
Penalized Survival Models 
and Frailty 

Terry M. Themeau, Patricia M. Grambsch, V. Shane Pankratz 
Technical Report #66 

June 2000 

Copyright 2000 Mayo Foundation 

- 



Penalized Survival Models and Frailty 

Terry M Therneau, Patricia M Grambsch, and V. Shane Pankratz 

June 5, 2000 

Abstract 

Interest m the use of random effects in the survrval analysis settmg has been mcreasmg How- 

ever, the computational complexity of such fradty models has hmrted then general use. Whrle 

fittmg frarlty models has traditronally been standard algorithms for fittmg Cox semr- 

parametrrc and parametrrc regression models can be readily extended to m&de penahzed regres- 

sron We demonstrate that solutrons for gamma shared frarlty models can be obtained exactly 

VEI penahzed estlmatlon Smularly, Gauasmn barlty models are closely linked to penabzed mod- 

els Thus makes rt possible to apply penalized estrmation to other frarlty models usmg Laplace 

approxrmatrons. Fitting frarlty models wrth penalized bkebhoods can be made quite rapid by tak- 

mg advantage of computatronal methods avadable for penahzed models. We have nnplemented 

penalized regression for the coxph function of S-plus and rllustrate the algorrthms wrth examples 

usmg the Cox model 

KEY WORDS Cox model, penabzed bkehhood, proportional hazards, random effects 

1 Introduction 

In the last several years there has been significant and active research concerning the addition of 

random effects to survival models. In this setting, a random effect is a continuous variable which 

describes excess risk or fiorlty for distinct categories, such as indlvlduals or families, over and above 
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any measured covariates. The idea is that individuals have different frailties, and that those who are 

most frail will die earlier than the others. Aalen [l] provides theoretical and practical motivation for 

frailty models by discussing the impact of heterogeneity on analyses, and by illustrating how random 

effects can deal with it. 

Frailties are useful in modeling correlations in multivariate survival and event history data. Ex- 

amples include recurrent events such as epileptic seizures or depressive episodes, where an individual’s 

frailty influences the occurrence of events, and community trials, where the different events within 

each community share a common frailty. The simplest model, implicit in these examples, is the shared 

frailty model. In this model, all the units within each category share a common frailty, each unit be- 

longs to precisely one category, and frailties of different categories are independent. More complex 

models are possible. Frailties can be nested; individuals within a fanulty may share a common frailty, 

while families withm communities share another common frailty. Frailties can also be correlated, as 

in studies of pedigrees. Due to its simphcity, we emphasize the shared frailty model here. 

Frailties are usually viewed as unobserved covariates This has led to the use of the E&f algorithm 

as an estimation tool. However, the algorithm is slow, variance estimates require further computation, 

and no implementation has appeared in any of the more widely available packages. 

Penalrzed models provide an alternate approach. The frailty terms are treated as additional re- 

gression coefficients which are constrained by a penalty function added to the log-likelihood. They are 

computationally similar to other shrmkage methods for penalized regression such as ridge regression, 

the lasso and smoothing splines. Standard algorrthms for fitting Cox semi-parametric and parametric 

models can be simply extended to include penalty functions. These methods usually converge quickly 

and produce both point and variance estimates for model parameters. 

We discuss below the link between penalized estimation and frailty models. In particular, we 

demonstrate that if the frailty has a gamma distribution, then the shared frailty model can be written 

exactly as a penalized likelihood We also show that Gaussian frailty models are closely linked to 

penalized models We then turn to computational issues in implementing penalized techniques for 
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fitting proportional hazard frailty models. We describe our S-plus implementation and illustrate the 

algorithms with several examples. 

2 Frailty Models 

Assume that the data for subject it who is a member of the Jth of p families, follows a proportional 

hazards shared frailty model. The hazard can be written as 

X,(t) = X~(t)q,)e~.~, (1) 

where j(i) denotes that individual z belongs to family 1, tzJ(r~ = CC~ is the frailty for family 3, X is 

the covariate matrix of dimension n by p, and 0 is a vector of regression coefficients. The Q’S are 

independent and identically distributed from some positive scale family with density function f(m; O), 

having mean 1 and variance B for identifiability 

If the m’s are known, the complete data log-likelihood is 

c:=, [SF wmfd~o(t)) + lOdQJ(,)) + ml~w) 

- Jr Wq,) expK/WoW + logfb,(,);@] . 

If the m are viewed as missing data, the problem can be approached using the EM algorithm. 

