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Penalized Weighted Least-Squares Image 
Reconstruction for Positron Emission Tomography 

Jeffrey A. Fessler 

Abstract-This paper presents an image reconstruction method 
for positron-emission tomography (PET) based on a penalized, 
weighted least-squares (PWLS) objective. For PET measurements 
that are precorrected for accidental coincidences, we argue sta- 
tistically that a least-squares objective function is as appropriate, 
if not more so, than the popular Poisson likelihood objective. We 
propose a simple data-based method for determining the weights 
that accounts for attenuation and detector efficiency. A non- 
negative successive over-relaxation (SSOR) algorithm converges 
rapidly to the global minimum of the PWLS objective. Quantita- 
tive simulation results demonstrate that the biashariance trade- 
off of the PWLSSSOR method is comparable to the maximum- 
likelihood expectation-maximization (ML-EM) method (but with 
fewer iterations), and is improved relative to the conventional 
filtered backprojection (FBP) method. Qualitative results suggest 
that the streak artifacts common to the FBP method are nearly 
eliminated by the PWLSSSOR method, and indicate that the 
proposed method for weighting the measurements is a significant 
factor in the improvement over FBP. 

I. INTRODUCTION 

ET IMAGING provides noninvasive quantification of P human physiology for medical diagnosis and research. 

The quantitative accuracy of PET is limited by the imperfect 

system response and by the methods used to reconstruct 

trans-axial images from projection measurements. The conven- 

tional FBP reconstruction method is based on a mathematical 

idealization of tomographic imaging zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11. The FBP method 

disregards the spatially-variant system response of PET sys- 

tems, and statistical noise is treated in a post-hoc manner by 

spatially-invariant smoothing. Although these approximations 

may be adequate for some purposes, there is little question 

that the FBP method is suboptimal for quantitative applications 

such as brain activation studies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 2 ]  and nonlinear functional 

images [3]. Such studies are particularly challenging since the 

total numbers of detected photon coincidence events per slice 

are often fairly low. 

Statistical image reconstruction (SIR) methods can account 

for spatially-variant system responses, and can also incorporate 

the measurement statistics. This potential has motivated the de- 

velopment of a great many iterative reconstruction algorithms. 

Ironically, most of the SIR methods reported for PET have 
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been implemented using spatially-invariant approximations to 

the system response, and have been based on an idealized 

model for the measurement statistics. Since the full capabilities 

of SIR methods have therefore not been realized in practice, 

it is perhaps unsurprising that there is ongoing debate as to 

whether the potential improvements of SIR over FBP are 

significant enough to justify the additional computation time 

involved. 

The benefits of SIR methods are likely to depend on the task 

of interest. In this paper, we focus on the specific context of 

quantifying radiotracer concentrations within small structures. 

This task is important because small structures are poorly 

quantified by FBP [4], which in tum degrades the accuracy 

of parametric images [3]. Recent work by several groups 

has indicated potential improvements for similar tasks using 

SIR methods zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5]-[7]. Furthermore, the bias and variance 

within a small point source in a uniform background are 

directly related to resolution and noise, respectively, so this 

task provides a somewhat generic measure of reconstruction 

algorithm performance. 

SIR methods require five components: 

1) a finite parameterization of the positron-annihilation dis- 

tribution, e.g., its representation as a discretized image, 

2) a system model that relates the unknown image to the 

expectation of each detector measurement, 

3) a statistical model for how the detector measurements 

vary around their expectations, 

4) an objective function that is to be maximized to find the 

image estimate, and 

5) an algorithm, typically iterative, for maximizing the 

objective function, including specification of the initial 

estimate and stopping criterion. 

In Section 11, we review the prevailing choices for the 

five SIR components, and, where appropriate, contrast them 

with the approach proposed in this paper. We argue that the 

measurement statistics are non-Poisson and analytically in- 

tractable when accidental coincidence events are precorrected, 

and therefore propose that a penalized, weighted least-squares 

objective is an appropriate practical compromise. We apply the 

+SOR “coordinate-descent’’ method for fast, globally conver- 

gent minimization of that objective, subject to nonnegativity 

constraints. In Section 111, we describe the computer simula- 

tions used to compare quantification by FBP. ML-EM, and the 

PWLS+SOR reconstruction method. Section IV summarizes 

the results of this comparison, and also qualitatively illustrates 

the different noise characteristics of the methods on FDG 

thorax images. Future directions are discussed in Section V. 
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11. THEORY 

This section briefly reviews the literature for the five com- 

ponents of SIR methods, and describes the method proposed 

in this paper. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAObject Parameterization 

The blurring effect of positron range implies that the an- 

nihilation distribution for a PET study is band limited. Thus, 

discretization of the distribution is acceptable. Decomposing 

the annihilation distribution into rectangular voxels is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdc 
facto standard for parameterizing images. Although smoother 

bases have been suggested zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[XI ,  [9], the voxel basis has the 

important practical property that its support is minimal (no 

overlap), thus the system matrix (described below) is maxi- 

mally sparse. This sparseness Facilitates computations. 11 X(.r) 
denotes the spatial distribution of the positron annihilations, 

then we approximate X by: 

X(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM X,l.;(.r) ( 1 )  
I 

where X j  denotes the mean activity in the j t h  voxel. and I,(s) 
is the indicator function with the , jth voxel as its support 1x1. 

