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ABSTRACT

Motivation: Copy number alterations (CNAs) associated with cancer

are known to contribute to genomic instability and gene deregulation.

Integrating CNAs with gene expression helps to elucidate the

mechanisms by which CNAs act and to identify the transcriptional down-

stream targets of CNAs. Such analyses can help to sort functional driver

events from the many accompanying passenger alterations. However,

the way CNAs affect gene expression can vary in different cellular

contexts, for example between different subtypes of the same cancer.

Thus it is important to develop computational approaches capable of

inferring differential connectivity of regulatory networks in different cellular

contexts.

Results: We propose a statistical deregulation model that integrates

copy-number and expression data of different disease subtypes to jointly

model common and differential regulatory relationships. Our model

not only identifies copy-number alterations driving gene expression

changes, but at the same time also predicts differences in regulation that

distinguish one cancer subtype from the other. We implement our model

in a penalized regression framework and demonstrate in a simulation

study the feasibility and accuracy of our approach. Subsequently, we

show that this model can identify both known and novel aspects of

cross-talk between the ER and NOTCH pathways in ER-negative-specific

deregulations, when compared with ER-positive breast cancer. This

flexible model can be applied on other modalities such as methylation

or microRNA and expression to disentangle cancer signaling pathways

Availability: The Bioconductor-compliant R package DANCE is available

from www.markowetzlab.org/software/

Contact: yinyin.yuan@cancer.org.uk, florian.markowetz@cancer.org.uk

1 INTRODUCTION

Somatic copy number alterations (CNAs) are known to be

associated with cancer (Pollack et al., 1999, 2002). They are

particularly important for tumourigenesis, contributing to genomic

instability and gene deregulation. Array comparative genomic

hybridization (aCGH) has been used extensively to assess genome-

wide copy number states in cancer, and statistical methods can

be used to identify recurrent alterations in a particular disease

state or subtype (Pollack et al., 1999, 2002; Chin et al., 2006,

2007). However, while some CNAs are driver mutations that are

functionally important and impact tumour progression, they are

often accompanied by numerous passenger events that confer no

selective growth advantage (Pollack et al., 2002; Greenman et al.,

2007). One of the challenges in cancer genomics is to identify

functional driver events amidst many passenger alterations.

To better understand the mechanisms by which CNAs influence

disease progression, it is necessary to integrate copy-number data

with an intermediate phenotype like gene expression (Chen et al.,

2008). Integrating CNA data and RNA expression data can discover

the primary aberrations that lead to downstream changes (Chin

et al., 2006). However, this is a challenging task for several reasons:

First, CNAs can influence the expression of the proximal genes

within a several Mb window (cis-acting), but can also exert effects

elsewhere throughout the genome (trans-acting). Second, CNAs can

span several Mb and thus make it difficult to distinguish between

driver genes and passenger genes in this region. Thus, there is a need

for new efficient computational approaches to refine the location of

drivers.

While describing the regulatory role of CNAs for gene expression

is already a difficult task, it is only the first step needed in

understanding how tumours differ from normal tissue and how

regulatory relationships vary between different disease subtypes.

Cancer is triggered by collaborating factors and deregulated

genes acting through signaling pathways are relevant for tumour

growth and survival (Vogelstein and Kinzler, 2004). Several known

examples of pathway deregulation result in aberrant signaling,

the inhibition of apoptosis, and increased cell proliferation (Adjei

and Hidalgo, 2005). Components in the deregulation network

of signaling pathways represent attractive targets for therapeutic

purpose (Watters and Roberts, 2006). A better understanding of the

impact of CNAs on pathway activity and its variation in different

cancer subtypes would be a major step forward in molecular

medicine.

Many experimental and computational approaches have been

proposed to identify the deregulation of cellular components,

such as tumour suppressor silencing or oncogene activation, that

contribute to tumour development, based on gene expression

(Alizadeh et al., 2000; Golub et al., 1999; West et al., 2001; Huang

et al., 2003; Rhodes et al., 2004; Segal et al., 2004; Hummel et al.,

2006; Bild et al., 2006; Furge et al., 2007; Slavov and Dawson,

2009). All of these works are important steps in this field, however,

many different regulatory events are reflected in gene expression,

including the activity of transcription factors, small non-coding

RNAs, as well as gene dosage. From microarray expression data

alone it is very hard to decide which of these resulted in the observed

expression change.
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Investigating changes in regulatory relationships between copy-

number alterations and gene expression in different cancer subtypes

has seldom been explored. While there is an increasing number of

methods that integrate DNA copy number data and RNA expression

data (Chin et al., 2006, 2007; The Cancer Genome Atlas Research

Network, 2008; Akavia et al., 2010), most methods that compare

cancer subtypes are geared towards supervised classification of

tumour samples (Daemen et al., 2009; Horlings et al., 2010). Only

few integration methods address the topic of differential regulation:

One example is a bivariate approach by Schäfer et al. (2009)

to search for abnormalities jointly at the DNA/RNA level. The

abnormalities represent strong deviations from the reference, e.g.

the amplification of a genomic region and over-expression of the

proximal gene. Another example (that we compare against on

real data) is DRI (Salari et al., 2009), which can discover joint

aberrations between two sample classes in paired copy-number and

expression data. Both methods are computationally efficient, but

are restricted to paired expression and CNA profiles on individual

genes. In other words, these two methods can only infer cis-effects.

Here, we present DANCE (Deregulation Analysis in Networks

of Copy-number driven Expressions) a systematic approach to

decipher both common and differential regulatory mechanisms

between disease subtypes. We propose a statistical deregulation

model that integrates copy-number and expression data to jointly

model common and differential regulatory relationships. Our model

not only identifies CNAs driving gene expression changes, but at

the same time also predicts differences in regulation that distinguish

one cancer subtype from the other. Using one subtype as a reference

we summarize the differential regulatory relationships of the other

subtype in a deregulation network. To our knowledge, it is the first

model to integrate both copy number and expression data to discover

changes in the regulatory architecture between cancer subtypes.

The next section introduces our model, which, in a simulation

study over a range of different experimental settings, outperforms

alternative models and competing methods. Following, we use

DANCE to study the deregulation between Estrogen Receptor (ER)

positive and negative breast cancer (Chin et al., 2006), which

represent relatively good and poor outcome groups, respectively.

While DANCE is able to tackle high-dimensional problems, to

add interpretability we focus our analysis on signaling pathways.

In particular, we are interested in the cross-talk between NOTCH

and ER pathways, which may guide decisions about patients likely

to benefit from Notch inhibitors. The results show that DANCE

uncovers and extends known aspects of differential ER-Notch cross-

talk in ER-positive versus negative disease. Thus, it can be a useful

approach to infer critical aspects of pathway deregulation amongst

cancer subtypes.

2 A JOINT MODEL FOR DEREGULATION

Let us assume that we have copy number data for p independent

probes or regions X = {x1, x2, ..., xp} and mRNA expression data

for q probes or genes Y = {y1, y2, ..., yq}, where each vector xi, y j

is a collection of n observations from n different individuals or

samples. Let us also suppose that the n individuals can be divided

into two groups, n1 samples from sample class 1 and n2 samples

from sample class 2. We denote as X1(n1 × p matrix) and Y1(n1 × q)

the observations from class 1, the deregulated sample class and as

X2(n2 × p) and Y2(n2 × q) the observations from sample class 2; that

is the reference sample class.

Our goal is to integrate the two data types, X1, X2 and Y1, Y2 into

a model where the predictors are the copy number data (X1, X2) and

the responses are the expression data (Y1, Y2). We assume that the

expression of a particular gene can be affected by the copy number

of an arbitrary set of copy number regions, but the impact of this

influence can differ between the two groups. We can summarize the

relationship with the following equations:

Y1 = X1Br + X1Bd + ǫ1

Y2 = X2Br + ǫ2 (1)

where Br(p× q) and Bd(p× q) denotes the reference and differential

structure in the data respectively, and ǫ1 and ǫ2 are Gaussian

noise with distribution of N(0, I). We assume, without loss of

generality, that both copy number and expression have been

previously centered around zero.

Parallel estimation model We can estimate the two networks

independently and obtain the deregulation B̂d subtracting one from

the other. That is,

Y1 = X1B1 + ǫ1,

Y2 = X2B2 + ǫ2, (2)

B̂d = B̂1 − B̂2

A similar model using only expression data has been used by Zhang

et al. (2008) to study changes in transcriptional networks between

two experimental conditions.