Parner [12] lays out a general framework. Let 4(s) = Q(s,O) be the Laplace transform of the 

distrlbutlon of m, and let @“j(s) be its nth derivative with respect to s Let A3 = A7 (p, &) = 

C .j;;“K(s) expKPWo(~), w h ere the sum is over the members of family 1, and let d, be the num- 

ber of events in the jth family. The log-likelihood of the observed data, 

I,,& x0, 0) = C:=, 6, log (J,” Y,(t)exL”Ao(t)) + C,“=, loe[(-l)d,~(d~)(Al)l, (2) 

is found by mtegrating over the distribution of ZJ. For any fixed value of 0, Parner suggests maximizing 

this likelihood for 0 and X0 by an EM algorithm, which alternates between the foIlowing steps. 

1 M-step. Treat the current estimate of P as a fixed value or @‘set, and update ,O and &J as in 
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usual Cox regression. Note that for given ,B and w, 

2. Estep. Compute w as the expected value given the current values ,f3 and Xe and the data. 

where A, = A,(p,&@,w)). 

Equations 2 and 4 require the shared frailty model and unfortunately do not hold for more complex 

models. Parner suggests that estimation of f3 be done by maximizing the profile log-likelihood 

L,(B) = Ln(B(~),m,e). (5) 

Although P is not an explicit parameter of the observed log-likehhood, the EM algorrthm provrdes 

an estimate of this vector. 

The penalized regression formulation for the shared frailty model is most easily developed from an 

alternative versron of the hazard, 

A,(t) = Xo(t)eXrP+z*w, (6) 

which is equivaIent to Equation 1. In this case, w3 = exp(w,), 2 is matrix of Q indicator variables such 

that .& = 1 when subject o is a member of family j and 0 otherwise, and each indrvldual belongs to 

only one family. Estimation under this model is done by maximizing a penalized partial log-likelihood 

PPL = PI@, w; data) - g(w; f3) 

over both p and w. Here PL is the log of the usual Cox partial likelihood, 

[ x(t)(xd + z&J) - log{~ Yk(t) eXP(Xkb + zkd) 1 dN%(t) (7) 
k 

and g is a penalty function chosen by the investigator to restrict the values of w. The parameter 8 

is a tuning constant which may be pm-specified or adapted to the data. Typically, one would choose 

the penalty function to “shrink” w toward zero and use 0 to control the amount of shrinkage. 
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To estimate /? and w, one solves the score equations. Because the penalty function does not involve 

8, aPPL/$3 = aPL/8/3. Therefore, the score equations for p are identical to those for an ordinary 

Cox model treating Zw as an offset term. If we define 

then 

Recall that for given B and w, the Breslow estimator of the underlying hazard is 

80(t,P,w) = ~dN(t)l cY,(t) exp(X,P + Zw), 

which is Just Equation 3 in different notation. Let A, = iz(p,w) = ~,“Y,(s)d&(t;/3,~). Simple 

algebra shows that the score equation for W, 1s 

Because of the structure of the matrix Z, this equation simplifies to 

amL -= au, [ dj -A+ - w> 1 -ag(w; = o 
aw, (11) 

where d, and A, are as defined above. 

The penalized likelihood can be fit with the Newton-Raphson algorithm. In addition to the score 

vectors aPPL/afi and tlPPL/aw, this reqmres the Hessian of the penalized partial log-likelihood: 

0 0 
H=H(B,w)=Z+ 

( I> 

WI 
0 g” 

where Z = Z(p, w) is the usual Cox model information matrix, or the second derivative matrix of PL 

with respect to p and w. 

2.1 Gamma frailty 

Details of the EM approach for the shared gamma frailty model can be found in Nielsen et al. [ll] 

and Klein [S]. Equations 4 and 2 can be used to re-derive their results, and help make the connection 
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to penalized methods. Here we demonstrate that for any fixed 0, the penalized log-likelihood with 

appropriate choice of penalty function and the observed-data log-hkelihood in Equation 2 have the 

same solution. 

Let the frailty have a gamma distribution with mean 1 and variance 0 = l/v. The density of m 

can be written as 

log[f(zj; v)] = (v - 1) log(P) - vrz + vlog(v) - logr(v). 

This has a Laplace transform of d(s) = (1 + s/v)-“. The derivatrves of 4(s) are 

,j,‘d’(s) = (-;)“(1+;)-“+“’ 5 (y+q, 
,=O 

and Equation 4 reduces to 

ewj d3 + v 
= 7. 

A3 f v 
(13) 

The solution to the penalized partial likelihood model, with penalty function 

g(w;O) = -l/8 C;==,[W, - exp(w,)], coincides with the EM solution for any fixed value of 0. 

