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Two data analytic research areas—penalized splines and repro-
ducing kernel methods—have become very vibrant since the
mid-1990s. This article shows how the former can be embedded
in the latter via theory for reproducing kernel Hilbert spaces.
This connection facilitates cross-fertilization between the two
bodies of research. In particular, connections between support
vector machines and penalized splines are established. These al-
low for significant reductions in computational complexity, and
easier incorporation of special structure such as additivity.
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1. INTRODUCTION

In the mid-1990s two vibrant areas of data analytic research
emerged. Each built on ideas that had accumulated over the pre-
vious decades, but were ignited by a few key papers and results.
One of them was in the statistics literature, within the subject of
nonparametric regression or “smoothing,” and will be referred
to here as penalized splines. The other was primarily in the com-
puting science literature, within the subject of machine learning,
and will be referred to here as reproducing kernel methods. This
article elucidates the connection between these two sets of liter-
ature with the intention of promoting fruitful cross-fertilization.

The main catalyst for the flurry of penalized spline research
was Eilers and Marx (1996). Another key reference is Hastie
(1996), although the essential ideas have been around for much
longer (e.g., Schoenberg 1969; Parker and Rice 1985; Wahba
1990, chap. 7). The thrust of this research is generalization of
ordinary smoothing splines to knot sequences different from,
and usually much fewer than, the observed predictor variables.
Hastie (1996) and Marx and Eilers (1998) illustrated the bene-
fits for additive models. Mixed model and Bayesian representa-
tions of penalized spline smoothers have allowed, for example,
straightforward incorporation of longitudinal data into nonpara-
metric regression (e.g., Verbyla, Cullis, Kenward, and Welham
1999). Fitting and inference can be accomplished via estab-
lished software, such as PROC MIXED in SAS and lme() in
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R and WinBUGS, provided the number of basis functions is rel-
atively low (e.g., Ngo and Wand 2003; Crainiceanu, Ruppert,
and Wand 2005). There are now several packages in R, such as
mgcv (Wood 2006), for fitting such models. Other developments
include simpler incorporation of measurement error (Berry, Car-
roll, and Ruppert 2002) and geostatistical data (Kammann and
Wand 2003). Much of the work on penalized splines up un-
til about 2002 is summarized in the book by Ruppert, Wand,
and Carroll (2003). There is also a large literature on nonpenal-
ized splines for multivariate function estimation, such as Stone
(1994) and Hansen and Kooperberg (2002).

The emergence of support vector machines, starting with
Boser, Gyon, and Vapnik (1992), has blossomed into a huge liter-
ature since the mid-1990s, and is the main catalyst for what have
become known as reproducing kernel methods, kernel methods
or kernel machines in machine learning. The first label will
be used here since it is somewhat more general, and avoids
confusion with kernel smoothing methods in the nonparamet-
ric regression literature (e.g., Wand and Jones 1995). A com-
prehensive overview of reproducing kernel methods in machine
learning research was provided by Schölkopf and Smola (2002).
These authors also maintain a Web site, www.kernel-machines.
org, that disseminates research on the topic. Other useful sum-
maries were provided by Burges (1998), Evgeniou, Pontil, and
Poggio (2000) and Cristianini and Shawe-Taylor (2000). Before
the emergence of support vector machines, reproducing kernel
methods were prominent in the nonparametric regression lit-
erature as a framework for smoothing spline methodology, as
summarized by Wahba (1990). However, the adoption of these
ideas by the machine learning community has widened the scope
of reproducing kernel methods quite considerably.

This article shows how penalized splines are embedded in the
class of reproducing kernel methods and helps connect these
two bodies of research. It is envisaged that support vector ma-
chine and other kernel machine research has the most to gain
from this connection. There the main objectives are classifica-
tion and prediction; usually from large, complex, multidimen-
sional datasets. The reduced knot aspect of penalized splines
allows for significant savings in computational complexity, as
we explain in Section 6. In addition, much of the support vector
machine research is done within the machine learning disci-
pline, and largely oblivious to many statistical principles such
as interpretation, model building, diagnosis, low-dimensional
structure, and proper accounting for data dependencies. Kernels
based on penalized splines offer the opportunity to incorporate
some of these principles more straightforwardly than commonly
used kernels. Similar recent work has been done using the ideas
of smoothing spline analysis of variance; see Lin and Zhang
(2006), and Lee, Kim, Lee, and Koo (2006).