Sequential estimation model Alternatively, we can first infer the

reference network and secondly use this estimate to infer the

deregulation matrix Bd based on equation 2:

Y2 = X2B2 + ǫ2,

Y1 = X1B̂2 + X1B1 + ǫ1, (3)

B̂d = B̂1.

Joint estimation model Eq.1 can be combined into one equation:

[

Y1

Y2

]

=

[

X1 X1

X2 0

] [

Br

Bd

]

+

[

ǫ1

ǫ2

]

, (4)

which can be written as

Ỹ = X̃B̃ + ǫ̃, (5)

if we denote

[

Y1

Y2

]

as Ỹ ,

[

X1 X1

X2 0

]

as X̃,

[

Br

Bd

]

as B̃ and

[

ǫ1

ǫ2

]

as ǫ̃ ∼

N(0,Σq). That is, the variance for each gene can be different. This

estimation scheme improves over the parallel and the sequential

methods, because it uses all the data for the estimation of all of the

parameters and does not propagate errors in subsequent steps, as the

sequential method does. The simulations in section (3.1) also reveal

this advantage.

The matrix of coefficients B̃ has a simple biological interpretation:

each term b̃i j indicates whether a predictor x̃i in X̃ is interacting

with a response variable ỹ j in Ỹ , that is, if the copy number of a

particular probe or region has an influence on the expression of a

particular gene. The sign of this coefficient indicates if this effect

is positive (gains produce up-regulation) or negative (gains produce

down-regulation).
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Fig. 1. Simulation results for learning the non-zero coefficients/edges in the deregulation network over 100 runs. For simulated data sets of different sample

sizes, number of copy number/expression probes (p) and noise levels, all methods were given prior knowledge of number of true edges in the networks hence

recall curves are not necessary. (a) Comparing joint, parallel, and sequential models using L1-regression. The joint model (DANCE, grey) performs best with

only 50 samples, although the performances of three models are close for the 500 sample sets. (b) Comparing different network inference methods. DANCE

(grey) has the best overall performance.

In a typical dataset, the number of variables will be much larger

than the number of individuals, therefore the three models defined

above can be solved with any regression method able to cope with

such a scenario. In the next section we compare two widely used

methods, namely, the Gaussian Graphical Model (GGM) (Schäfer

and Strimmer, 2005b) and the Partial Least Squares approach (PLS)

(Pihur et al., 2008). GGM employs a shrinkage estimator of the

covariance matrix to infer partial correlations among hundreds of

variables. This approach is designed to recover large networks from

datasets with small sample size by multiple testing of the edges

based on the local false discovery rate to detect those significant

in the network. PLS is also a powerful tool in inferring relations

between many variables with high efficiency.

Alternatively, B̃ can be obtained by providing a sparse solution

for every b̃j through regression on every response variable ỹ j with L1

regularization (Tibshirani, 1994), also known as lasso. L1-regression

has been applied to genome-wide association studies to delineate

causal SNPs in disease (Wu et al., 2009; Shi et al., 2007), and

is particularly useful in situations where the number of predictors

far exceeds the number of samples (Tibshirani, 1997). The lasso

estimator for our model is given by optimizing the following

objective function:

argmin
b̃j

∥

∥

∥ ỹ j − X̃b̃j

∥

∥

∥

2
+ λ j

∥

∥

∥b̃j

∥

∥

∥

1
, (6)

where λ j is the regularization parameter controlling the sparsity

and strength of regularization. When λ j is increased the number

of non-zero values in b̃j is reduced, so the matrix of coefficients

is more sparse. It is a difficult to select a priori a value for λ j,

therefore we use cross-validation within a range of possible values

for the parameter using the penalized package (Goeman, 2009) with

a matrix wrapper in the lol package in R, on which DANCE is based.

Subsequently, we fit an ordinary least square regression with the

non-zero coefficients, and select only the coefficients with p-value

lower than 0.05. This is to exclude non-zero coefficients that are not

significantly different from zero.

After choosing an optimal λ j value for every expression response,

we compute the lasso solution by solving Eq.6 and obtain the

coefficient matrix B̃. Because of the L1-constraint in lasso, this

matrix will be sparsely populated and many coefficients will be

zero. The sub-matrix Bd of B̃ represents the deregulated interactions

between the copy number predictors and transcriptional responses.

The joint model with and sparse solution that we propose in DANCE

is subsequently validated with both simulated and biological data.