Proof 

For /J, the EM and penalized methods have the same score equation, which mcludes Zw as a fixed 

offset Thus if the solutrons for w are the same, those for b will be also. Let (p, G) be a solution to the 

the EM process. Then 3 must satisfy Equatron 13 exactly, not just as an update step. Rearrangmg 

terms, we see that & = exp(-$)(d, + V) - v. Substituting this into the penalized score equation 

and simplifying with v = l/O a fixed quantity, we see that 

= [dj _ e-% (dj + ; - +a>) &] + ;(I - &) 

= 0. 

This shows that the solution to the EM algorithm is also a solution to the penahzed score equations. 
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Therefore, for any i&d 0, the penalized log-likelihood and the observed-data log-likelihood in Equation 

2 have the same solution, although these two equations are not equal to one another. 

Furthermore, if we let PPL(0) = PPL(&B),O(B), e), then we can write Equation 5, the profile 

log-likelihood for 8, as PPL(8) plus a correction that only involves B and the d,s. Using the fact that 

each row of 2 has exactly one 1 and p - 1 OS, we see that the Cox PL for (b, 2) must be the same as 

that for (p, 5 + c) for any constant c. Simple algebra shows that the value of c which minimizes the 

penalty portion of the PPL is such that 

Using the identities in Equations 13 and 14, recalling that they hold only at the solution point, we 

show in the appendix that 

4 

L,(~)=PPL(B)+~zJ-(v+d,)log(~+d,)+~log~+log 
j=1 

(“&yJ) . 

It IS useful to consider&(e)+& d,, rather than L,(8), because the profile log-likelihood converges 

to PL(& - Cd, as the variance of the random effect goes to zero. Adding Cd,, to L,(B) makes 

the maximized marginal likehhood from a frailty model with small B comparable to the maximized 

likelihood from a non-frailty model. 

The fitting program for a shared gamma frailty consists of an inner and outer loop. For any fixed 

8, Newton-Raphson iteration is used to solve the penalized model in a few (usually 3-5) steps, and 

return the corresponding value of the PPL. The outer loop chooses 0 to maximize the profile likelihood 

in Equation 15, which is easily done as it is a unimodal function of one parameter. 

All of the results presented in this section were dependent on the correct choice of a penalty 

function. For gamma frailties, the penalty function that links the penalized and EM results is directly 

related to the density of the random effect; the log of the density for w, where exp(w) has a gamma 

distribution, is equal to [W - exp(w)]/e plus additional terms not involving w. Similarly, the penalty 

we use for a Gaussian frailty is related to a log-density, as discussed in the next section 



2.2 Gaussian Frailty 

McGrlchrist and Aisbet [lo, 91, suggest a Gaussian density for w in a shared frailty model. This leads 

to the penalized partial likelihood 

PPL = PL - (l/28) 2 u; , (16) 
,=1 

where 0 is the variance of the random effect. 

The authors do not provide an exact connection to the marginal likelihood that can be used to 

choose the variance parameter 0. Instead, they note the similarity of the Cox model’s Xewton-Raphson 

step to an iteratively m-weighted least-squares calculation. Using this observation, they propose using 

standard estimators from Gaussian problems. This leads to choosing 0 such that it satisfies 

4 

The value of r varres depending on the estimation technique used. For BLUP, r = 0; for MLE, 

r = trace[(Hss)-l]; and for REML, r = trace[(H-l)ss], w h ere H is the Hessian of the penalized 

partial log hkehhood in Equation 12 and Hz2 is the lower right p x q submatnx corresponding to the 

random effects. 

The Gaussian approach is justified and expanded in Ripatti and Palmgren [14]. Let the random 

effects have a positive definite covariance matrix D = D(0). This provides a rich class of models 

for the random effects; for example, setting D = BI results m a shared frailty model. The marginal 

log-likelihood is 

L&&8) = -1/2loglDI +log exp[PL@,w) - 1/2~‘D-“~w]dw 

Kote that, unlike Parner’s approach, this marginal log-likelihood does not mvolve Xc(t), that has 

already been partialed out to give the Cox partral log-likelihood. Following the methods of Breslow 

and Clayton [2], fipatti and Palmgren use a Laplace approximation to the above integral to get an 

approximate marginal log-likelihood. 

