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Abstract

A recent topic of much interest in causal inference is model selection. In this article, we describe a 

framework in which to consider penalized regression approaches to variable selection for causal 

effects. The framework leads to a simple ‘impute, then select’ class of procedures that is agnostic 

to the type of imputation algorithm as well as penalized regression used. It also clarifies how 

model selection involves a multivariate regression model for causal inference problems, and that 

these methods can be applied for identifying subgroups in which treatment effects are 

homogeneous. Analogies and links with the literature on machine learning methods, missing data 

and imputation are drawn. A difference LASSO algorithm is defined, along with its multiple 

imputation analogues. The procedures are illustrated using a well-known right heart 

catheterization dataset.
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1. Introduction

In many medical and scientific studies, investigators are interested in making causal 

statements about the effect of a treatment on outcomes. For a well-designed randomized 

study, we assume that any covariates that may influence the outcome have the same 

distribution among different treatment groups. Consequently, the treatment is the only factor 

that may cause differences in the outcome. However, in an observational study, if the 

treatment assignment is not randomized, there usually exists a set of confounders that may 

influence both the outcome and the treatment assignment. In this case, any causal inference 

failing to account for the confounders will lead to biased estimates of the treatment effect.

A very popular framework for causal effects is the potential outcomes model [1, 2]. This 

framework formulates counterfactual random variables that represent the outcome variable 

under the hypothetical treatments of interest for each individual. Causal estimands are then 

defined based on the contrasts between the within-individual counterfactuals. Because the 
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intervention of interest is typically not randomized in observational studies, further 

modelling is required for proper estimation of causal effects. Many approaches exist in the 

literature, including g-estimation [3], matching [4], double-robust estimation [5] and inverse 

probability weighted estimation [6]. One key quantity in causal modelling is that of 

propensity scores [7]. This quantity is defined as the probability of the treatment given 

covariates. Based on the estimated propensity scores, a variety of modelling strategies can 

be used to estimate causal effects; a good summary of them can be found in [8].

A question of much recent interest is that of how to select variables to use for the estimation 

of causal effects. This is keeping in line with the interest in penalized regression approaches 

in the statistical literature (e.g., [9, 10]). Many approaches for variable selection in causal 

inference have been described recently. A proposal from Hirano and Imbens [11] is to 

consider predictors based on univariate tests in both the propensity score model as well as 

the mean outcome models. Simulation evidence presenting the importance of variable 

selection was provided in [12]. Model averaging approaches for causal effects have been 

advocated by several authors [13, 14, 15]. An algorithmic approach in which cross-

validation is used to select the optimal model for causal inference has been developed by 

Brookhart and van der Laan [16]; this is also related to the general targeted learning 

framework that has been summarized in the recent monograph by van der Laan and Rose 

[17]. For the causal graphical modelling framework of Pearl [18], which is based on directed 

acyclic graphs, Bühlmann et al. [19] proposed the use of a high-dimensional screening 

technique for variable selection.

The approach taken in this paper is based on the original LASSO proposal from [9] and 

explicitly makes use of the predictive nature of the causal inference problem. By prediction, 

we mean that we treat the problem of estimating causal effects as a missing data problem 

and use the predictive distribution of the missing data given the observed data to ”fill in” the 

missing potential outcomes. This naturally lends itself to the use of techniques from the 

multiple imputation literature [20]. The prediction point of view is discussed in §2.3. This 

will lead us to an application of what has been termed the predictive LASSO [21] for 

performing variable selection in the potential outcomes model. The structure of this paper is 

as follows. In Section 2, we describe the observed data and review the potential outcomes 

framework. We also describe the conceptual flaws in applying off-the-shelf variable 

selection procedures to attempt to perform proper causal inference. The concept of 

predictive LASSO, as discussed in [21], is described. Section 3 features adaptation of this 

idea to the causal inference problem. It is seen there that effectively, the variable selection 

problem is for a multivariate response variable. This leads to a novel LASSO innovation, the 

difference LASSO. The difference LASSO and its extensions can be used to determine 

treatment effect heterogeneity in a given dataset. Extensions to this procedure, inspired by 

multiple imputation, are described in §3.2. Some numerical examples to illustrate the 

methodology are given in Section 4. Some discussion concludes Section 5.
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2. Preliminaries

2.1 Review of potential outcomes framework

We define T to be the treatment indicator that takes values zero and one. The random 

variables {Y (0), Y (1)} are the potential outcomes for the subject under T = 0 and T = 1, 

respectively. What we observe is Yi ≡ Yi(Ti) (i = 1, …, n), which implies that Y (0) and Y (1) 

can not be observed simultaneously, i.e. one of them is missing. Two parameters of interest 

are the average causal effect:

(1)

and the average causal effect among the treated:

(2)