3 EXPERIMENTS ON SIMULATED DATA

We use simulated data to show that the joint model outperforms

the sequential and parallel models, and that L1 inference is more

accurate than other alternatives.

We generated simulated datasets with the number of predictors p

varying from 50 to 1000 to observe the effects of predictor numbers

on accuracy. The number of responses q was fixed at 10, which

would not affect the inference results as the inference for each

response is carried out independently. The sample size n for both the

reference and deregulated sample group was tested at 50 and 500.

Although for a single cohort n = 50 is closer to the real scenario,

with combined data sets from multiple studies n = 500 is also

possible. We also added Gaussian noise N(0, σ2) to the simulated

data with noise level σ varied from 0.2 to 0.8, as appears in Fig.1. A

sparse reference network Br was randomly generated with p−4×q×3

edges/non-zero coefficients. This is to ensure each response has a

reasonable number of regulators. Then, the deregulation network Bd

was generated with a set of non-zero coefficients composed by p−4×

q edges. All coefficients were randomly sampled from N(0, I). By

allowing overlaps between Br and Bd , we assume that deregulations

occur as a result of changes in the strength of interactions in the

reference network as well as due to new interactions. Let X1, X2
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follow multivariate Gaussian ∼ N(0,Σ) each with p variables of

n samples, where Σ is the covariance matrix where Σi j = 0.2|i− j|

to introduce similarities to adjacent variables – a feature of copy

number data. Let Y2 and Y1 then be defined as Y2 = X2Br and

Y1 = X2(Br + Bd). Finally, for each combination of parameters, 100

replications of the simulations were run incorporating a Gaussian

noise to Y1,Y2 with different noise levels.

3.1 One-step model versus two-step models

Fig. 1(a) shows the results of L1-regression applied to the joint,

parallel and sequential models. The performance of each of them

is measured by precision with respect to the non-zero coefficients

estimated in the deregulation network Bd. First, we found that with

small sample size (n = 50), the joint model (Eq.5) yields consistently

more accurate results than the parallel (Eq.3) and sequential models

(Eq.4) which learn two structures separately. Not surprisingly, we

observed low accuracies for all models with 1000 predictors because

of the small sample size. With large sample size 500, all models

perform reasonably well, which is also expected.

3.2 Deregulated structure learning with simulated data

Now we turn to the problem of comparing different network

inference methods for estimating the deregulation network using the

joint model. We selected two existing methods that are applicable

to the small sample and large scale problem: a Gaussian Graphical

Model (GGM) and the Partial Least Squares approach (PLS), and

compared them with L1 regularization. Precision curves for the

inference results are given in Fig.1(b), which correspond to the

accuracy of each method in detecting non-zero coefficients in the

true deregulation network Bd. Again, recall curves are not necessary

as the number of true edges are given to all methods as prior

knowledge. The results for PLS when p = 1000 and n = 500 are

missing, because for PLS these data sets are too computationally

intensive. Again, we expect low performance for all methods when

the sample size (n=50) is far smaller than the number of predictors

(p=1000), which suggests that in this scenario network inference

is unlikely to yield reliable results. In all other cases, DANCE

outperforms the other two methods.

4 ER DEREGULATION IN BREAST CANCER

In this section we demonstrate the effectiveness of the proposed

DANCE method on real data using Chin et al. (2006) breast cancer

dataset, which consists of 89 samples assayed for both mRNA

expression and DNA CNAs. The dataset includes 55 ER positive and

34 ER negative samples and thus facilitates a study of deregulation

between these two major subclasses of breast cancer. It is known

that ER negative breast cancer has worse prognosis than ER positive

breast cancer in the early stage, and they appear to be different

diseases (Chin et al., 2007). Therefore it is important to understand

which molecular components contribute to the deregulation between

ER positive and ER negative status.

4.1 DANCE points to ER-NOTCH cross-talk

First, we applied both DANCE and DRI to this dataset to

compare their utility to integrate genomic and transcriptomic

data. Interestingly, notch signaling has been implicated in

adenocarcinoma development in the mouse mammary gland

following pathway activation and the diminished expression of

NUMB, a negative regulator of the Notch pathway, in as many as

50% of breast cancer samples (Stylianou et al., 2006; Rizzo et al.,

2008). Here, we examine the results of DANCE and DRI as applied

to these two important pathways in breast cancer.