L&e) N PL(P,G) - l/2 (G’D-‘5 +logIDI +logIH(B,kal) > (18) 
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where & = &(/3,0) solves 

2J” (2, - z,(t))div,(t) - D(e)-lLJ = 0 r=1 0 
which is comparable to Equation 9. As a result, the first two terms of the approximate marginal 

log-likelihood correspond to a penalized partial likelihood with g(w; 0) = 1/23’0(6)-i3. This reduces 

to Equation 16 in the case of a shared frailty model. We can ignore the thud term of Equation 18 

as D is constant for fixed 8. Ignoring the fourth term can influence the estimates, but Ripatti and 

Palmgren suggest that the loss of information is slight. 

As shown in Ripatti and Palmgren [14], the estimating equation for 0, is 

trace b-rg] + trace [(H&-r%] - ,J’D-~~D-~~ = 0. (19) 

The Fisher information matrrx, obtamed by taking the expectation with respect to w, has a ~lc element 

of 

(20) 

For the shared frailty model the estimating equation reduces to 

s = W’W + trace[(Hzz)-l] 
Q 

which is equivalent to the MLE formula of McGilchrist [9]. 

Yau and McGilchrist [16] display a similar formula for the ML estimate for an arbitrary correlation 

matrix D, and apply the results to the CGD data set using an AR(l) structure for the multiple 

infections within subject. (Unfortunately, differences in how ties are handled make it impossrble to 

replicate then fits). In that paper, they also define an REML estimate, which is identical to Equations 

19 and 20 above, but with (H-‘)zz replacing (Hzz)-l Additionally, their simulations show Equation 

20 to be an overestimate of the actual standard error. 
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3 Computational Issues 

Thus far, we have discussed the relationship between frailty models and penalized likelihood estima- 

tion. In this section, we descrrbe several issues important to the computational implementation of 

penalized likelihood methods for Cox models with random effects. 

3.1 Penalized Likelihood Inference 

Consider a Cox model with both constrained and unconstrained effects, as shown in Equation 6. The 

model is fit by maximizing the penalized partial log-likelihood (PPL). We assume that 0 is fixed. 

Consider testmg the set of hypotheses z = C(pl, w’)’ = 0, where (p’, w’)’ is the combined vector of 

p + Q parameters, and C is a k x p + Q matrix of full row rank k, k 5 p + 9. Gray [3] suggests that 

V = H-lZff-l (21) 

be used as the covariance estimate of the parameter estimates. He recommends a Wald type test 

statistic, z’(CH-~C’)-‘H, with generalized degrees of freedom 

df = trace[(CH-‘C’)-’ (CVC’)] . 

The total degrees of freedom for the model (C = I) simplifies to 

df = trace[HV] 

= trace[H(H-‘(H - G)H-‘)I 

= (p + 4) - trace[GH-‘1. P-9 

Under Ho, the distribution of the test statistic is asymptotically the same as C e,Xz, where the e, 

are the k eigenvalues of the matrix (CHmlC’)-’ (CVC’) and the X, are iid standard Gaussian random 

variables. In non-penalized models, the e, are all either 0 or 1, and the test statistic has an asymptotic 

chi-square distribution on C e, degrees of freedom. In penalized models, the test statistic has mean 

C e, and variance 2 C et < 2 C e, because 0 5 e, 5 1. Usmg a reference &-square distribution with 

df = C e, will tend to be conservative. 
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Verweij and Van Houwelingen [15] discuss penalized Cox models in the context of restricting 

the parameter estimates. They use H-l as a “pseudo standard error”, and an “effective degrees of 

freedom” identical to Equation 22. With this variance matrix, the test statistic z’(CH-~C’)-~Z is a 

usual Wald test. To choose an optimal model they recommend either the Akaike Information Criterion 

(AIC) which uses the degrees of freedom described above or the cross-validated (partial) log-likelihood 

CVL, which uses a degrees of freedom estimate based on a robust variance estimator. 

Our algorithm makes both H-l and HelZHel available. Significance tests are baaed on H-’ as 

the more conservative choice. Simulation experiments for the related problem of penalized smoothmg 

sphnes in Cox regression (not shown) suggest that this 1s the more reliable choice for tests, but we do 

not have more definitive results to support thus. 

In our implementation, the computatron of the degrees of freedom and variance matrices are 

specialized to avoid any intermediate steps that would give a 4 by Q result, where Q is the number of 

constrained coefficients. 

3.2 Sparse computation 

When performing estimation with frailty models, memory and trme consrderations can become an 

issue. For instance, if there are 300 families, each with a frailty term, and 4 other variables, then the 

full information matrix has 3042 = 92416 elements. The Cholesky decomposition must be applied to 

this matrix within each Newton-Raphson iteration. In our S-plus implementation, we have applied a 

technique that can provide significant savings in space and time. 