In an observational study, the vector of covariates X could be related to both the outcome 

and the treatment assignment. Since both T and the potential outcomes {Y(0),Y(1)} are 

affected by X, the independence of treatment and the potential outcomes will not hold. This 

is the situation of confounding and is quite common in epidemiological studies. An 

important assumption made by Rosenbaum and Rubin [7] that allows for proper causal 

inference in non-randomized observational studies is called strongly ignorable treatment 

assignment:

(3)

This assumption says that treatment assignment is conditionally independent of the set of 

potential outcomes given the covariates. In other words, conditioning on the same value of 

X, we can pretend that the observed outcomes are from a randomized trial. However, 

conditioning on a p-dimensional vector suffers from the “curse of dimensionality”, 

especially when the dimension is high. Rosenbaum and Rubin [7] further proposed the 

concept of propensity scores, which is defined as the probability of receiving the treatment 

given the covariates: e(X) ≡ P(T = 1|X). Rosenbaum and Rubin [7] show that if (3) holds, 

the following property is also true:

(4)

Since e(X) is a scalar quantity, Rosenbaum and Rubin [7] argue that this greatly facilitates 

the causal inference problem due to a reduction in dimension.

2.2 Variable selection in models: some intuition

In this section, we discuss from an intuitive viewpoint why the problem being addressed 

cannot be easily handled using existing regression-based variable selection methods. As has 

been alluded to earlier, there are typically two models being fit: one for the propensity score, 

and one for the mean outcome. In practice, regression models are fit for propensity score 

estimation, as well as to the mean outcome model in which the propensity score is 

accommodated using one of the approaches described in [8].
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Figure 1 shows the case of two populations arising from a mixture of normal distributions. 

Here, there is one confounder. It is distributed as N(0, 1) in the T = 0 group and N(2, 1) in 

the T = 1 group. If we were to find the classifier based on X that separates the T = 1 and T = 

0 group, it seen from Figure 1 that there is relatively limited covariate overlap between the 

two treatment groups, which is a violation of the common support condition [7]. For 

example, when X < −2 or X > 4, the estimation of Y (1) − Y (0) will be completely based on 

extrapolation. Intuitively, the criterion for optimization in the propensity score model does 

not match up to the ultimate scientific goal, which is “good” estimation of causal effects. 

This suggests that variable selection for the propensity score model is not sufficient for good 

causal effect estimation.

Similarly, if we were to perform variable selection of the mean outcome model, then this has 

problems as well. It represents the scientific model of interest and is intended to identify the 

causal estimands of interest. Performing variable selection on this model has problems in 

that different combinations of variables will correspond to different mean outcome models, 

which naturally will change the scientific question of interest. This discussion is intended to 

explain why model/variable selection will not be straightforward in the potential outcomes 

framework.

2.3 Potential outcomes and prediction

With the assumptions described in §2.1, we can characterize the joint distribution of the 

counterfactuals. An alternative approach would be to begin with regression models for the 

potential outcomes, such as the structural nested mean models (SNMs, [22]) or marginal 

structural models (MSMs, [23]). Note that SNMs and MSMs refer to model specification for 

the potential outcomes and define different target estimands of interest. This is a separate 

issue from the goal of estimation.

Fundamentally, the other issue to realize is that implicitly or explicitly, predictions are being 

made in the modelling of potential outcomes. Coming back to the original potential 

outcomes framework outlined in §2.1., the complete data consists of {Yi(0), Yi(1)} for i = 1,

…, n. This represents the ideal case and would lead to simple calculations for ACE and 

ACET. However, the observed data have missing values relative to the complete data, and 

the missingness mechanism is in principle nonignorable, using the terminology of Little and 

Rubin [24]. The causal assumptions described in §2.1. and in particular, the assumption (3) 

correspond to missingness at random [24] where the missingness mechanism depends on X. 

This leads to the following conceptual strategy: using X, impute the missing response 

variable. Based on the combination of observed and imputed data, one can then compute 

average causal effects. Suppose we define Ri = I{Yi(0) missing}, i = 1,…, n. Then one can 

estimate ACE as

(5)

where the asterisks in (5) indicate that the particular potential outcome has been imputed. 

Another popular methodology is inverse weighted estimation procedures; there, the weights 
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provide predictions in terms of reweighting the population to one in which the causal effect 

can be estimated in an unbiased way. Connections between this idea and marginal structural 

models have been treated in a very simple case in [25]. The reliance on imputation for 

construction of counterfactuals is intimately tied to the use of the predictive distribution [26] 

which will inform our modelling strategy in the next section.

2.4. Application of penalized regression methodology to observed outcomes: concepts

As discussed in [8], regression adjustment represents one approach to estimation of causal 

effects. Suppose we were fitting a regression model for Y on T and X, and suppose that the 

response variable is continuous. A standard penalized regression to fit would be the LASSO 

[9], which minimizes the residual sum of squares

(6)

where (β0, β1, γ) are regression coefficients and t ≥ 0. Note that the constraint in (6) is on the 

L1 norm of the coefficients and leads to situations in which the regression coefficients are 

estimated to be exactly zero. Variables with zero regression coefficients are deemed to be 

‘unimportant’ predictors. Regression problems with penalties of this form have been the 

focus of substantial interest in the statistical literature, one reason being that the L1 penalty 

induces sparsity in the regression models.