An illustration of a support vector machine classifier which
uses low-dimensional structure and is immediately interpretable
is given in Figure 1. It arises from use of additive model penal-
ized spline kernels (Sections 5.3 and 6) to build a classifier for
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Figure 1. Visualization of a penalized spline support vector classifier for the “spam” data. Each panel shows the slice of the classifier with all
other predictors set to their medians. The tick-marks show the predictor values: spam e-mail messages along the top, ordinary e-mail messages
along the bottom.

the “spam” data, described by Hastie, Tibshirani, and Friedman
(2001), with spam e-mail messages coded as +1 and ordinary
messages coded as −1. Each panel shows the slice of the classifi-
cation surface for the labeled predictor, with all other predictors
set to their medians. It is seen, for example, that frequency of
the word “free” has a monotonic effect on classification while
frequency of exclamation marks (ch!) has a nonmonotonic ef-
fect.

The next section provides a brief description of the simplest
version of penalized splines. Section 3 describes the basics of
reproducing kernel methods. The link between these two con-
cepts is laid out in Section 4. Various extensions are treated in
Section 5. Section 6 is devoted to the special case of support vec-

tor machines and advantages of the penalized spline approach
are explained. We close with some summary remarks in Section
7.

2. PENALIZED SPLINES

For the moment we will consider only the “scatterplot smooth-
ing” situation where the observed data are (xi, yi) ∈ R × R,
1 ≤ i ≤ n, and both variables are continuous. The simplest
penalized spline model is

yi = β0 + β1 xi +
K∑

k=1

uk(xi − κk)+ + εi. (1)

Here x+ = max(0, x), κ1, . . . , κK are a dense set of knots
over the range of the xi’s and the εi are independent zero mean
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random variables with common variance σ2
ε . Typically the knots

are chosen to mimic the distribution of the xi’s, such as their K-
tiles (e.g., Ruppert 2002) and usuallyK � n. Fitting is typically
performed via penalized least squares:

min
βββ,u

 n∑
i=1

{
yi − β0 − β1 xi −

K∑
k=1

uk(xi − κk)+

}2

+λ

K∑
k=1

u2
k

]
, (2)

where β = (β0, β1)
T and u = (u1, . . . , uK)T . The quadratic

penalty λ
∑K

k=1 u
2
k is a simple way to restrict the influence of

the spline terms (xi−κk)+ and avoid overfitting. The smoothing
parameter λ > 0 controls the trade-off between overfitting and
bias. A matrix formulation of (1) is

y = Xβββ + Zu + ε, (3)

where

X = [1 xi]1≤i≤n, Z = [(xi − κk)+
1≤k≤K

]1≤i≤n,

and y and εεε contain the respective subscripted variables. Then
(2) becomes

min
βββ,u

(‖y − Xβββ − Zu‖2 + λ‖u‖2) , (4)

where ‖v‖ =
√

vT v denotes the norm of the vector v. The
solution is

β̂ββ = (XT ΣΣΣ−1X)−1XT ΣΣΣ−1y, û = ZT ΣΣΣ−1(y − Xβ̂ββ) (5)

with ΣΣΣ = ZZT +λI. The notation of (3) suggests a linear mixed
model and (5) corresponds exactly to best linear unbiased pre-
diction if u is treated as a random effects vector with covariance
matrix (σ2

ε/λ)I (e.g., Brumback, Ruppert, and Wand 1999).
Although we use the term “penalized splines” throughout this

article, it should be pointed out that there are several alternative
names for what is essentially the same general approach. These
include low-rank splines, P-splines, pseudosplines, and reduced
knot splines.

3. REVIEW OF REPRODUCING KERNEL METHODS

This section provides a brief review of reproducing kernel
methods. This facilitates the reproducing kernel representation
of penalized splines in the next section.