If we partition the information matrix of a Cox shared frailty model according to the rows of X 

and Z, and arrange the matrix as 

zzz zzx 
Z= 

( I> zxz 1xX 

then the upper left corner will be a diagonally dominant matrix, having almost the form of the 

variance matrix for a multinomial drstribution. Adding the penalty further increases the dominance 
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of the diagonal. Therefore, using a sparse computation option, where only the diagonal of Zss is 

retained, should not have a large impact on the estimation procedure. 

Ignoring a piece of the full information matrix has a number of implications. First, the speed of 

the Cholesky factorization is increased dramatically. Second, the savings m space can be considerable. 

If we use the sparse option with the example above, the information matrix consists of only 1~s and 

Zxx, with 304 * 4 = 1216 elements, along with the 300 element diagonal of Zss, a savings of over 

95% in memory space. Third, because the score vector and likelihood are not changed, the solution 

point is identical to the one obtained in the non-sparse case, discounting trivial differences due to 

distinct iteration paths. Fourth, the Newton-Raphson iteration may undergo a slight loss of efficiency 

so that l-2 more iterations are required. However, because each N-R iteration requires the Cholesky 

decomposition of the information matrix, the sparse problem is much faster per-iteration than the full 

matrix version. Finally, the full information matrix is a part of the formulas for the post-fit estimates 

of degrees of freedom and standard error. In a small number of simple examples, the effect of the 

sparse approximation on these estimates has been surprisingly small. 

We have found two cases where our sparse method does not perform acceptably. The first is if the 

variance of the random effect is quite large (>5). In this case, each N-R iteration may require a large 

number (>15) iterations. The second is if one group contains a majority of the observations. The off 

diagonal terms are too important to ignore in this case, and the approximate K-R iteration does not 

converge. 

4 Examples 

We now present two examples where we use our S-plus functions to obtain estimates from frailty 

models. The first deals with the survival of kidney catheters. The second examines the effect of 

UDCA in patients with primary blliary cirrhosis. 
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4.1 Survival of kidney catheters 

The following data set is presented in McGilchrist and Aisbett [lo]. Each observation is the time 

to infection, at the point of insertion of the catheter, for kidney patients usmg portable dialysis 

eqmpment. Catheters may be removed for reasons other than infection, in which case the observation 

is censored. There are 38 patients, each with exactly 2 observations. Variables are the subject id, age, 

sex (l=male, 2=female), disease type (glomerulo nephritis, acute nephritis, polycystm kidney disease, 

and other), and the time to infection or censoring for each insertion. We first fit two ordinary Cox 

models, followed by a gamma frailty fit. 

> kfitl C- coxph(Surv(time, status) " age + sex, data=kidney) 
> kfit2 <- coxph(Surv(time, status) - age + sex + disease, 

data=kiduey) 
> kfit3 <- coxph(Surv(time, status) " age + sex + disease + 

frailtybd), data=kidney) 
> kfit3 

coef se(coef) se2 Chlsq DF P 
age 0.00318 0.0111 0.0111 0.08 1 7.8e-01 
sex -1.48314 0.3582 0.3582 17.14 1 3.5e-05 

dlseaseGN 0.08796 0.4064 0.4064 0.05 1 8.3e-01 
diseaseAN 0.35079 0.3997 0.3997 0.77 1 3.8e-01 

diseasePKD -1.43111 0.6311 0.6311 5.14 1 2.3e-02 
frailty(id) 0.00 0 9.5e-01 

Iterations: 6 outer, 29 Newton-Raphson 
Penalized terms: 

Variance of random effect= 1.47e-07 H-likelihood = -179.1 
Degrees of freedom for terms= 1 1 3 0 
Likelihood ratio test=17.6 on 5 df, p=O.O0342 u= 76 

Many of the labels in this output are self-explanatory. Several may need some clarification The 

se(coef) estimates are from the diagonal elements of H-l, and se2 uses the diagonal entries in 

H-'ZH-'. In this particular data set, they are identical, but that is not always the case. The 

M-likelihood is the marginal likelihood in Equation 15, evaluated at the MLE. 

The partial log-likelihood values for first two models are -184.3 and -179 1, with 2 and 5 degrees of 

freedom respectively. Hence, the drsease variable is a significant addition. In the third fit, the program 

provided an estimate of the MLE of 0, the variance of the random effect, that was essentially 0. 
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Figure 1. Residuals for the kidney data from model kfitl. 
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When the disease variable is left out of the random effects model, however, we get a quite different 

result. 