The dimension of the voxels is an important design issue 

that is unique to SIR methods. The classical Nyquis~ sam- 

pling theory was developed for noiseless. spatially-invariant 

systems, and does not directly apply to PET reconstruction. 

An example of this was illustrated by Mintun e/  L i I .  [ 101 in 

their discussion of axial resolution. The FBP method can, in 
principle, reconstruct images with arbitrarily tine pixel grids, 

whereas with unregularized SIR methods. voxel sizes that 

are too small lead to over-parameterization and numerical 

instability. Conversely, voxel sizes that are too large can 

produce model mismatch and loss of image features. Although 

the importance of system sampling is well understood for FBP 

[ 1 11, the effect of image sampling for SIR methods appears to 

have been addressed only indirectly under an idealized model 

for X-ray CT [12]. Recently developed Cramer-Rao bound 

methods [13]-(1.51 may help address the question of voxel 

dimension for realistic system models. 

B. System Model 

Having discretized the annihilation distribution into a set 

of voxels, one represents a model for the tomographic system 

by a “system matrix” P. An element J),,~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof P denotes the 

probability that an annihilation in the ,jth voxel is detected by 

the ith detector pair. Ideally, perhaps after certain corrections, 

the mean of the 6th detector pair measurement would be 

approximately 

for an annihilation distribution X ( s )  represented by ( 1 ). 
Although the importance of accurate system modeling has 

been amply illustrated in the SPECT literature, a spatially- 

invariant Gaussian response has been the most popular approx- 

imation for PET [ 5 ] .  [If;]. The spatially-invariant Gaussian 

method was convenient due to its computational simplicity 

for algorithms that use “run-time” probability calculations. 

However, the decrease in cost of computer memory has dimin- 

ished this motivation, and allows precomputing the nonzero 

elements of P, which significantly reduces the computations 

per iteration. 

Even with precomputed system matrices, there remains a 

trade-off between accuracy and sparseness. The most accurate 

analytical approach might be to use an “inverse Monte Carlo” 

approach analogous to that proposed for SPECT [17], but the 

resulting system matrix is not sparse. Practical considerations 

dictate use of sparse approximations, which inevitably intro- 

duce some system model inaccuracies. The effects of such 

model mismatch on reconstruction by SIR methods is not well 

understood. Presumably one would want to use the most sparse 

system matrix that adequately describes the system, i.e. the 

effects of modeling errors are well below the statistical noise. 

Although a thorough treatment of system modeling is be- 

yond the scope of this paper. future efforts should consider 

( I ) the dilference between cross-slice and direct-slice system 

responses. ( 2 )  the “third dimension” effect described by Sil- 

vemian c/  al. [ I8 I due to the finite axial width of the detector 

crystals, and (3) the spatially variant crystal response inherent 

t o  PET detector blocks due to inter-crystal mispositioning 

errors [ 191. 

C. Stutisricul Mode(: Non-Poission 

The statistical model describes the distribution of each 

measurement about its mean, and consequently determines a 

measure of similarity between the actual measurements and 

the calculated projections (2). Since the introduction of an 

ML-EM [ZO] algorithm for PET a decade ago [21], [22], SIR 

methods based on a Poisson statistical model [23] ,  [24] have 

been studied extensively. 

The original formulations were based on an idealized PET 

system, and ignored the effects of accidental coincidence (AC) 

events. Since accurate quantification of radiotracer activity 

using PET must include corrections for the effects of AC 

events [35] ,  [26], several recent papers have attempted to 

incorporate AC effects into the Poisson framework under the 

assumption that the AC events are additive Poisson variates 

with exactly known mean [6], [16], [27]. This assumption is 

unrealistic for many PET systems. 