Reproducing kernel methods are performed within the func-
tional analytic structure known as a reproducing kernel Hilbert
space (RKHS). An early RKHS reference is Aronszajn (1950)
and contemporary summaries include Wahba (1999) and Ev-
geniou, Pontil, and Poggio (2000). Of particular relevance to
penalized splines are penalizations over subspaces, based on
projection operators. Relevant background material on Hilbert
space projection theory may be found in, for example, Simmons
(1983) and Rudin (1991).

A RKHS on R
d is a Hilbert space of real-valued functions that

is generated by a bivariate symmetric, positive definite function

K(s, t), s, t ∈ R
d, called the kernel. The steps for RKHS con-

struction from K are:

1. Determine the eigen-decomposition of K: K(s, t) =∑∞
j=0 λjφj(s)φj(t). This series is assumed to be well-defined

(e.g., uniformly convergent).

2. Define the space of real-valued functions on R
d:

HK =

f : f =
∞∑

j=0

ajφj , such that
∞∑

j=0

a2
j/λj < ∞

 .

3. Endow HK with the inner product〈 ∞∑
j=0

ajφj ,

∞∑
j=0

a′
jφj

〉
HK

=
∞∑

j=0

aja
′
j/λj .

From this last condition is follows that the norm of f =∑∞
j=0 ajφj in HK is

‖f‖2
HK =

∞∑
j=0

a2
j/λj .

The adjective “reproducing” arises from the important result

〈K(s, ·),K(t, ·)〉HK = K(s, t).

This has important implications, and gives rise to the “kernel
trick” that we discuss shortly.

Sufficient conditions for the kernel K to admit the above
RKHS construction are given by Mercer’s Theorem (e.g., Cris-
tianini and Shawe-Taylor 2000). Popular kernels, particularly
in machine learning contexts, include the pth degree polyno-
mial kernel, K(s, t) = (1 + sT t)p, and the radial basis kernel,
K(s, t) = exp

(−γ ‖s − t‖2
)
, for some γ > 0. Smoothing and

thin plate splines correspond to (conditional) kernels such as
K(s, t) = |s − t|3 (d = 1) and K(s, t) = ‖s − t‖2 log(‖s − t‖)
(d = 2) (Girosi, Jones, and Poggio 1995).

Let (xi, yi) ∈ R
d × R, 1 ≤ i ≤ n be a dataset, L(·, ·) be a

loss function and λ > 0 be a smoothing parameter. The fit f̂
within HK, with respect to L and λ, is the solution to

min
f∈HK

{
n∑

i=1

L(yi, f(xi)) + λ‖f‖2
HK

}
. (6)

For continuous yi, examples of loss functions are

L(a, b) =


(a − b)2 (squared error loss)

(|a − b| − ε)+ (ε-insensitive loss,
for some ε > 0).

For yi ∈ {−1, 1}, as arises in two-category classification, ex-
amples are

L(a, b) =

{
log(1 + e−ab) (Bernoulli log-likelihood)

(1 − ab)+ (hinge loss).

The latter loss functions result in what are respectively known
as support vector regression and classification, and collectively
known as support vector machines. Wahba (1999) described the
infinite dimensional RKHS theory for support vector machines.
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Subsequent work in this area includes Lin, Lee, and Wahba
(2002), and Lin, Wahba, Zhang, and Lee (2002).

The solution to (6) can be shown to be of the form f̂(x) =∑n
i=1 ĉiK(xi, x) for some ĉi, 1 ≤ i ≤ n, depending on L and

the data, and is known as the dual form of the solution. The
“kernel trick” is that we do not need to calculate the eigenfunc-
tions, φ0, φ1, . . ., in order to find the dual form. The kernel trick
is a popular theme in kernel methods, and has allowed linear
algorithms to be easily converted into nonlinear algorithms. The
corresponding primal form of the solution is a linear combina-
tion of the eigenfunctions. When the eigenfunctions are easily
calculated the primal form may offer a simpler and more intuitive
form of the solution.

