PMND in left panels, while
the two types of the symbols represent the true cluster memberships in right
panels.

patients consisted of cluster 2. For PMND, cluster 1 contained five
patients plus the same four patients as those in cluster 1 of PMFA,
the other two clusters contained 9 and 10 patients, respectively.
With the patient survival data, we plotted in Figure 2 the Kaplan–
Meier survival estimates of the patients in the clusters for PMFA and
PMND respectively. The log-rank test was used to investigate the
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Table 6. Simulation results with PMFA selecting q (and g) in two set-ups

q Set-up 2, Case III New set-up

#(q̂=q, ĝ=g) with (ĝ,q) #(q̂=q, ĝ=g) with (ĝ,q)

g=1 2 3 RI aRI g=1 2 3 RI aRI

0 0 0 0 0.690 0.389 0 0 0 0.774 0.552
1 0 17 9 0.979 0.958 0 0 0 0.973 0.945
2 0 18 5 0.983 0.965 0 31 19 0.994 0.989
3 0 0 1 0.970 0.939 0 0 0 0.984 0.967

RI and aRI were calculated with selected ĝ and fixed q.

Cluster 1
Cluster 2

Cluster 1
Cluster 2
Cluster 3

Fig. 2. Survival curves for the clusters identified by PMFA and PMND for
the lung cancer data.

survival difference between/among the clusters. For PMFA, the test
yielded a chi-squared statistic of 4.4 with one degree of freedom,
resulting in a statistically significant P-value of 0.037. For PMND,
the chi-squared test statistic was 5.5 with two degrees of freedom,
leading to a P-value of 0.063, which is only marginally significant.
This indicated that, compared with MFA and PMND, by accounting
for possible correlations among the genes, PMFA might be more
helpful to uncover the groups of cancer patients with distinct risks
of mortality.

Note that a preliminary variable screening can be helpful even
for a method with the capability of variable selection: in addition to
saving computing time with a simple univariate variable screening,
it can improve predictive performance, as theoretically shown by
Fan and Lv (2008). For example, when the top 450, rather than
300, genes were used in PMFA, there was a less significant survival
difference between the two clusters detected from the test data: the
log-rank test gave a P-value of only 0.145.

4 DISCUSSION
We have proposed a new model-based clustering method, a PMFAs,
to model non-diagonal cluster-specific covariance matrices. PMFA

generalizes the usual MFAs via regularization, which can effectively
realize variable selection in clustering high-dimensional data, in
addition to regularizing parameter estimates and its associated
benefits. Simulation studies and a microarray gene expression data
application have demonstrated the utility of the proposed method
and its superior performance over MFA and penalized model-based
clustering with a common diagonal covariance matrix. Although
the current implementation of the EM algorithm for PMFA is
straightforward, it is computationally demanding, especially with
the choice of the tuning parameters by a grid search. More efficient
algorithms and model selection criteria will be helpful. Other
possible extensions of PMFA include the following. First, although
we only considered the L1 penalization of mean parameters, other
penalties, such as a grouped penalty (Wang and Zhu, 2008; Xie et al.,
2008a) as for the loading matrix parameters considered here, can be
applied. Second, it is natural to consider using general covariance
matrices in the mixture model. In Zhou et al. (2009), we embed
an unconstrained covariance matrix estimation procedure in the EM
algorithm. Although the use of an unconstrained covariance matrix
is more flexible than the PMFA approach, it may lose efficiency if
some latent variable-induced covariance assumption holds as in the
PMFA approach; numerical comparisons are needed.
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