In routine use, our PET systems’ use real-time subtraction 

of delayed-window coincidences [25], (281 to correct for AC 

events. The system detects coincidence events during two time 

windows. For events within the first “prompt” window, the 

corresponding sinogram bin is incremented. These increments 

should be well approximated by a Poisson process. However, 

for events within the second “delayed” window, the corre- 

sponding sinogram bin is decremented [ZS]. Although these 

decrements should also be a Poisson process, the combined ef- 

fect of the increments and decrements is not Poisson. Even for 

moderate AC rates ( 10-20‘%), this correction produces many 

negative measurements. clearly violating the Poisson statistical 

‘CTI K A T  Y 3 1  and 921 
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Fig. 1. 
The Gaussian fit is more accurate as measured by the x2 statistic. 

Comparison of Poisson and Gaussian fits ( - )  to the distribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0) of PET measurements precorrected for accidental coincidences (see text). 

model. Higher percentages of AC events are common for scans 

acquired shortly after radiotracer injection. 

To illustrate the inaccuracy of the Poisson measurement 

model for AC precorrected measurements, we have performed 

a small Monte Carlo simulation summarized by Fig. 1. Let 

yi be the precorrected measurement for the ith coincidence 

detector pair, then 

(3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYi  = Yi,p - %,d 

where IJ;,~ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY; ,d  are the number of coincidences within the 

prompt and delayed windows, respectively [28]. If the mean 

numbers of true coincidence events and AC events during 

the acquisition are nt and n,, respectively, then a reasonable 

model is: 

N Poisson{nt + nu} 

yi.d N Poisson{n,}. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) 

The expectation of y; is nt ,  so y; is an unbiased estimate 

of the number of true coincidences. Since yi,p and y;,d are 

statistically independent, the variance of y; is nt+2na, a larger 

variance than would be expected for a pure Poisson variate. 

For concreteness, let nt = 9 and n, = 1. The circles 

in Fig. 1 show a simulated histogram for y; generated by 

a pseudo-random number generator in accordance with the 

distributions described above ( N  = 30,000). The top figure 

shows the approximation based on a Poisson distribution with 

mean nine, the ideal mean. The bottom figure shows the 

approximation by a Gaussian distribution also with mean nine 

and with variance 11. As measured by the x2 statistic, the 

Gaussian distribution is the better approximation. Of course 

for large means, the Poisson distribution is also approximately 

Gaussian by the Central Limit Theorem [29]. But this example 

illustrates that even for small true rates and 10% accidental 

coincidence rates, a Gaussian approximation is as appropriate, 

if not more so, than the Poisson approximation. 

If one could acquire separate sinograms for the prompt 

and delayed coincidences, then one could consider jointly 

estimating2 the AC means and the A j ’ s  from the two sinograms 

[ 22 ] .  Alternatively, one could exploit the spatial smoothness 

of AC events, form an estimate of their means using the 

delayed-window measurements, and then incorporate those 

estimates as “known AC means” into the ML-IB method of 

*We have studied a similar joint estimation method for accounting for 
statistical uncertainties in transmission scans [30], [3 I I .  

Politte and Snyder [16]. In principle such methods would 

have the advantage that they retain the higher-order moments 

associated with the skewness of the Poisson distribution, 

whereas a Gaussian approximation only models the first and 

second moments. Whether that theoretical advantage produces 

practical improvements is an open question. 

Since the mean AC contributions to the precorrected mea- 

surements are unknown3, the probability distributions of the 

precorrected measurements are also unknown. Thus, pure 

likelihood-based methods are inapplicable, and one must re- 

sort to approximate similarity measures. In light of Fig. 1, 

we propose using a weighted least-squares (WLS) similarity 

measure: 

1 

2 
- ( y  - Px)’c-’(y - PA) ( 5 )  

where ’ denotes transpose, X is the vector of annihilation rates 

A?, P is the system matrix, and the measurement vector y 
represents an emission sinogram that has been precorrected 

for the effects of dead-time, attenuation, detector sensitivity, 

AC events, and possibly scatter. (Thus & is an estimate of 

pi.) The matrix X is diagonal with ith entry (T!, an estimate 

of the variance of the ith precorrected measurement yi. This 

weighting is critical to the method, and our approach to 

computing X is described in the Appendix. 

Is an approximate statistical model likely to achieve the 

goals of SIR methods? One aim is to achieve resolution 

recovery and uniformity by incorporating the system response. 

The WLS similarity measure accommodates the system re- 

sponse through the first-order moment. Another benefit of 

SIR methods is a nonuniform weighting of the measurements, 

where the weighting reflects the relative information of each 

measurement. The ML-EM algorithm implicitly incorporates 

such a weighting by dividing each measurement by its pre- 

dicted value before backprojecting. This is in complete contrast 

to the conventional FBP method which treats all measurements 

equally, despite the large variations in counts and correction 

factors. The WLS similarity measure also accounts for the 

relative information of each measurement through the weights. 