It is often desirable that certain functions in HK are un-
penalized. Let H0 = span{ψ0, . . . , ψp} be such a subspace
of HK for which penalization is not desired. Mathematically,
this means that fits over H0 are found by simply minimizing∑n

i=1 L(yi, f(xi)). Let H1 = H⊥
0 be the orthogonal comple-

ment of H0 and P1 denote the linear operator corresponding to
projection onto H1. Then HK = H0 ⊕ H1 with H0 being the
null space of P1. With respect to the null space H0, smoothing
parameter λ and loss function L, we define fits f̂ according to

min
f∈HK

{
n∑

i=1

L(yi, f(xi)) + λ‖P1f‖2
HK

}
. (7)

It can also be shown (Aronszajn 1950) that H0 and H1 are re-
producing kernel Hilbert spaces in their own right, with kernels
K0 and K1 such that K0 + K1 = K.

Before closing this section, we note that only the so-called
2-norm penalty is being discussed in this article. There has been
a considerable amount of research on alternative penalties such
as the 1-norm penalty (e.g., Cristianini and Shawe-Taylor 2000).

4. REPRODUCING KERNEL REPRESENTATION OF
PENALIZED SPLINES

We now show how penalized splines are a special case of re-
producing kernel methods. In particular, penalized splines cor-
respond to finite dimensional RKHS as covered in Part I, Sec-
tion 3 of Aronszajn (1950). However, explicitly laying out the
reproducing kernel representation of penalized splines with its
terminology and notation is, in our view, very worthwhile. For
example, it allows researchers familiar with the penalized splines
literature to see how certain principles (e.g., additive modeling)
can be extended to other settings such as support vector ma-
chines.

Consider the setting of Section 2 with prespecified knots
κ1, . . . , κK . The kernel that allows penalized splines to be
couched in a RKHS framework is

K(s, t) = 1 + st +
K∑

k=1

(s − κk)+(t − κk)+.

The eigenfunctions are, trivially,

φ0(x) = 1, φ1(x) = x, φk+1(x) = (x − κk)+, 1 ≤ k ≤ K

with eigenvalues γ0 = γ1 = · · · = γK+1 = 1 (φi = 0 for
i > K + 1). The RKHS is

HK =

{
f : f(x) = β0 + β1x +

K∑
k=1

uk(x − κk)+

}
with inner product〈
β0 + β1x +

K∑
k=1

uk(x − κk)+, β′
0 + β′

1x

+
K∑

k=1

u′
k(x − κk)+

〉
HK

= β0β
′
0 + β1β

′
1 +

K∑
k=1

uku
′
k.

In particular,

‖f‖2
HK = ‖β‖2 + ‖u‖2.

The penalized spline RKHS is a particularly simple Hilbert space
in that it is finite-dimensional and isomorphic to R

K+2. This
means that projections in HK correspond to familiar Euclidean
projections of the coefficients, as illustrated in the next para-
graph.

For penalized splines the subspace of unpenalized functions
is the linear component

H0 = {f : f(x) = β0 + β1 x}
and the orthogonal complement

H1 = H⊥
0 =

{
f : f(x) =

K∑
k=1

uk(x − κk)+

}
is the spline basis function component. The projection of f ∈
HK onto H1 is given by

P1

(
β0 + β1 x +

K∑
k=1

uk(x − κk)+

)
=

K∑
k=1

uk(x − κk)+

and, hence, ‖P1f‖2
HK = ‖u‖2. Therefore (7) is equivalent to

(4) for squared error loss. For more general loss, (7) reduces to

min
βββ,u

{
n∑

i=1

L(yi, (Xβ + Zu)i) + λ‖u‖2

}
. (8)

Define Xx = [1 x] and Zx = [(x − κ1)+ . . . (x − κK)+] and
let β̂ββ, û denote the solution to (8). Then the primal form of the
solution is

f̂(x) = Xxβ̂ββ + Zxû = β̂0 + β̂1x +
K∑

k=1

ûk(x − κk)+.