The estimation procedure described so far is simply being applied to the observed data. As 

alluded to in the previous sections, a problem with the use of (6) for estimation of the causal 

effects is that it does not take into account the notion that causal effects rely on variables that 

involve predictions. Given this observation, if we wish to impose an LASSO-style constraint 

for variable selection, we argue that one should apply it to predictive criterion functions 

rather than goodness of fit measures from standard regression models such as the sum of 

squares term in (6). By predictive criterion functions, we are referring to functions of 

predicted/imputed values of the response. Our general approach is to solve the following 

optimization problem [21]:

(7)

where λ > 0 is a tuning parameter and Di(Mfull,Mα) refers to the Kullback-Leibler distance 

between the predictive distribution of a “full” model relative to those of a model 

parametrized by the vector α for subject i. When we talk about M here, we are actually 

alluding to models for the joint distribution of the potential outcomes. The Kullback-Leibler 

distance is generically defined as
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where f and g represent densities of the data. While the optimization problem in (7) is 

written down in a general form, what Tran et al. [21] show is that in a linear model case, it 

corresponds to solving a weighted LASSO problem of the form minimizing

(8)

where (β̂0, β̂
1,γ̂) are the least squares estimators for the regression coefficients in the usual 

linear model for the observed data. Implicitly, we are assuming in (8) that the objective 

function is being evaluated at future design points which are identical to the observed data 

points. The future design points are also referred to a test set in statistical parlance, which is 

different from the training data on which the model is built. Tran et al. [21] prove their result 

using a canonical hierarchical normal model with conjugate priors, and in fact the objective 

function in (8) arises from the posterior predictive distribution in the model. Further details 

on the model used in [21] are given in Appendix A.1. Another way to reinterpret their 

algorithm is as follows:

1. Using a training dataset, fit a linear regression of Y on T and X.

2. Based on the model fitted in step 1., compute predicted/fitted values of Y using the 

test dataset.

3. Solve equation (8) using the test data.

Again, there is an implicit assumption that the training and test datsets will come from the 

same distribution. In the second step of the algorithm, what is being computed are empirical 

estimates of the mean of the posterior predictive distribution of Y given the observed 

covariate values. The predictive LASSO occurs in the third step of the algorithm. This 

reinterpretation also highlights the prediction done in the first two steps and the penalized 

regression in the third. It also immediately suggests extensions in which the first two steps 

are substituted with any arbitrary imputation algorithm. Examples of imputation methods 

include multiply imputed chained equations [27] and IVEWARE [28].

3. Proposed methods

3.1. Adaptation to causal inference

The application of the LASSO method for estimating causal effects requires some care. This 

is because we fundamentally have a multivariate response for each individual. In particular, 

we have either (Y (0), Ŷ (1)) or (Ŷ(0), Y (1)) depending on which potential outcome is 

observed. Thus, we wish to perform a LASSO of the multivariate outcome on covariates. 

We go back to the definition of average causal effect given in (1). This estimand 

corresponds to the following model:

(9)

where ε1, …, εn is a random sample from a distribution with mean zero and variance σ2. The 

model (9) is a homogeneous treatment effect model for the difference in potential outcomes. 

However, it might be the case that the causal effect of treatment is in fact heterogeneous so 
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that (9) is invalid. One can then use the LASSO to identify candidate variables that define 

subgroups in which the causal effect is homogeneous within the group and heterogeneous 

among different groups. The selected variables represent the covariates that have what is 

known as qualitative interaction [32] with treatment. These are interactions in which the 

treatment effects are heterogeneous among different subgroups defined by the predictor. 

Following the approach in [21], we now seek to apply the predictive LASSO for the 

estimation of causal effects.

1. Fit a regression model for Y on T and X using the training dataset. We will denote 

the model as M0.

2. Based on the models fitted in step 1., compute predicted/fitted values of Y using the 

test dataset to impute the counterfactual or potential outcome described in Section 

2. In particular, we will use M0 to predict Y (0) for subjects with T = 1 and predict Y 

(1) for subjects with T = 0.

3. Then, create a univariate response variable for each individual, Ỹ, defined to be Y 

(1) − Ŷ (0) if T = 1 and Ŷ (1) − Y (0) if T = 0. A LASSO of Ỹ on the covariates is 

then performed. Formally, we are solving the following optimization problem:

(10)

where (β0,γ) are unknown regression coefficients, and t ≥ 0 is a smoothing 

parameter.

This is equivalent to minimizing:

(11)

where λ is the smoothing parameter. The procedure we propose here is quite simple in 

nature and is termed the difference LASSO. There exists attendant software in R, glmnet 

[31], that finds the entire regularization path for the LASSO solution in terms of t, to an 

optimization problem (10), and we use that here.