Even if the weights are suboptimal, as the data-weighting 

discussed in the Appendix may be, it should nevertheless be 

an improvement over the uniform weights implicit in FBP! 

?The AC contributions are recorded over the entire slice only. not on a 
ray-by-ray basis. 
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D. Objective Function 

Objective functions based solely on the measurement sta- 

tistics, be they Poisson or Gaussian, perform poorly due 

to the ill-conditioned nature of tomographic reconstruction. 

Unregularized methods produce increasingly noisy images 

with iteration [ 32 ] .  To remedy this problem, several regulariza- 

tion methods have been investigated that impose smoothness 

constraints on the image estimate. 

One approach is the method of sieves 1331, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[34]. When zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAC 
effects are included in the Poisson case, the ML-IB method of 

Politte and Snyder apparently requires that the resolution and 

kernel sieves be equal, in which case the method of sieves 

is equivalent4 to post-filtering the ML image estimate [16]. 
Therefore the method of sieves retains the slow convergence 

of the ML-EM algorithm, for which a few hundred [33 ] ,  if not 

several thousand [6], [ 351 iterations are required. 

A more flexible approach is to incorporate a smoothness 

penalty or “prior” [36]-[ 391, which is particularly straightfor- 

ward with the WLS similarity measure. Sauer and Bouman 

[40] have proposed one approach in the context of X-ray 

transmission tomography that we have adapted to PET recon- 

struction. This method is based on the following penalized, 
weighted least-squures objective function: 

1 

2 
@(A)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- ( y  - PX)’C-’(y - PA) + / jR(X) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR(X) is a regularizing penalty term. (Similar objectives 

have been used for “Bayesian” methods [XI. [40]). The goal 

is to estimate X from y :  

X = arg minx,,)@[ A ) .  

The effect of the penalty term is to discourage disparities 

between neighboring pixel values, while the effect of the first 

term in (6) is to encourage agreement with the measured data. 

These are usually conflicting goals. and the smoothing param- 

eter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[j controls the trade-off between the two, in analogy with 

the filter window that one must choose for FBP reconstruction. 

Many penalty functions X ( X )  have been proposed for image 

reconstruction [36 ] ,  1371, [41]-[46], some of which aim to 

smooth “uniform” regions while maintaining edge sharpness. 

Since we are interested in low-count scans where edge preser- 

vation is probably unrealizable, in this paper we use a simple 

quadratic smoothness penalty: 

- 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN,  is the set of eight neighbors of the j th  pixel. The 

weights ‘ i i i , ~ .  equal 1 for horizontal and vertical neighbors, and 

1/f i  for diagonal neighbors. The following theorem shows 

that this penalty leads to a strictly convex objective function @. 
Theot-em I :  l fC-1/2Pl  # 0 w’heix~ 1 is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALI colutnti iwtor. o j  

ones, i.e.. the projection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(f U uti form soutx’e is t iot izm, then 
@ is stt-ictly cotii~e.t-,fiw /i > 0 ,  i.e. its Hessiun 

(8) H = V*@ = PC-lP + [jR 

is positiiv definite. 

‘Under the often disregarded assumption that the smoothing operator and 
the projection operator commute 1.13. equation (I?)]. 

PI-oc$: It suffices to show that x’Hx # 0 Vx # 0. From 

(7) it is clear that x’Rx = 0 only when x = 0 or x = c l  

for some ( *  # 0. But rl’Hcl = c211X-1/2P1112 # 0 by 

assumption. 0 

E. Iteratiise Algorithm 

Ideally the objective function alone would determine the 

statistical properties of an estimator. In practice, the con- 

vergence characteristics of the algorithm that maximizes the 

objective may also influence those properties. For example, if 

the algorithm only finds local extrema of @, then the estimator 

is inefficient. The ML-EM algorithm for the unpenalized 

Poisson objective is converges to a global maximum [21], 
[ 221. However, when one regularizes the Poisson objective 

with a smoothness penalty, the maximization step of the 

EM algorithm becomes cumbersome, and the corresponding 

iterative algorithms converge slowly to possibly local extrema 

1411, [431. 
The classical methods for minimizing quadratic objectives, 

such as steepest descent or conjugate gradient, do not eas- 

ily accommodate the physical nonnegativity of A. However, 

minimizing a quadratic objective subject to a nonnegativity 

constraint is a type of “linear complementarity problem” 

[47], [48], for which the (projected) successive overrelaxation 

(+SOR) method is a natural algorithm since the nonnegativity 

constraint applies independently to each parameter. A special 

case of the +SOR method is the Gauss-Siedel algorithm [49], 
[SO], which has been applied to transmission tomography by 

Sauer and Bouman [40]. In the Bayesian literature it is known 

as ICM [51]. 
The +SOR algorithm updates each image parameter indi- 

vidually by minimizing the objective function (6) over that 

parameter while holding the other parameters fixed. Since 

our objective is quadratic, the minimization is computed 

analytically (no line searches are required). One iteration 

consists of updating every pixel value in some sequence. 