The dual form is

f̂(x) = β̂0 + β̂1x +
n∑

i=1

ĉiK1(x, xi)

for suitable ĉi, 1 ≤ i ≤ n and where K1(s, t) = ZsZT
t is

the kernel for H1. As an example consider squared error loss,
L(a, b) = (a − b)2. Then β̂ββ and û are given by (5) while the ĉi

are the entries of

ĉ = K1(K1 + λI)−1(y − Xβ̂ββ),
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where K1 = ZZT = [K1(xi, xj)]1≤i,j≤n, known as the Gram
matrix of K1.

5. EXTENSIONS

Sections 2 and 4 only considered penalized splines for scalar
predictors and truncated line basis functions. However, as shown
in this section, the reproducing kernel representations apply for
general penalized spline models such as those involving other
spline basis functions, higher dimensional predictors and addi-
tive structure.

5.1 Other Spline Basis Functions

For x ∈ R, general penalized spline models can be written as

f(x) = Xxβ + Zxu, (9)

where Xx = [1 x . . . xp] for some p ≥ 0 and Zx is a set of
spline basis functions. Without loss of generality, the penalty
on u can be taken to be ‖u‖2 by appropriate transformation of
the functions in Zx. Beyond the truncated line model (2.) the
simplest basis is

Zx = [(x − κk)p
+

1≤k≤K

],

corresponding to truncated polynomials of degree p. For nu-
merical stability reasons, it is usually advantageous to linearly
transform the truncated polynomial basis functions to, say, B-
spline basis functions (e.g., Eilers and Marx 1996). A suitable
adjustment needs to be made to the penalization component.

Another family of bases is that corresponding to thin plate
splines (French, Kammann, and Wand 2001) and takes the form
Xx = [1 x . . . xm−1] and

Zx = [|x − κk|2m−1

1≤k≤K

]ΩΩΩ−1/2, ΩΩΩ = [|κk − κk′ |2m−1

1≤k,k′≤K

].

These have an advantage of simple extension to higher dimen-
sional x (Section 5.2).

At this level of generality, the appropriate kernel is

K(s, t) = XsXT
t + ZsZT

t ,

and the RKHS representation of (9) ensues.

5.2 Higher Dimensional Predictors

There are a number of ways by which spline basis functions
can be extended to accommodate higher dimensional predictors.
For example, an extension of the thin plate spline bases for x =
(x1, . . . , xd) ∈ R

d is

f(x) = Xxβββ + Zxu

where the columns of Xx consist of all d-dimensional polyno-
mials in x1, . . . , xd with degree less than m and

Zx = [rmd(‖x − κk‖)
1≤k≤K

]ΩΩΩ−1/2, ΩΩΩ = [rmd(‖κk − κk′‖)
1≤k,k′≤K

]

with

rmd(x) =
{

x2m−d , d odd
x2m−d log(x) , d even

(e.g., Green and Silverman 1994). For s, t ∈ R
d the appropriate

kernel is

K(s, t) = XsX
T
t + ZsZ

T
t .

5.3 Additive Models

For two predictorsx1 andx2 the linear penalized spline model
is of the form

yi = f(x1i, x2i) + εi,

where

f(x1, x2) = β0 + β1x1 +
K1∑
k=1

u1k(x1 − κ1k)+

+β2x2 +
K2∑
k=1

u2k(x2 − κ2k)+ (10)

and, for j = 1, 2, the κjk denote a set of Kj knots for variable
xj . The fitting criterion is

min
βββ,u

[
n∑

i=1

{yi − f(x1i, x2i)}2 + λ1

K1∑
k=1

u2
1k + λ2

K2∑
k=1

u2
2k

]
,

(11)

where λ1 and λ2 are, respectively, smoothing parameters for
variables x1 and x2 and β and u contain the respective sub-
scripted variables.