> kfit4 <- coxph(Su.rv(time, status) - age + sex + frailty(id), 
data=kidney) 

> kfit4 
coef se(coef) se2 Chisq DF P 

age 0.00522 0.0119 0.0088 0.19 1.0 0.66000 
sex -1.58335 0.4594 0.3515 11.88 1.0 0.00057 

frailty(id) 22.97 12.9 0.04100 

Iterations: 7 outer, 49 Newton-Raphson 
Variance of random effect= 0.408 M-likelihood = -181.6 

Degrees of freedom for terms= 0.6 0.6 12.9 
Likelihood ratio test=46.6 on 14.06 df, p=2.36e-05 n= 76 

ln this case, both the approximate Wald test and the likelihood ratio test indicate that the variance 

of the random effect is greater than zero. The Wald test shown in the printout is not as accurate as 

the the comparison of the marginal likelihood to that from kf It1 (-184.3 vs -181 6), which gives a 

chi-square statistic of 5.4 on 1 degree of freedom for a p-value of 0.02. As discussed in Xelsen et al 

[ll], this chi-square test for 0 is not affected by the boundary at zero. 

Figure 1 shows the reason for the discrepancy of the results between the two models. The graph 

shows the martingale residuals for each subject (the sum of the residuals from the two observatrons), 

based on the simplest model, kf itl. Note the outlier in the lower right, corresponding to a 46 year 

old male whose age was quite close to the median for the study (45.5 years). There were 10 males and 

most had early failures: 2 observations were censored at 4 and 8 days, respectively, and the remaining 

16 male kidneys had a median time to infection of 19 days. Subject 21, however, had failures at 154 

and 562 days. With this subject removed, neither the disease (p=O.53) nor the frailty (p>O.9) are 

important. With this subject in the model, it is a toss-up whether the disease or the frailty term will 

be credited wrth ‘significance’. Using a Gaussian frailty with REML gives partial importance to each. 

> mfltl <- coxph(Snrv(time,status) - age + sex + disease + 
frallty(id, dist=‘gauss’ , sparse=F) , data=kidney) 

> mfitl 
coef se (coef) se2 Chisq DF P 

age 0.00492 0.0149 0.0108 0.11 1.0 0.74000 
sex -1.70204 0.4631 0.3613 13.51 1.0 0.00024 
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diseaseAN 0.39442 0.5428 0.4052 0.53 1.0 0.47000 
diseaseGN 0.18173 0.5413 0.4017 0.11 1.0 0.74000 

diseasePKD -1.13160 0.8175 0.6298 1.92 1.0 0.17000 
frailtycid, dist = “gauss 18.13 12.3 0.12000 

Iterations: 6 outer, 17 Newton-Raphson 
Variance of random effect= 0.509 M-likelihood = -171.9 

Degrees of freedom for terms= 0.5 0.6 1.7 12.3 
Likelihood ratio test=118 on 15.14 df, p=O n= 76 

The sparse routines have some impact on the solution for a Gaussian model, since the REML 

estimate depends on the matrix H. Usmg the sparse=T option in the frailty function, the routine 

required 32 Newton-Raphson iterations and gave a solution of B = 0 493, but with about one third 

the total computing time. 

The standard error estimates reported by a penalized coxph model m S-plus are computed under 

the assumption that 0 is fixed. For some models, such as a smoothing splme with user specified degrees 

of freedom, For the above frailty models it clearly is not and the standard 

errors are an underestimate. Using the bootstrap, we found the standard error to be much higher for 

this data set, which is not surprising given the inordinate influence of a single subject. More useful 

bootstrap results appear in the second example. 

These answers differ slightly from the original authors’ [9] results. Their paper presents formulas 

that are completely valid only for untied data, and this data set has 5 tied pairs and one quadruple. 

This is a small proportion of the data, and in a standard Cox model the ties would barely perturb the 

answers. Unfortunately, the REML solution for 6’ can be very sensitive to small changes m the data. 

4.2 UDCA in Patients With PBC 

Primary bliary cirrhosis (PBC) is a chronic cholestatic liver disease characterized by progressive 

destructron of the bile ducts. PBC frequently progresses to cnrhosrs, which may lead to death from 

liver failure unless liver transplant 1s offered - an extensrve and costly procedure. Trials have been 

held for several promising agents, but an effective therapy remains elusive. Although progression of 

disease is inexorable the time course can be very long, many patients survive 10 or more years from 
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their initial diagnosis before requiring a transplant. 