A detailed discussion of +SOR is given in [47], [40], so we 

only summarize the algorithm here. Let X denote the current 

estimate of A, and let pJ denote the j th  column of P. The 
PWLS+SOR procedure is as follows. 

Initialization: 

For each , j :  
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Note that the updates to are done sequentially in place, in 

contrast to most reconstruction algorithms that simultaneously 

update all pixels. Although successive algorithms are difficult 

to parallelize in general, parallel methods for +SOR are 

available [48]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConvergence Properties 

is strictly convex by Theorem I ,  it follows from 

[47, p. 4651 that there is a unique X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 that minimizes (i.e., 

satisfies the Karush-Kuhn-Tucker conditions [ 47, p. 560]), and 

that the +SOR sequence converges from any initial estimate to 

that unique minimum for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw €(U. 2) [47, p. 3721). Furthermore, 

if w E (0,1], then the sequence of estimates monotonically 

decreases zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. 
The convergence rate of the SOR algorithm depends on 

w. Sauer and Bouman analyzed the convergence properties of 

Gauss-Siedel (w = 1) [40], and in the remainder of this section 

we apply their analysis method to SOR. First, decompose the 

Hessian (8) by: 

Since 

H = L + D + L ’  

where D is the diagonal of H, and L is a strictly lower 

triangular matrix. Then without the nonnegativity constraint, 

the SOR method can be compactly written [47]: 

xi+l = (1 - w ) x ’  + w ~ - l ( ~ ’ ~ - l y  - L’X’ - LA’+’) 

or 

xi+l - - ( D  + wL)-’[-((w - l ) D  + U I L ’ ) ~ ‘  + wA’C-ly].  

This sequence converges geometrically, and its convergence 

rate is governed by the eigenvalues of 

G, = -(D + wL)-l((iu‘ - 1)D + wL’) ( 1  1 )  

see [40, equation (24)] for UJ = 1). 

To analyze the eigenvalues of G, as a function of w ,  we 

adopt simplifications similar to those in 1401, i.e.: C = a‘1, 

and the matrices P’P. R. and H are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcirculant-block-circulant. 
The latter assumption implies that multiplication by any of 

these matrices is equivalent to periodic convolution of the 

image by a spatially-invariant 2D kemel. Since the discrete 

Fourier transform diagonalizes circulant matrices, we can use 

2D-FFT of the 2D kemels to study the eigenvalues of G,. To 

determine the kemel of the matrix P’P. Sauer and Bouman 

projected and then backprojected a point source. Here, we use 

the following analytical approximation: 

which is shown in Fig. 2 [40, Fig. I 1 1  and 1.52, Fig. 11). 
This function has the expected 1 / r  asymptotic form, but is 

well behaved near z e r w a s  i t  must be for a discrete system. 

Ignoring edge effects, the kemel of the regularization matrix 

R described by (7) is 

-1 -1 0 -1 
(12) 

3. 

2.5 - 
2 .  - c 

1.5. 

1 -  

0.5 . 

8 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-60 -40 -20 0 20 40 60 
r 

Fig. 2. Plot of f ( ~ . ) .  the cross-section of the kernel of the circu- 
lant-block-circulant approximation to the projection/backprojection operator 

P’P.  The tads decrease like the expected l / r  response. 

Define Kp to be the 128 x 128 matrix with ( i , j ) t h  element 

equal to f (  J(, i  - 65)’ + (.j - 65) ’ ) .  Define KR to be the 

128 x 128 matrix of zeros except let the 3 x 3 block centered at 

(65.65) equal the kernel of R (12). Defining K = ~r-’Kp + 
jjKn, then K is the kernel of the circulant-block-circulant 
approximation to H see (8)). Let K L  be the “causal” part of K 
with respect to the conventional left-right/top-down ordering, 

i.e., K L  is identical to K for the first 64 rows and for the first 

63 elements of the 65th row, and zero elsewhere. Let K D  be 

element (65.65) of K, and let l ( f z ,  f,) be the 2D FFT of KL. 
Then the eigenvalues of G, are given by 

where * denotes complex conjugate (see (1 1)  and [40, equation 

(231). 
Figs. 3 and 4 show plots of 

inax [ ( f s .  ,)  1 and inax lgd (. ~ J,) 1 
f z  f s  

for [ j  = 1 and a few values of w. One sees that using w > 1 
would increase all of the eigenvalues, and thus reduce the 

convergence rate. On the other hand, using w < 1 will increase 

the convergence rate of the low-frequency components, at 

the expense of slower convergence for the high-frequency 

components. We have found that this trade-off is useful for 

improving the overall convergence rate. We usually initialize 

the iteration with a smooth FBP image, for which the low 

spatial-frequency components of the initial estimate are nearly 

correct. A few iterations with iu‘ < 1 will quickly fine-tune the 

low frequencies, followed by a few more iterations with w = 1 

to converge the high frequencies. To counteract the directional 

effect illustrated in Figs. 3 and 4, we update the image pixels 

in four different raster scan orderings. 