Let H0, H1, and H2 denote, respectively, the reproducing
kernel Hilbert spaces generated by the kernels

K0(s, t) = 1 + sT t,

K1(s, t) =
K1∑
k=1

(s1 − κ1k)+(t1 − κ1k)+,

and

K2(s, t) =
K2∑
k=1

(s2 − κ2k)+(t2 − κ2k)+,

where s = [s1 s2]T and t = [t1 t2]T . Then

HK = H0 ⊕ H1 ⊕ H2

is the RKHS generated by K = K0 + K1 + K2, where H0, H1
and H2 are mutually orthogonal subspaces of HK. For f ∈ HK
let P1f denote the projection of f onto H1. Then, using the
notation of (10),

P1f(x1, x2) =
K1∑
k=1

u1k(x1 − κ1k)+

and

‖P1f‖2
HK =

K1∑
k=1

u2
1k.

The projection operator P2 is defined analogously and (10) may
be written as

min
f∈HK

[
n∑

i=1

{yi − f(x1i, x2i)}2 + λ1‖P1f‖2
HK + λ2‖P2f‖2

HK

]
.
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For general loss functions the criterion is

min
f∈HK

[
n∑

i=1

L(yi, f(x1i, x2i)) + λ1‖P1f‖2
HK + λ2‖P2f‖2

HK

]
.

The extension to other basis functions, several predictors as well
as to higher dimensional components (e.g., Kammann and Wand
2003) is straightforward.

5.4 Semiparametric Regression Models

General semiparametric regression models contain both
smooth functional (nonparametric) and ordinary linear (para-
metric) components. The simplest is

yi = β0 + β1 x1i + f(x2i) + εi

which is often referred to as a partially linear model. If f has
representation (9), then the appropriate kernel is K = K0 + K1
where

K0(s, t) = 1 + s1t1 + s2t2,

K1(s, t) =
K2∑
k=1

(s2 − κ2k)+(t2 − κ2k)+,

s = [s1 s2]T and t = [t1 t2]T . Let H0 and H1 be the reproduc-
ing kernel Hilbert spaces generated by K0 and K1, respectively.
Then HK = H0 ⊕ H1 and the problem takes the same form as
(7) with null space H0.

6. SUPPORT VECTOR MACHINE CLASSIFICATION

As mentioned in Section 1, most support vector machine clas-
sification research is within the discipline of machine learning.
This section shows how support vector machine classification
arises as a special case of penalized splines, and therefore allow
for the incorporation of the constructions described in the previ-
ous section. In addition, we discuss how low-rank kernels of pe-
nalized splines offer significant computational savings. We will
focus on the situation where the sample size n is much larger
than the dimension of the predictors d. The reverse situation,
sometimes called high dimension/low sample size, has been the
subject of a great deal of attention in the recent literature; es-
pecially due to the advent of microarray gene expression data
(e.g., Dudoit, Fridlyand, and Speed 2002). Penalized splines are
more advantageous for the classical n � d situation since, as
discussed later in this section, they have low-rank kernels which
afford faster computation for large n.

Two-category support vector machine classification corre-
sponds to setting the loss function to be hinge loss: L(a, b) =
(1−ab)+. However, the nonsmoothness of L in this case means
that fitting is different from that of squared error and likelihood-
based losses so some details are in order. Consider the gen-
eralization of the two-component additive model described in
Section 5.3 corresponding to xi ∈ R

d:

f(xi) = (Xβ + Zu)i =

(
Xβ +

L∑
�=1

Z�u�

)
i

(12)

for design matrices X, Z = [Z1, . . . ,ZL], where each sub-vector
u� has its own smoothing parameter. The criterion to minimize

is then

n∑
i=1

(1 − yif(xi))+ +
L∑

�=1

λ�‖u�‖2, (13)

where yi ∈ {−1, 1} codes the two categories. Note that (10) and
(10) correspond to the situation where d = L = 2,

X = [1 x1i x2i]1≤i≤n

and
Z = [Z1 Z2] = [(x1i − κ1k)+

1≤k≤K1

(x2i − κ2k)+
1≤k≤K2

]1≤i≤n.

Although this example involves two univariate smooths, it
should be noted that higher-dimensional smooths can also be ac-
commodated by (12) and (13) (e.g., Kammann and Wand 2003).