In the first two steps, we will use random forests [30] as our prediction algorithm. It belongs 

to the category of so-called ensemble methods: instead of generating one classification/

regression tree, it generates many trees. At each node of a tree, a random subset of the 

covariates are selected and the node is split based on the best split among the selected 

covariates. For a testing data point with a covariate vector X, each tree yields an estimated 

outcome and the final estimate can be calculated by the average value among the trees for 

continuous outcomes or the majority vote for discrete outcomes. Biau et al. [29] proved the 

consistency of random forests estimator. In that paper, they also commented that random 

forests are among the most accurate general-purpose “off-the-shelf” classifiers available.
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3.2. Imputation and variable selection

The algorithm described in the previous section can be described as a combination of 

imputation of the potential outcomes and variable selection. This problem has been 

addressed in the missing data literature [35, 33, 36]. A comprehensive review of the 

literature can be found in Appendix A.2. Here, we propose some extensions to the 

algorithms in §3.1. Consider the proposed difference LASSO algorithm, the prediction using 

random forests corresponds to a single imputation. We now propose an approximate 

“multiply impute, then select” approach to variable selection, which we term the multiple 

difference LASSO. The algorithm for the multiple difference LASSO proceeds as follows.

1. Fit a random forest regression model for Y on T and X using the training dataset. 

We will denote the model as M0.

2. Based on the model fitted in step 1., simulate Y using the test dataset based on a 

normal distribution with mean given by the fitted value and variance given by the 

average mean squaed error of the regression trees fit in the previous step.

3. Repeat step 2 k times to get k sets of potential outcomes. We can equivalently think 

of k as the number of imputations to perform. Then compute the derived variable Ỹ 
for each imputed dataset. Here, a small k is recommended, e.g., k = 3 [24]. Then, 

we have three sets of derived variables.

4. Perform a LASSO based on the average value of Ỹ using glmnet.

In the above algorithm, we create three imputed datasets and average the value of Ỹ. We 

then perform one single LASSO on the averaged value. Another idea is to replace step 4 by 

the following:

4.’ Perform separate LASSOs on each imputed dataset using glmnet.

If we take this alternative approach, we will have three sets of variables selected from the 

LASSO method. We need to employ some combining rules to determine which variables are 

eventually selected. As illustrated in [33], there are several ways regarding variable selection 

for multiple imputed datasets. For example, we may select a covariate if: (1) the covariate is 

selected in any model; (2) the covariate is selected in at least half of the models; or (3) the 

covariate is selected in all the models. While (1) is too optimistic and (3) is too conservative, 

(2) seems a reasonable choice. That is, when we generate three imputed datasets (k = 3), we 

claim that the covariate is selected if it appears in at least two final models. In the simulation 

study, we term the above two algorithms as “multiple difference LASSO1” and “multiple 

difference LASSO2”.

3.3. Practical Issues

We now describe some practical issues in the various LASSO algorithms described in this 

paper. The first deals with the issue of the imputation/prediction model relative to the 

regression model being used for the LASSO. With respect to the combining rules of [39] 

used in the multiple difference LASSO algorithms, one underlying assumption is that the 

different models are conditioned on the same set of data. Given this assumption, it is 
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necessary that all variables included in the LASSO model must also be present in the model 

for imputation by random forests.

One other point we wish to make is that we are also assuming sufficient covariate overlap in 

the T = 1 and T = 0 subgroups. If this assumption is violated, then we run risk of imputing 

potential outcomes based solely on model extrapolation. Thus, it is important to explore the 

data to determine the overlap in covariate distributions.

Another important issue is to compute the standard errors of the estimated regression 

coefficients for the selected covariates by LASSO and calculate the 95% confidence 

interval. This will help us check if a selected covariate is significantly related to treatment 

heterogeneity. The standard errors of LASSO estimators have been discussed in the 

literature, such as [42], [43] and [44]. Kyung et al. [43] point out that the traditional pairwise 

bootstrap method does not yield valid standard errors for LASSO. Here, we will employ the 

modified residual bootstrap method proposed by Chatterjee & Lahiri [44]. The detailed 

algorithm is presented in Appendix A.2. In Section 4.1, we apply this method to estimate 

standard errors of the LASSO estimates.

4. Numerical Examples

4.1. Right-heart catheterization study

Our example is from Connors et al. [40]. The question of interest is whether or not the 

treatment by right heart catherization (RHC) has an effect on 30-day survival (dead/alive at 

30 days). The dataset contains information on 5735 patients, 2184 of whom received RHC. 

Since we focus on average causal effects here, the scientific parameter of interest is a causal 

risk difference. We consider 21 variables for inclusion in the modelling from the original 75 

that are given in the data based on biological plausibility and temporal ordering. Variables 

are excluded due to missing values or prevalence of less than 20% in the dataset. We tended 

to focus on demographic variables as well as biological variables as candidate predictors. 