Note that for any UJ, the high frequencies will converge 

faster with SOR (smaller eigenvalues) than the low fre- 
quencies. This characteristic of successive algorithms is the 
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Along Update Direction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w = 1.6 

w = 0.7 

w =  1 
0.1 ' 

0' I 
0 0.2 0.4 0.6 0.8 1 

Spatial Frequency 

Q. 3. ~~~i~~~ of SOR algorithm Lllong direction, for Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.  Simulated annihilation distribution. The bias and variance of the 

w' = 1, 0.7, and 1.6. reconslructed value\ within the small hot and cold pixels serve as measures 
of rewluLion and noise. 

Perpendicular to Update Direction 
of bias (i.e. various resolutions), how do the variances of 

the image estimates compare between algorithms? To address 

this question, we performed a simulation using the software 

phantom shown in  Fig. 5 ,  consisting of a uniform background 

with intensity I ,  several hot pixels with intensity 2, and several 

cold pixels with intensity 0. (Several pixels were used so 

that we could average among them and obtain statistically 

significant comparisons with a moderate number of noise 

realizations.) The pixel grid is 128 x 128, with 3 mm pixels. 

The ellipse radii were 125 mm and 150 mm (approximate 

w = 0.7 abdomen dimensions). 

This pixelated software phantom was forward projected 

(2)  using a precomputed system model corresponding to an 

idealized PET system with 128 angular samples over 180", 

and I I O  radial samples with 3 mm spacing. Each p i j  was 

calculated as the area of intersection between the j th  pixel and 

a strip of' width h mm. (Since the strip width of 6 mm is wider 

detector response of this system is thus 6 mm wide rectangular 

function. Since this system model is spatially-invariant, this 

' 

' 

.- 
, W 

0.5 

0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.3 - 

Spatial Frequency 

Fig, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, Maximum eigenvalues of SOR algorithm p q e n d i c u l a r  to update than the detector 'pacing Of "7 the strips Overlap') The 

direction, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU' = 1, 0.7, and 1.6. 

opposite of the usual simultaneous algorithms (ML-EM, con- 

jugate gradient, etc.) for which the low frequencies converge 

fastest. Since FBP provides a reasonable initial estimate of 

the low frequencies, fast convergence of the high frequencies 

(with suitable regularization) is desirable. Typically the pixel 

estimates change very little after about 20 iterations. I n  con- 

trast, ML-EM pixel values continue to change substantially 

after dozens of iterations. 

is a "best-case" situation for the FBP algorithm. The same 

system model was used for calculating the projections and 

for the ML-EM and PWLS+SOR algorithms, so they also 

represent best-case performance. A more rigorous comparison 

between FBP and iterative methods would use a nonpixelated 

(or tinely binned) phantom. Since this paper emphasizes the 

comparison between Poisson likelihood and weighted least- 

squares similarity measures, we used a pixelated phantom to 
eliminate possible confounding effects due to system model 

mismatch.~The effects of system model mismatch needs further 

investigation for all statistical reconstruction methods. 

The projections were multiplied by nonuniform attenuation 

factors corresponding to an ellipse with radii 125 mm and 

150 mm and attenuation coefficient of 0.0l/mm. Nonuniform 

detector sensitivities were applied by using pseudo-random 

log-normal variates with standard deviation 0.4, (based on 

111. SIMULATION 

Every reconstruction method has a parameter that affects 

the trade-off between bias and variance. For FBP it is the 

window type and the cutoff frequency (I, for ML-EM i t  is the 

number of iterations, and for PWLSfSOR it is the parameter 

/-i. Our aim was to address the question: for various le\/els 
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empirical fits to the logarithm of measured efficiency nor- 

malization factors). After globally scaling the sinogram to 

a mean sum of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA700,000 true events, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN = 100 realizations 

of AC precorrected sinogram measurements were generated 

using pseudo-random Poisson variates according to (13) in 

the Appendix. The mean AC contribution to each bin was 

about 9%. We chose a low number of counts and a small AC 

percentage because one expects the WLS approximation to be 

the poorest at low event rates. If the AC rates were increased 

the ML-EM algorithm would be increasingly positively biased 

since the negative measurements must be set to 0, whereas 

the WLS would become increasingly more accurate since 
the measurements will approach a Gaussian distribution by 

the central limit theorem. Thus, a low AC percentage puts 

PWLS+SOR at the least advantage relative to ML-EM. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. ML-EM 