Unlike least squares loss and Bernoulli log-likelihood loss,
hinge loss is usually handled via Lagrangian optimization meth-
ods. A summary was provided by Cristianini and Shawe-Taylor
(2000, chap. 5). See also Hastie et al. (2001, secs. 12.2 and 12.3).
Minimization of (13) is equivalent to the constrained optimiza-
tion problem

min
βββ,u

(
L∑

�=1

λ�‖u�‖2 +
n∑

i=1

ξi

)
subject to

ξi ≥ 0, yi(Xβββ + Zu)i ≥ 1 − ξi for all 1 ≤ i ≤ n.

The Lagrangian primal function is

LP =
L∑

�=1

λ�‖u�‖2 +
n∑

i=1

ξi

−
n∑

i=1

αi{yi(Xβ + Zu)i − (1 − ξi)} −
n∑

i=1

τiξi, (14)

where αi, τi ≥ 0 for all 1 ≤ i ≤ n. Setting the derivatives of
LP with respect to β, u� and ξi to zero results in the equalities

XT (α � y) = 0; u� = (2λ�)−1ZT
� (α � y),

1 ≤ & ≤ L; and τi = 1 − αi 1 ≤ i ≤ n,

where here, and subsequently, A � B denotes the element-wise
product of equal-sized matrices (i.e., same number of rows and
columns) A and B. Substitution into (14) leads to the Lagrangian
dual function

LD = 1T α − 1
2
αT Dα,

where

D =
1
2
(yyT ) � (ZΛΛΛ−1ZT ), (15)

and ΛΛΛ = diag(λ11, . . . , λL1). The fitted α̂i values are then
found by solving the quadratic programming problem

minααα(−1T α +
1
2
αT Dα) (16)

subject to 0 ≤ αi ≤ 1, for all 1 ≤ i ≤ n, and XT (α � y) = 0.
The Karush-Kuhn-Tucker constraints include

αi[yi(Xβ + Zu)i − (1 − ξi)] = 0, τiξi = 0,
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and

yi(Xβ + Zu)i − (1 − ξi) ≥ 0 (17)

for all 1 ≤ i ≤ n.
Let α̂αα, ξ̂ξξ be the solution to (16) and (17). The fitted u is then

û =
1
2
ΛΛΛ−1ZT (α̂αα � y).

A fitted value for β needs to be determined from the points in
the set {xi : 0 < α̂i < 1}; the support vectors for which ξ̂i = 0.
Let S be set of 1 ≤ i ≤ n corresponding to these points. From
the first Karush-Kuhn-Tucker constraint we obtain the set of
equations:

(Xβ)i = (1/yi) − (Zu)i = (y − Zu)i, i ∈ S. (18)

(the last equality follows from yi ∈ {−1, 1}). If q is the length of
β and m is the cardinality of S then (18) represents a system of
q unknowns with m linear equations. Most of the support vector
machine literature only treats the case q = 1, corresponding to an
unpenalized intercept. In this case, Cristianini and Shawe-Taylor
(2000) solved for β = β0 using an arbitrary margin point while
Hastie et al. (2001) recommended averaging all m solutions. For
general q our current recommendation for obtaining β̂ββ is to take
the median values from the

(
m
q

)
possible solutions, assuming

this number is not too large. Otherwise, take the median from a
random sample of the

(
m
q

)
possible solutions. Some safeguards

are necessary to avoid degenerate linear systems.
The bulk of the computation is concerned with the solution

of (16). For penalized splines kernels (15) shows that the Gram
matrix admits the factorization

1
2

ZΛΛΛ−1ZT = {Z(2ΛΛΛ)−1/2}{Z(2ΛΛΛ)−1/2}T

and thus has rank corresponding to the number of columns in Z.
Fine and Scheinberg (2001) described interior point algorithms
that take advantage of such low-rank kernels. See Ormerod
and Wand (2006) for R implementation. The algorithms in-
volve O(nK2) operations, where K is the rank of the Gram
matrix and corresponds to the number of columns in Z for pe-
nalized splines. Interior point algorithms with full-rank kernels
involve O(n3) operations. Decomposition algorithms—such as
Platt (1998) and Joachims (1998)—allow reductions to O(n2).
In the n � K situation low-rank kernels offer considerable

Table 1. Mean (standard error of the mean) Misclassification Rates Over
50 Simulations for the “Skin of the Orange” Example. Classifiers 1–6 are
described in Section 12.3.4 of Hastie et al. (2001). Classifier 7 is a support
vector classifier with additive penalized spline kernel as described in

Section 6.