We also exclude the variable describing the risk prediction made using a model previously 

developed by the SUPPORT investigators [41] because this variable dominated the variable 

selection procedures.

We first randomly divide the whole dataset into two parts with equal sample sizes. We use 

the first half of the data to find covariates that are related to treatment heterogeneity and then 

use the second half to estimate the treatment effects. Our first set of analyses illustrates the 

difference LASSO algorithms. From the results shown in Figure 2, we make several 

observations. First, the effects of all potential variables are relatively small and that there are 

many predictors that are driving heterogeneity in the average causal effect. Again, the plot is 

meant to be used to identify predictors for which subgroups should be defined. We have 

highlighted three variables that appear to be drivers of the heterogeneity: hematocrit, PH, 

cardiovascular diagnosis. These are the variables whose paths separate from the rest of the 

variables, especially as the L1 norm of the estimated coefficients gets larger. We also 

employ cross-validation to choose the optimal smoothing parameter λ in (11); with the 

optimal λ = 0.01989, the selected variables by LASSO are hematocrit, cardiovascular 

diagnosis and blood pressure. The standard errors and the 95% confidence interval for the 
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selected covariates based on 10000 bootstrapped samples are displayed in Table 1. The 

confidence interval indicates that only blood pressure and hematocrit are significantly 

related to treatment heterogeneity at α = 0.05. The bootstrap algorithm also provides 95% 

confidence intervals for the remaining 18 variables as well. For all the variables that are not 

selected, the 95% confidence intervals contain the value of zero. To be noticed, one 

drawback is that the bootstrap method relies on a single value of the smoothing parameter in 

LASSO. When we perform the follow-up analysis, we will combine the results from the 

solution path and the cross-validation approach.

Next, we show the results for the multiple difference LASSO algorithms. The procedure is 

described in Section 3.2. For completeness, we show the plots of the individual difference 

LASSO algorithms in Figure 3. The colors of the variables are the same across all plots. The 

multiple LASSO algorithms allow for a qualitative exploration of the variability in predictor 

selection for the difference LASSO procedure. This is due to the fact that there is 

tremendous correlation between the variables and that slight perturbations lead to selections 

of completely different sets of variables in the LASSO algorithm. In addition, one implicit 

assumption here is that all the variables have been standardized so that selection is being 

made effectively using the correlation matrix of the predictors. When we performed the 

averaging across the individual LASSO output, the results were qualitatively quite similar to 

the results in Figure 2 (data not shown).

After identifying the covariates that are related to treatment heterogeneity, we then perform 

a follow-up analysis. As mentioned earlier, we are interested in estimating the causal risk 

difference between the treatment group (RHC) and the control group (no RHC). The 

outcome variable “dth30” indicates whether the patient died at 30 days and the treatment 

variable “swang1” indicates the use of RHC. We divide the sample (which is the test data) 

into 16 strata according to the values of hematocrit, PH, cardiovascular diagnosis and blood 

pressure. The four variables are chosen based on the LASSO solution path (Figure 2) as well 

as the selected variables using the best smoothing parameter. While defining the strata, the 

continuous variable is dichotomized at its median value. In each stratum, we employ an 

inverse probability weighting (IPW) method to estimate the causal risk difference. The 

propensity score used in IPW is estimated from a random forests model using all of the 

available covariates in the study. The random forests model automatically picks important 

covariates, nonlinear terms and interaction terms for estimating the propensity scores. Table 

2 shows the estimated causal risk difference in each stratum. The standard errors are 

estimated by the sandwich formula using the survey package in R. We find that in 2 out of 

16 strata, RHC decreases the chance of survival at 30 days, while in the rest of the strata, 

RHC does not have a significant effect on survival at a significance level of 0.1.

4.2 Simulation Studies

In this section, we conduct simulation studies to compare the proposed methods with the 

existing methods. Following the data analysis, we generate 20 covariates: X1 − X10 ~ N(0,1) 

and X11 − X20 ~ Bernoulli(0.5). The binary treatment variable T is generated from a logistic 

regression model with
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and P(T = 1) = expit{f(X)}. We consider two cases for the outcome model:

1. Case 1: Y = 2.455 + 0.37T + 0.1X1 − 0.154X2 − 0.152X11 − 0.126X12 + ε

2. Case 2: Y = 2.455 + 0.37T + 0.1X1 − 0.154X2 − 0.152X11 − 0.126X12 − 0.3T × X11 

+ ε

where ε ~ N(0, σ2).