For the ML-EM algorithm, the noisy measurements were 

forced nonnegative, and the (known) effects of attenuation, 

detector efficiency, and global scaling were incorporated into 

P. Each of the 100 measurement realizations were recon- 

structed starting from a uniform ellipse with intensity 1. The 

estimates from iterations 10, 20, 30, 40, 50, 100, . . ., 400 

were archived for subsequent statistical analysis. Each ML- 

EM iteration required approximately 1.5 seconds on a DEC 

3000/400. 

B.  P W L S  + SOR 

For PWLS+SOR the noisy measurements were precorrected 

for the (known) effects of attenuation, detector efficiency, 

and global scaling, and the variance weights were estimated 

using the smoothing method described in the Appendix. The 

resulting precorrected measurements y were reconstructed 

using 20 iterations of PWLS+SOR, again initialized with a 

uniform ellipse, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 2-71 2 - 6 1 . .  . , 2-l. Each iteration 

required approximately 2.0 seconds. To put this in perspective, 

all 47 slices of a CTI 921 EXACT could be reconstructed in 

about 30 minutes. 

For both ML-EM and PWLS+SOR, only pixels within 

a support ellipse with radii 150 mm and 159 mm were 

updated. Using this support, there were 8,104 unknown pixels 

and 13,394 relevant sinogram measurements; such marginal 

sampling makes regularization essential. 

C. FBP 

The measurements were precorrected as for PWLS+SOR. 

One filter used for radial smoothing was a third-order Butter- 

worth filter: 

1 

l +  (Ay 
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf~ corresponds to 0.5 cycles per radial bin, for cy = 0.3, 
0.4, 0.6, 0.8, and 0.9. Or, to “restore” some of the high 

frequencies attenuated by the rectangular system response, the 

following Wiener filter was substituted: 

sinc(f / f N )  

for (Y = 0.4, 0.6, 0.8, and 1.0. 

D. Statistics 

Let be the estimate of the j th  pixel from the nth noise 

realization, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn = 1,. . . , N = 100. We define the within-image 

average of the hot pixels to be: 

where the summation is over the 9 small hot pixels, and 

similarly define- the within-image averages of ;he cold pixels. 

Let Ohot and be the ideal values for and 

respectively, i.e., 8hot = 2 and ecoid = 0. Then by standard 

definitions: 

n=l 
_ .  

and 

. N  

ohot 

with similar definitions for the cold pixels. Since the contrast 

is 1 for both hold and cold pixels, the percent bias is simply 

100 . bias. Likewise for the percent standard deviation. 

IV. RESULTS 

A. Quantitative 

Figs. 6 and 7 show the trade-off between bias and variance 

for the estimated activity in the cold and hot pixels respec- 

tively. Because the point sources are in a uniform background, 

there is an inverse monotonic relationship between bias (more 

smoothing) and variance for all methods. The following con- 

clusions can be drawn from Figs. 6 and 7: 

. 

Although FBP with a Wiener filter did have the desired 

effect of reducing bias relative to FBP with a Butterworth 

filter, it did so at a price of increased variance; at any 

given bias level the Wiener filter had no advantage. 

For both the hot and cold pixels, the ML-EM algorithm 

and the PWLS+SOR methods had comparable bias- 

variance curves, although clearly with fewer iterations 

for PWLS+SOR. In our opinion this is unsurprising since 

both methods are based on reasonable approximations to 

the measurement statistics. 

For the cold pixels both SIR methods both showed 

significantly reduced variability relative to FBP for any 

level of bias. For the hot pixels the SIR methods offered 

only a slight improvement. This is consistent with studies 

by other investigators. 
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Fig. 7. 
by FBP. ML-EM. and PWLS +SOR. 

Trade-off between hiar and variance in the Iiol pixel5 a\  reconslructed 

The agreement between the performance of ML-EM and 

PWLSfSOR suggests that the smoothing method for esti- 

mating the variances described in Appendix A is an ade- 

quate approximation. To further demonstrate this, we applied 
the PWLS+SOR method using the "ideal" variances = 
Var{i;}, which one can only do in a simulation. The results 

were indistinguishable both visually and in terms of the 

statistical analyses describes above. Apparently eilher the 

image estimates are somewhat insensitive to the weights, or 

at the count rates simulated in this study the accuracy of the 

data-based variance estimate is adequate. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Qiru1itatii.c 

The noise properties of reconstruction methods are also 

of considerable interest because noise structure affects the 

Fig 9 FDG thorax zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\ c m  recon\tructed \ b i t t i  100 MI Fhl iit 'rdlon, 

po\t-filtered tn approxim,itelq Xmm FWHM rt ' \olutinn 

detectability of \mall lesion\. Figs. 8-10 compare the FBP. 