Technical details We employed a set of 50 genes involved in the ER

(based on GO) and Notch (based on KEGG) signaling pathways

to assess the ability of DRI and DANCE to uncover meaningful

properties of this pathway in the Chin dataset.

As noted in the Introduction, DRI is an integrative tool that aims

to identify expression changes decoupled by DNA aberrations under

two conditions based on a paired t-test, when both expression and

copy number data are available for the same sample. The output is

a list of genes altered between two conditions, with the associated

confidence given by a significance score. Since it requires pair-wise

comparison, the 50 genes were mapped to 48 unique copy number

BAC probes and 107 Affymetrix expression probes. As input to the

DRI R package, 48 BAC copy number probes were paired with 107

expression probes, resulting in 107 paired data points.

In contrast, DANCE is based on L1-regression of 48 BAC probes

on all 107 expression probes. L1-regression is a prominent method

in high-dimensional studies due to its efficiency in performing

sparse statistical inference in the small-sample (small n), but large-

scale (large p) setting (Tibshirani, 1997). Note that for DANCE

the reference sample class was taken to be the set of ER positive

samples, whereas the deregulated class consisted of ER negative

samples.

Inference results For the DRI output, we observed a gap between

an FDR (FAlse Discovery Rate) cutoff of 0.3 and 0.35 in that few

genes were identified with FDR < 0.3, but a significant increase

was seen for an FDR > 0.3 and < 0.35. Hence an FDR of 0.3

was selected for this study. Using an FDR cutoff of 0.3, 9 probes (6

genes, NCOA3, ESR2, EGLN2, PSENEN, ESR1, DVL1) were found

to be significantly altered between ER positive and ER negative

conditions at both the DNA and RNA level.

Instead of merely a list of genes, DANCE is capable of inferring

the deregulation network in the ER-Notch pathways as shown in

Fig. 2. The deregulation network represents an aberrant situation

where copy number and expression are coordinately deregulated in

a particular context, such as between ER positive and ER negative

disease. Here, an edge traverses from a node representing the

influence of copy number of a particular gene to a node representing

the expression of another gene to indicate potential regulatory

interactions. The genes denoted under the Copy number heading

correspond to copy number nodes in the deregulation network and

represent the source node, whereas genes under the Expression

heading, represent the expression nodes and are the indirect or direct

downstream targets of copy number events. The count indicates the

number of times a gene appears in the network, which may result

either from multiple probes targeting the gene or else from multiple

interactions involving that gene.

Comparing the two sets of genes, it is reassuring that ER-related

genes such as ESR1 and NCOA3 are identified by both methods.

However, the result from DANCE include several important genes

implicated in tumourigenesis that are not obtained using DRI

(Fig. 2).

Not surprisingly, a central component of the deregulated network

in ER negative versus ER positive breast cancer is the estrogen

receptor alpha, ESR1. More specifically, the deregulation network
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Copy-Number Count Coef Chr Band Probe Description

HDAC2 3 0.493 6 q22.1 RP11-51N24 histone deacetylase 2

STRN3 3 0.393 14 q12 RP11-48L1 nuclear autoantigen

NOTCH3 2 0.287 19 p13.12 RP11-107O2 Notch homolog 3 

DTX3 1 0.181 12 VYS12P2692 ESTs, Highly similar to  Deltex3 

ESR1 1 0.173 6 q25.1 RP11-20H19 estrogen receptor 1

ADAM17 1 0.139 2 p25.1 RP11-185P14 a disintegrin and metalloproteinase domain 17 (tumor necrosis factor, 

alpha, converting enzyme)

MLL2 1 0.132 3 q12 CTD-2014B13 trinucleotide repeat containing 21

EP300 1 0.131 22 q13.2 RP11-206B19 E1A binding protein p300

NOTCH2 1 0.128 1 p12 RP11-29M22 Notch homolog 2 

MAML1 1 0.121 5 q35.3 RP11-51D11 Histone methyltransferase. Methylates 'Lys-4' of histone H3;  Acts as a 

coactivator for estrogen receptor by being recruited by ESR1, thereby 

activating transcription

CREBBP 1 0.121 16 p13.3 RP11-380F1 encodes a gene with intrinsic histone acetyltransferase activity and also 

acts as a scaffold to stabilize additional protein interactions with the 

transcription complex

RBPJL 1 0.118 20 q13.12 RMC20P100 recombining binding protein suppressor of hairless (Drosophila)-like