For comparison, we employ five different approaches to identify covariates that define 

subgroups in which the causal effect is heterogeneous: difference LASSO, multiple 

difference LASSO1, multiple difference LASSO2, difference AIC and traditional LASSO. In 

both versions of multiple difference LASSO, 3 imputed datasets will be generated in each 

run. The multiple difference LASSO1 takes the average value of the difference and performs 

one LASSO. In contrast, the multiple difference LASSO2 performs three separate LASSOs 

for different imputed datasets, and a covariate will be selected if it is selected in at least two 

imputed datasets. In the difference AIC, the Akaike information criterion instead of LASSO 

is employed for variable selection. Finally, in the traditional LASSO, we regress the 

observed Y on all the possible main effects and one-way interactions between the treatment 

and each covariate. Then, we identify the significant main effects and interaction terms. The 

smoothing parameter is optimally determined by cross-validation, which can be easily 

realized in glmnet. We run the simulation N = 1000 times. For the first four methods, we 

record the number of simulations in which each covariate is selected. For the traditional 

LASSO, we record the number of simulations in which each interaction term is selected. 

The simulation results are shown in Tables 3 and 4.

In the first case, none of the covariates have interactions with the treatment. It means the 

treatment effect is homogeneous, i.e. assumption (9) is true. In this case, the percentage of 

simulations in which each covariate is selected corresponds to the type I error. We average 

the results over all the variables. As shown in Table 3, the two different versions of multiple 

difference LASSO yield the lowest average type I error for different sample sizes, followed 

by difference LASSO. The type I error of multiple difference LASSO2 is much smaller than 

the others. In the proposed algorithm, If we employ AIC instead of LASSO for variable 

selection, the average type I error increases significantly due to the fact that AIC tends to 

select larger models. Another interesting observation is that the traditional LASSO seems to 

yield the overall largest type I error. This is because the regression model we fit in the 

traditional LASSO method ignores the selection bias. We tried different σ values (σ = 0.1, 

0.3, 0.5) in the simulation and the results are very similar. In the second case, there is a 

significant interaction between X11 and T in the outcome model, which means the treatment 

effects are different in the subgroups defined by X11. As a result, there are two columns for 

each sample size and each σ value in Table 4. The first column records the percentage of 

simulations in which X11 is selected into the model and the second column represents the 

average percentage of simulations in which other covariates are selected. The former 

corresponds to (1-type II error) for X11 and the latter corresponds to the average type I error. 
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As can be seen, the two multiple difference LASSOs have the smallest average type I error, 

followed by difference LASSO. The type I error of the traditional LASSO method is much 

larger than the other three. This is true for different sample sizes and different σ values. On 

the other hand, when σ = 0.5, the multiple difference LASSOs yield the largest type II 

errors, followed by difference LASSO. Again, difference AIC has the smallest type II error 

because AIC tends to select larger models. When σ decreases to 0.1 (signal-to-noise ratio= 

3), all five methods are able to identify the covariate that is related to treatment 

heterogeneity.

In the imputation procedure, we employ random forests to predict the missing potential out-

comes. The reason, as we mentioned earlier, is that random forests can automatically 

perform variable selection. To examine whether alternative imputation methods would affect 

the performance, we also employ multiple imputation by chained equations (MICE, [34]) as 

the imputation method. In addition, we impute the missing potential outcomes from all 

available predictors and perform a LASSO on the difference in the potential outcomes. The 

results recorded in Table 3 and 4 indicate that MICE leads to the highest type I error among 

all the approaches we tested. On the other hand, it produces the smallest type II errors for 

most of the conditions in Case 2. This is probably due to the fact that there are a large 

number of redundant features in the simulation setup and our specification for MICE (using 

all available covariates) ignores this important property while performing imputation.

6. Discussion

In this article, we have explored the use of the LASSO for variable selection in estimating 

causal effects, which can be applied for identifying subgroups in which treatment effects are 

homogeneous. We found that within the potential outcomes framework, the variable 

selection is inherently for a multivariate joint distribution so that what becomes important is 

the functional of the joint distribution that we seek to model. We consider one functional of 

interest and attendant LASSO procedures, termed the difference LASSO and multiple 

difference LASSO. For the latter, we developed two different algorithms based on how to 

combine the imputed datasets and variable selection results. All proposed procedures have 

an ‘impute, then select’ structure that is reminiscent of algorithms in the missing data 

literature [35, 36]. A modified bootstrap method [44] has been used to estimate the standard 

error and calculate the confidence interval. We can then test the significance of the selected 

covariates that define subgroups in which the treatment effect is homogeneous. In addition, 

simulation results indicate that for causal inference, the imputation algorithm for ‘filling in’ 

the missing potential outcomes is as important to the process as the application of the 

LASSO. For example, we suggest employing random forests to impute the missing potential 

outcome, but this needs to be more formalized and explored in future work.