No noise features Six noise features
Classifier (4 dimensions) (10 dimensions)

1 SVC/orig. 0.450 (0.003) 0.472 (0.003)
2 SVC/poly. 2 0.078 (0.003) 0.152 (0.004)
3 SVC/poly. 5 0.180 (0.004) 0.370 (0.004)
4 SVC/poly. 10 0.230 (0.003) 0.434 (0.002)
5 BRUTO 0.084 (0.003) 0.090 (0.003)
6 MARS 0.156 (0.004) 0.173 (0.005)
7 SVC/add. pen. spline 0.095 (0.004) 0.123 (0.003)

Bayes error 0.029 0.029

savings. For example, Figure 3 of Fine and Scheinberg (2001)
illustrates a more than 20-fold improvement in computational
time over the algorithm of Platt (1998).

Penalized splines are one of several ways to obtain a low-rank
kernel. Another general approach is to apply a thinning strategy
to the basis functions of a full-rank kernel. In the context of
support vector classification, such strategies have been studied
by, for example, Smola and Schölkopf (2000) and Williams and
Seeger (2001). The relative advantages of these approaches is
the topic of ongoing research.

6.1 “Skin of the Orange” Example

We tested additive penalized spline support vector classifiers
on the “skin of the orange” simulation settings described by
Hastie et al. (2001, sec. 12.3.4). Table 1 is mostly a reproduction
of their Table 12.2 but with addition of classifier 7—and lists the
mean misclassification rates from the simulation study (along
with standard errors). Descriptions of classifiers 1–6 are given
there and classifier 7, based on ideas in the current article, is
described in the next paragraph. At the time of writing, data
from the Hastie et al. (2001) simulation study were available on
the Internet and classifier 7 was applied to those data, making the
results directly comparable. Note that the Bayes error for each
setting is 0.029 and represents a lower bound on the expected
misclassification rate.

Classifier 7 involved the 4- and 10-dimensional extension of
the truncated line additive model (10) with 20 knots in each di-
rection. A relatively simplistic rule was used for choice of the
smoothing parameters in the additive penalized spline classifier.
We roughly mimicked the “4 degrees of freedom per smooth
function” default used in the R and S-PLUS function gam()
(Chambers and Hastie 1992; Hastie 2005). For hinge loss the
usual degrees of freedom definitions for penalized spline addi-
tive models (e.g., Ruppert et al. 2003, sec. 11.4) are not imme-
diate due to its nondifferentiability. We got around this by using
the Bernoulli log-likelihood loss as a rough approximation.

Table 1 shows that this “rough-and-ready” additive penal-
ized spline support vector classifier performs quite well com-
pared with the classifiers from the original study. Classifier 5
(BRUTO) performs better than classifier 7 in both settings, but
uses much more sophisticated smoothing parameter and variable
selection strategies. Classifier 2 performs better than classifier 7
when there are no additional noise features, but the two-degree
polynomial kernel is ideal for the spherical Bayes classification
boundary of this setting. It should also be mentioned that clas-
sifiers 1–4 had their smoothing parameters chosen for optimal
performance using the test data; while classifiers 5–7 used data-
driven rules for smoothing parameter selection, and possibly
variable selection, using only the training data.

7. DISCUSSION

The connection between penalized splines and reproducing
kernel methods has the potential to be extremely fruitful. As
is made clear in Section 6, support vector machines, which are
not seriously hindered by large sample sizes, are a major pay-
off from this connection. It is also anticipated that many fea-
tures of semiparametric regression including variable selection,
smoothing parameter selection, interpretability, robustness, and
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low-dimensional structure will prove to be beneficial in data
mining and machine learning applications. The simple structure
of penalized splines will aid research in this direction.

[Received September 2005. Revised June 2006.]
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