JAG1 1 0.118 20 p12.2 CTC-334G22 Ligand for the NOTCH1 receptor

NCSTN 1 0.113 1 q23.2 RP11-97G24 nicastrin

RBM14 1 0.11 11 q13.1 RP11-527H7 RNA binding motif protein 4

RARA 1 0.109 17 q21.2 RMC17P034 retinoic acid receptor, alpha

MFNG 1 0.108 22 q13.1 RP11-35I10 manic fringe homolog 

Expression Count Coef Chr Band Probe Description

ADAM17 3 0.379 2 p25.1 205745_x_at a disintegrin and metalloproteinase domain 17 (tumor necrosis factor, 

alpha, converting enzyme)

NCOA3 2 0.317 20 q13.12 211352_s_at nuclear receptor coactivator 3

NCOA3 2 0.315 20 q13.12 209061_at nuclear receptor coactivator 3

ESR1 2 0.302 6 q25.1 205225_at estrogen receptor 1

RARA 2 0.295 17 q21.2 211605_s_at retinoic acid receptor, alpha

RARA 2 0.227 17 q21.2 203749_s_at retinoic acid receptor, alpha

MLL2 1 0.173 3 q12 216845_x_at trinucleotide repeat containing 21

NCOA3 1 0.136 20 q13.12 209060_x_at nuclear receptor coactivator 3

RBM9 1 0.132 22 q13.1 216215_s_at Repressor of tamoxifen transcriptional activity

RBPJ 1 0.128 11 p13 211974_x_at Transcriptional regulator of the Notch pathway; suppressor of hairless 

homolog

NOTCH1 1 0.125 9 q34.3 218902_at Notch homolog 1 

NCOA3 1 0.125 20 q13.12 207700_s_at nuclear receptor coactivator 3

CTBP1 1 0.11 4 p16.3 213980_s_at encodes a protein that binds to the C-terminus of adenovirus E1A proteins. 

This phosphoprotein is a transcriptional repressor and may play a role 

during cellular proliferation

DTX3 1 0.109 12 q13.3 221835_at ESTs, Highly similar to  Deltex3

ADAM17 1 0.104 2 p25.1 213532_at a disintegrin and metalloproteinase domain 17 (tumor necrosis factor, 

alpha, converting enzyme)

Fig. 2. DANCE infers a deregulation network showing the cross-talks between ER and NOTCH pathways. Blue nodes correspond to genes in the ER pathway

while yellow denotes NOTCH pathway. Directed edges origin from the copy number instances of the genes and points to the expression instances of the genes.

indicates the differential regulation of ESR1 by CREBBP, DTX3,

RARA. It is significant that this relationship is recovered since it is

well known that estrogen receptor (ER)-positive breast cancer cells

are hormonally regulated and are inhibited by retinoids, whereas

ER-negative breast cancer cells are generally not (Rosenauer et al.,

1998). The retinoic acid receptors (RARs), including RARA, are

members of the steroidthyroid hormone receptor gene family and

are ligand-dependent transcription factors, which exhibit growth

inhibitory activity against breast cancer cells (Zarubin et al., 2005).

Interestingly, increased RBPJ-dependent Notch signaling has

been shown to result in the transformation of normal breast

epithelium via the inhibition of apoptosis (Stylianou et al., 2006).

Here we show that RBPJ is deregulated in ER negative disease as a

result of aberrations in NOTCH2 copy number as are several other

downstream components of the Notch signaling pathway, including

NOTCH3 which coordinately influences NCOA3 expression levels

along with HDAC2 and NCSTN. Moreover, NOTCH3 has been

shown to play a crucial role in the proliferation of ErbB2-negative

human breast cancers, which may represent a subset of cases. One

means by which this might be effected is through alterations in

NCOA3 expression levels since siRNA depletion of NCOA3 has

been shown to increase apoptosis and reduce ESR1 transcriptional

activity in the MCF-7 breast cancer cell line (Karmakar et al., 2009).