Conceptually, we imagine the use of the LASSO in this context as more of an exploratory 

device rather than a confirmatory device. As alluded to by the simulation study, when the 

dimension of the covariates is small or moderate compared to the sample size, AIC/BIC can 

be used instead of LASSO to increase the power. The purpose of our study is to identify 

covariates that are related to treatment heterogeneity. Using selected covariates, multiple 

strata can be defined, and different treatment effects can be estimated within each strata. 
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This will help researchers make more informed decisions in biomedical or epidemiological 

studies.
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Appendix

A. 1. Model of Tran et al. [21]

Tran et al. [21] consider the following probabilistic model:

(12)

(13)

(14)

Note that model (12)–(14) represents a standard hierarchical linear model. Equation (12) 

specifies the regression model for Y; θ denotes the regression coefficients, and σ2 is the 

variance. A prior is assumed for θ and σ2 based on the product of the densities in (13) and 

(14). The regression coefficients are assumed to have a normal prior distribution, while the 

variance parameter σ2 is assumed to have an inverse gamma distribution in (14). Its density 

is given by

Given this model, Tran et al. [21] show that the predictive distribution for a new observation 

is given by the t-distribution; the relevant parameter definitions can be found in §3.1. of 

[21]. They then show that minimizing (7) in §2.3. is equivalent to minimizing

(15)

subject to the LASSO constraint on θ. Note that the superscript “new” refers to a future 

observation, so that the expectation is being taken with respect to the predictive distribution. 

Further algebraic simplification of (15) reveals that its optimization is equivalent to 

optimization of

(16)

Ghosh et al. Page 13

Stat Med. Author manuscript; available in PMC 2016 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with respect to a LASSO constraint on θ. Formulae defining s and w can be found in [21]. 

We also note that the ‘LASSO constraint on θ’ is in fact a weighted constraint on the sum of 

the L1 norms of θ; the weights depend on the predictive distribution.

A. 2. Multiple Imputation and Variable Selection

Yang et al. [35] considered the problem of imputation and variable selection for linear 

regression models. They focused on using a Bayesian formulation inspired by the stochastic 

search variable selection algorithm of George and McCulloch [37]. We review the model 

here:

(17)

(18)

(19)

Model (17)–(19) specifies a probabilistic model for linear regression. The γj represent binary 

latent indicator variables where a value of one indicates that the variable should be included 

in the model and zero denotes that it should not. Equation (17) specifies the linear regression 

model given the selected covariates that are placed in the model. Equation (18) models the 

regression coefficients as a mixture of normals, conditional on whether the variable is 

selected or not. The former group of variables will have a larger variance as c is typically 

chosen to be much larger than one [37]. To complete the model, one typically assumes the γj 

to be Bernoulli distributed. While George and McCulloch [37] and Yang et al. [35] both 

develop simulation-based approaches to Bayesian inference in this model, we will instead 

use an equivalence between the LASSO with a slightly different version of the above model 

that was developed by Yuan and Lin [38]. This requires replacing (18) by

where δ(0) is a point mass distribution at zero and DE(0, τ) denotes the double-exponential 

distribution with mean zero and scale parameter τ. Also, we replace the Bernoulli 

assumption on γ by the following prior for γ:

(20)

Based on this variation of the George-McCulloch model, Yuan and Lin [38] show that the 

model of the posterior distribution can be estimated using the LASSO algorithm.

Within this model framework, Yang et al. [35] considered the case of missing predictor 

variables and proposed two types of procedures. The first was termed “impute, then select” 

(ITS). For ITS methods, the analyst first imputes the data and creates several imputed 

datasets. Then one performs the stochastic variable search algorithm of George and 
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McCulloch [37] in parallel and applies mutiple imputation combining rules [39] in order to 

perform variable selection. The other class of methods proposed by [35] was a 

simutaneously impute and select (SIAS) algorithm. Here, one performs imputation and 

variable selection within one larger iterative algorithm. While the SIAS method was 

recommend by Yang et al. [35], they also noted its computational intensiveness. Wood et al. 

[33] focused on multiple imputation-based procedures and found through simulation studies 

the strategy of “multiply impute, then select” (MITS) to perform the best. The idea of MITS 

is to consider several imputed datasets, perform variable selection and to then combine 

variable selection results across the datasets using the combining rules in [39]. It is obvious 

that that the MITS is the multiple imputation analog of the ITS approach of Yang et al. [35]. 

The work in Yang et al. [35] and Wood et al. [33] deal with the issue of missing covariates, 

whereas we are dealing with missing Y values, and in particular, missing potential outcomes.

A. 3. Modified Bootstrap Method for LASSO Estimates

Following Chatterjee & Lahiri (2011) [44], the modified bootstrap approach to estimate the 

standard error and the confidence interval for LASSO is as follows:

1. Perform LASSO based on (Xi, Ỹi), i = 1, …, n and get the estimated coefficient 

vector γ̃ = (γ̃
1, γ̃

2, …, γ̃p)′ in (11). Denote the “best” smoothing parameter selected 

by cross-validation as λ̂.

2. Shrink the non-zero components of γ̃ to zero if it is smaller than an = cn−δ and 

denote the modified estimate of γ as γ̃. For example, in the data application, we let 

δ = 1/3 and c = 1.