UDCA Placebo 

Death 6 10 

Transplant 6 6 

Drug toxicity 0 0 

Voluntary withdrawa 11 18 

Histologic progression 8 12 

Development of varices 8 17 

Development of ascites 1 5 

Development of encephalopathy 3 1 

Doubling of bilirubin 2 15 

Worsemng of symptoms 7 9 

Table 1: Total number of events m the UDCA trial 

A randomized double-bhnd trial of a new agent, ursodeoxycholic acid (UDCA), was conducted at 

the Mayo Clinic from 1988 to 1992 and enrolled 180 patients The data are reported in Lindor et al [8]; 

the analysis shown here has slightly longer follow-up. The endpoints of the study were pre-defined and 

are shown in Table 1. Although nearly all of the comparisons favored GDCA, none were significant 

mdividually. The primary report was based on an analysis of time to the first event; 58/84 placebo 

and 34/86 UDCA patients have at least one event. An analysis that used all of the events data would 

seem to be more complete, however, since it would be based on 93 placebo and 52 UDCA events, a 

gain in “mformation” of 57%. 

The event endpoints are all unique, i.e., no single patient had more than one instance of death, 

transplant, doubling of bilirubin, etc. Three possible methods of analysis present themselves. The 

simplest is time to the first adverse event. In this case, each patient has a single observation and 

correlation is not an issue. The second is a marginal analysis in the manner of Lm [7]. The a third 
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involves the use of a frailty model. The data set for the latter two options is essentially a concatenation 

of the 9 individual data sets that would be created for an analysis of time to death (censoring all other 

causes), time to transplant, time to withdrawal, etc., with the event type as a stratification variable. 

The covariates in each of these models are treatment and two of the stratification factors used 

in treatment assignment. The resulting parameter estimates and then standard errors are shown in 

Table 2. The robust standard error estimates for the frailty model were obtained from 1000 bootstrap 

realizations where 0 was fixed at the original model’s estimate. They show the ordinary standard error 

to be quite reliable as an estimate when 0 is mcorrectly fixed m advance. The bootstrap standard 

error estimates obtained when 0 was estimated were higher than those shown in Table 2, being 0.42, 

0.51, and 0.50 for treatment, bilirubin, and stage respectively. 

Gpon exammation of Table 2, two outcomes are immediately obvious. First, the naive variance 

is an underestimate in the multiple event model; accountmg for the within-patient correlation is 

important. Second, the multiple-event robust variances and the frailty variance estimates are slightly 

larger than the variances for first events only. The use of multiple events added no information to the 

analysis! 

A closer look at the data reveals the cause of the difficulty. Patients participating in the study 

returned for evaluation once a year, which is the point at which most of the outcomes were measured. 

For instance, one patient had 5 events, 4 of which were recorded on 20 July 1990. The fifth, death, 

occurred on 22 July. Similar outcomes are seen for many others. Figure 2 shows the event times for 

the 31 subjects with multiple adverse outcomes, with a circle marking each event The data has been 

jittered slightly to avoid overlap. It appears that the use of multiple event types was useful m this 

study only to make the detection of “liver failure” more sensitive. Given that failure has occurred, 

the number of positive markers for failure was irrelevant. 

In this situation we expect the frailty model to show significant within patient correlation, and 

indeed this is the case. The variance of the random effect is estimated as 1.47 in a shared gamma 

frailty model and is highly significant (x2 = 31.6 on 1 df). The estimated value of Kendall’s r is 
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P se(P) robust se 

treatment 

bilirubin 

stage 

first event 

-0.94 0.22 0.22 

0.74 0.24 0 23 

-0.02 0.25 0.25 

marginal model 

treatment -0.80 0.17 0.23 

brhrubin 0.77 0.18 0 25 

stage 0.05 0.21 0.28 

treatment 

bilirubin 

stage 

frailty model 

-0.96 0.28 0.32 

0 74 0 31 0.32 

0.31 0.32 0.35 

Table 2. Results of 3 models for the UDCA data 

e/(2 + 0) = 0.42. 

5 Concluding Remarks 

Penalized estimation techniques are useful estimation tools. We have now shown that estimation 

using shared Gamma frailty models can be performed exactly with penalized likelihood methods. 

This is true for models with time-dependent covariates as well as for models with time-independent 

covariates, which we focused on in an attempt to keep the notation simple. We have yet to find such a 

correspondence for more general Gamma frailty models, such as the nested frailty model of Guo and 
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Figure 2: Multiple failure times for the UDCA data. 

Rodriguez [4]. However, more general Gaussian frailty models can be approximately estimated using 

penalized estimation procedures. 