Finally, recent studies have identified cross-talk between the

estrogen receptor and notch signaling pathways, and suggest novel

therapeutic approaches (Rizzo et al., 2008). These studies indicate

that estrogen inhibits NOTCH1 activity by altering its cellular

distribution and suggests that estrogen affects a step of Notch

activation distal to ligand binding and directly or indirectly inhibits

Notch cleavage. In agreement with these findings, DANCE reveals

that although JAG1 is frequently over-expressed in cancer (Reedijk

et al., 2005) potentially as a result of amplification, it does not

influence NOTCH1 expression. Rather, it may act downstream to

modulate the expression of the matrix metalloproteinase, ADAM17,

which in turn modulates Notch cleavage. Thus DANCE is able to

infer known aspects of cross-talk deregulation in ER-positive versus

negative disease in the absence of prior information, indicating

its utility in recovering relevant aspects of differential pathway

activation in subtypes of disease.

To further examine several of the key pathway components

highlighted above, we compared the correlation between the

expression profiles of these genes and the copy number states of

their putative upstream effectors (based either on pathway structure

or the output of DANCE). The expression level of each of these

genes was also examined for the ER positive (black) and ER

negative (red) subgroups Fig.3.

Here we observe that STRN3 copy number is significantly

correlated with NOTCH1 expression in ER negative cases only.

Note that while the method does not distinguish between direct and

indirect effects, the two genes are located on different chromosomes
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Fig. 3. Expression profiles of selected expression targets and their changes in correlations with their copy number regulators, as inferred by DANCE. The

expression profiles of the genes denoted are also plotted separately for the ER positive cases (black) and ER negative cases (red). The correlation between

the expression profiles of the genes denoted and the copy number profiles of upstream regulators are shown as barplots for the ER positive cases (black), ER

negative cases (red), and all cases (grey). The expression profiles show that these genes should be ER-modulated, while the barplots suggest that the differential

regulations may exist between ER subtypes.

and hence represents trans-regulation. We also observe that ESR1

expression levels are substantially lower in ER negative disease, and

are positively correlated with STRN3 copy number and negatively

correlated with EP300 and MFNG copy number in ER negative,

whereas ER positive samples do not exhibit significant correlation

with any of the putative regulators, suggesting differential regulatory

mechanisms are at play. We note that several of these target genes

were not identified as being deregulated using the DRI approach,

which only considers cis-effects. Despite the fact that the trans-

effect of CNAs are often ignored, they represent an important

mode of regulation. In summary, we not only confirm some of

our observations with the literature, but also observe additional

relationships of potential relevance.

5 DISCUSSION

The last few years have yielded an increase in the number of

datasets which include multiple genomic measurements on the

same sample and this will likely be a trend for sometime to

come. However, there are presently limited tools that facilitate

the integration of diverse data types. Furthermore, we are not

aware of any method that attempts to infer patterns of deregulation

resulting from copy number aberrations or expression alterations

between groups of samples. The proposed DANCE model is based

on a simple, yet powerful framework that benefits from a sparse

solution for inference of network deregulation and with several

key strengths. First, gene expression changes are interpreted in the

context of both cis- and trans- copy number effects. Additionally,

coordinated deregulation of expression and copy number is not

restricted to pairs but is open to global search, making it possible

to detect concomitant changes in signaling cascades. Finally, the

model facilitates a sparse solution resulting in clearly interpretable

deregulation network structure, thus minimizing the inference error.

Recent approaches have focussed on transcriptional deregulation

visible as changes in the co-expression of groups (mostly pairs) of

genes (Mentzen et al., 2009; Mo et al., 2009; Slavov and Dawson,

2009; Xu et al., 2008; Kostka and Spang, 2004). Examining sets

of differently expressed genes and successive functional analysis of

these sets (e.g. by finding enriched pathways) help point to putative

deregulated pathways across several types of cancer (Bild et al.,

2006; Edelman et al., 2008; Liu and Ringnér, 2007). As mentioned

in the introduction, relying on single data source restricts our

view of the complicated biological processes underlying cancer. We

emphasize that integrating different data sources helps to circumvent

this problem and allows the identification of candidate drivers of

gene expression changes.

We have set the deregulation inference in the context of pathways

because there is often redundancy between signaling components,

and an understanding of pathway regulation is essential for the

development of targeted therapeutics. DANCE identifies pathway

components that are differentially regulated in specific cellular

contexts such as tumour subgroups, as demonstrated above. Such

an approach is also extensible to experiments in which a particular

pathway component has been perturbed via either knockdown or

over-expression, making it a useful method in hypothesis driven

studies. In summary, DANCE is computationally efficient and

represents a promising tool for the integration of large-scale multi-

dimensional genomic datasets.
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