3.
Calculate ei = Ỹi − β̂0 r ̂′Xi, i = 1, …, n and centralize ei so that .

4. Take a bootstrap sample of ei with replacement and denote as ( ).

5. Calculate  i = 1,…, n. Perform LASSO based on (Xi, ) with 

smoothing parameter λ̂ and get the LASSO estimates as r̂*.

6. Repeat step 4 and 5 N times and denote the estimated coefficient vectors as r̂*1, r̂*2, 

…, r̂*N.

The standard error for the jth component of γ̂ is calculated as

where  and the (1 − α) confidence interval for γj is calculated as

where  is the αth percentile of .
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Figure 1. 

Distribution of covariate X for treatment and control groups. The blue line denotes the kernel 

density estimation for X in the T = 1 group, while the magenta line represents the kernel 

density estimate for X in the T = 0 group. The bars represent the histogram of X regardless of 

the treatment groups.
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Figure 2. 

Output for the difference LASSO algorithm. The regularized solution paths of the regression 

coefficients for all of the variables as a function of the L1 norm of the estimated coefficients 

are plotted.
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Figure 3. 

Output for the difference LASSO algorithm. The regularized solution paths of the regression 

coefficients for all of the variables as a function of the L1 norm of the estimated coefficients 

are plotted.
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Table 1

Estimated Coefficients by LASSO and the Bootstrap Standard Errors

Covariate Estimated Coefficient Bootstrap SE 95% Confidence Interval

bp −3.86 × 10−4 1.86 × 10−4 (−7.73 × 10−4, −1.34 × 10−4)

hema −6.13 × 10−2 2.78 × 10−2 (−1.23 × 10−1, 2.63 × 10−2)

card 7.84 × 10−3 7.56 × 10−3 (−7.33 × 10−3, 2.53 × 10−2)
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Table 2

Causal Risk Difference Estimates in Different Strata

Strata bp< 78.2, card=Yes bp< 78.2, card=No bp≥ 78.2, card=Yes bp≥ 78.2, card=No

hema< 30, ph< 7.4

  Estimate (s.e.) 0.160(0.083) 0.089(0.053) −0.159(0.127) −0.003 (0.102)

  p-value 0.056 0.093 0.217 0.973

hema< 30, ph≥ 7.4

  Estimate (s.e.) 0.047 (0.088) −0.052(0.058) 0.062(0.136) 0.003(0.081)

  p-value 0.597 0.368 0.649 0.971

hema≥ 30, ph< 7.4

  Estimate (s.e.) 0.018(0.069) −0.001(0.065) 0.139(0.108) 0.094(0.162)

  p-value 0.792 0.991 0.200 0.560

hema≥ 30, ph≥ 7.4

  Estimate (s.e.) 0.042(0.074) 0.025(0.077) −0.152(0.092) −0.051 (0.147)

  p-value 0.574 0.740 0.104 0.730
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Table 3

Simulation Results for Case 1 (%)

Method n = 200 n = 500 n = 1000

Difference LASSO 9.8 12.3 13.5

Multiple Difference LASSO1 9.6 10.3 12.2

Mutilple Difference LASSO2 4.5 4.6 6.0

Difference AIC 26.0 19.8 19.4

Traditional LASSO 20.3 22.2 29.4

MICE 41.2 40.6 42.1
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Table 4

Simulation Results for Case 2 (%)

Method n = 200 n = 500 n = 1000

σ = 0.1 X11 Others X11 Others X11 Others

Difference LASSO 100.0 18.2 100.0 19.1 100.0 20.5

Multiple Difference LASSO1 99.7 18.0 100.0 18.9 100.0 20.5

Multiple Difference LASSO2 99.0 10.7 100.0 12.7 100.0 13.7

Difference AIC 100.0 21.2 100.0 20.2 100.0 22.1

Traditional LASSO 100.0 37.8 100.0 37.9 100.0 38.3

MICE 100.0 46.6 100.0 47.5 100.0 47.9

σ = 0.3 X11 Others X11 Others X11 Others

Difference LASSO 72.1 15.1 99.3 18.8 100.0 19.2

Multiple Difference LASSO1 60.7 14.0 97.7 17.8 100.0 19.9

Multiple Difference LASSO2 51.6 6.4 94.6 9.4 100.0 11.9

Difference AIC 87.5 20.5 99.9 19.9 100.0 20.7

Traditional LASSO 69.9 33.7 98.2 37.9 100.0 37.1

MICE 90.4 46.8 99.2 47.9 100.0 51.4

σ = 0.5 X11 Others X11 Others X11 Others

Difference LASSO 34.1 10.8 76.2 15.5 98.4 19.0

Multiple Difference LASSO1 32.0 10.3 68.5 14.2 94.3 17.4

Multiple Difference LASSO2 21.6 4.9 53.5 7.0 90.3 10.5

Difference AIC 55.3 20.1 88.8 18.6 99.7 18.2

Traditional LASSO 34.5 26.2 69.7 32.6 94.5 36.5

MICE 70.5 45.8 90.0 46.7 97.7 49.5
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