Also, the programs support the use of AIC or corrected AIC [5] as a selection criteria. With 

this approach, models can be fit beyond those for which a formal ML-penalized correspondence has 

been worked out, such as models with multiple frailty terms or other frailty distributions. Using 

AIC as the optimization criteria for 0 and the log of a t-distribution density as the penalty term, 

for instance, appears to give similar results to more formal MCMC methods on two (small) local 

examples Wider experience and/or formal results are needed to understand the relative merits of 

hkehhood and degrees-of-freedom based approaches. 

We outline several important issues regarding the variance of the random effect, 8, below. 
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. The software does not print an estimate of the variance of t?. However, a plot of the profile 

likehhood can easily be obtained by fitting a sequence of models with fixed 0. This profile 

likelihood is often seriously asymmetric with a longer right tail, raising concerns about the 

utility of se(e) for either confidence intervals or tests. The current computer code does iteration 

on the fi scale. While this seems to speed convergence, other scales may be more appropriate. 

l The estimate of the random effect is much less precise than the estimates of the coefficients 8. 

It is unclear how ._ . _ . is needed for reliable estimation. 

l The software prints out an approximate Wald test, w’(H-~)~~w, based on the fitted frailty 

coefficients. Since the number of frailty coefficents often grows with sample size, while the 

eflectme number might not, the statistical properties of the test are unknown. The printed 

test seems to be successful as a first “very significant/not at all significant” approximation, but 

final judgement should be based on the likelihood ratio test derived by comparing the printed 

N-likelihood value to the fit without the frailty term. 

l The standard errors of the estimate are calculated as though 0 were fixed This is true for some 

penalized problems, but false for the two examples given here. A bootstrap evaluation with 0 

fixed at 8 gives standard errors for the other parameters that agree with our asymptotic formula, 

but with 0 free the standard errors are larger by 30 to 60 percent. 

Beyond its extendability, an important benefit of the penalized approach is speed. The computer 

code is fast enough that we can use it with computationally intensive secondary techniques such as 

the bootstrap. For instance, it took just over eleven minutes to perform 1000 bootstrap realizations 

of the kidney data holding 0 fixed, and 35 minutes when 0 was allowed to vary. 

In summary, certain classes of frailty models can be formulated as penalized likehhoods. Because 

of its connection to other work in penalized regression, computational improvements are possible for 

selected models. For shared frailty models, use of a sparse Cholesky factorization provides significant 

computational advantages. Other, similar, gwns can be made with other frailty models. As an 
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example, genetic family studies can be caSt as a frailty model with one random effect per subject, 

and correlations among random effects that are block diagonal with one block per family. This can 

be efficiently handled using a more general sparse Cholesky algorithm. 
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Appendix: Correspondence of Marginal Log-likelihoods at the 

Solution Point 

Here, we obtain the realized value of the marginal log-likelihood at the solution point in terms of 

the penahzed likelihood for the gamma shared frailty model. This justifies Equation 15. 

Expanding Equation 2 gives 

L,(P,xo;e) = g&log (I Yz(t)extPdAo(t) 
,=l > 

+k[-d,logv-(v+dJlog(l+A,/v)+log{I’(v+dJ/I+)}]. 
J=l 

The log profile likelihood for l3 is just this function restricted to the one-dimensional curve defined by 

the maximizmg values of ,&@),LJ(~), is(e). On that curve A, = (4 +v-ve”j)/e”j (see Equation 13). 

With thus substitution, after some rearangement we get 

Lm(e) = 2 6, log (izeX,d+z*') 

*=l 

+ 2 [-(v + d3)log(v + d3) + vlog(ve’J) + logr(v + d,) - loglY(v)] , 
,=l 

where 6, is a O/l indicator for an event for individual 2. 

Subtracting and adding the penalty function g(w; 0) = -l/e c,“=, w, - exp(w,). evaluated at & 

results in 

Lm(e) = 56, 10g&X.d+z.o) - g(c;e) 
*=l 

+$r- vt$ + ve’j - (v + dJ) log(v + d,) + vlog(ve”~) + logr(v + dJ) - logr(v)] 
,=l 

zz szqe) + 2 [V - (V + ca,)log(v + dJ) + vlogv + log (“;(‘~,“l’)] , 
J=l 

where the last step follows from Equation 14. 

Note that, because considerable loss of accuracy can occur if one subtracts values of the log-gamma 

function, it is computationally advantageous to use 

log(y-yP)) =Elog(S) 
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rather than 

log (““r;p’) = log(l+ + 4)) - log(l?(v)). 
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