ML-EM. and PWLS+SOR recon\tructlons of an FDG thorax 

image of a patient with breast cancer. There were about 750K 

prompt coincidence\ and 20 K delayed coincidence\ t o r  the 

\lice shown. The noi\e \tructure is wikingly different. The 

reduction in \treak artifacts may lead to improved tlctectloii 

of lower contrast le\ion\. I t  may a150 improve the detection of 

brain activation foci by stati\tical criteria [ 21. 

Reader4 u h o  are accu<tonied to \imulatetl ML-FV \tucks 

without accidental coincidenie\ ma\ tind the grey bxhgrnund 
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Fig. IO.  FDG thorax \can reconstructed with 20 PWLS+SOR iterations. The 
streak artifact\ of the FBP method arc nearly eliminated by the statistical 
M L E M  and PWLS+SOR incthod\. whtch may lead to improved detection 
of I e h i n  with lower  contrast th;m thr tine shown. 

Fig. 11. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn unweighted penalized least-squares reconstruction of the FDG 
scan. The reappearance of the streak artifacts strongly suggests that the 
variance weighting is essential to the PWLSSSOR method, and plays a 
significant role in the improvement over FBP. 

in Fig. 9 to be unexpected. This positive bias is apparently due 

to the unmodeled accidental coincidence events, and continues 

to persist after hundreds of iterations. In the absence of AC 

events and scatter. the sinogram measurements outside of 

the object would be r.ero. and the ML-EM algorithm would 

quickly converge those pixels toward zero. 

We con.jecturc that the reduced streak artifacts in Fig. I O  

are due to the variance weighting of PWLS+SOR. Since 

the attenuation correction factors for the thorax can be very 

large, even small measurement errors can be amplified by the 

attenuation correction. The FBP method ignores such statistical 

differences between different projection elements, whereas 

the PWLStSOR method explicitly accounts for them. To 
substantiate this conjecture. Fig. I 1 displays a penalized least- 

squares reconstruction using ~i i i ( f i~ .n i  variance weights. The 

reappearance of the streah artifacts strongly suggests that the 

variance weighting is essential, and it plays a crucial role in 

the improved noise \tructure of PWLSSSOR. 

V.  Dlsc’usslo~ 

We have considered the measurement statistics for PET 

systems that prccorrect tor AC events, and have argued 

that a PWLS objective is appropriate for such measure- 

ments. We summari/cd the +SOR algorithm for minimizing 

that objective. and demonstrated that i t  has fast conver- 

gence. Quantitative comparisons to FBP on a simple phan- 

tom with small hot and cold pixels demonstrated signifi- 

cant reductions in  variance for any level of bias. Quali- 

lative comparisons suggest that the variance weighting of 

PWLS+SOR \igniticantIj improve5 the noise structure. Al- 

though the PWLS objective and +SOR algorithm are not 

necessarily optimal for PET. the method appears to have some 

quantitative and qualitative advantages over FBP. The required 

computation time is nearing the realm of being practical for 

routine use. 

For the generic quantification task studied here, the 

bias/variance trade-off of PWLS+SOR and ML-EM were 

comparable. This does not exclude the possibility of other 

scenarios where the Poisson likelihood has measurable 

advantages over weighted least squares. However, the PWLS 

objective proved viable even in our test case which was 

deliberately chosen with low counts and low AC events to 

“stress” the Gaussian approximation. 

How one chooses to trade-off bias and variance is clearly 

task dependent. For certain kinetic estimation tasks, uptake 

bias leads to inaccuracies in functional parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[3].  On 

the other hand, some increase in variance may be tolerable for 

such tasks since one is generally fitting a low-order parametric 

model to multiple images. For PWLS+SOR, the parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[j controls this trade-off. We are currently investigating the 

relationship between /). E, and reconstructed resolution using 

methods similar to that in Section 11-F. The result of this 

study should be a method for specifying in terms of the 

desired “average” reconstructed resolution as a function of the 

measurement noise. The PWLS objective is easier to analyze in 

this context than a penalized Poisson likelihood, since without 

the nonnegativity constraint the image estimate is linear in the 

measurements after the weights are specified. 

Although i t  was high AC fraction studies that initially 

motivated our considering the PWLS alternative to the Poisson 

criterion, the method also appears to work well for low AC 

fraction scans. The FDG scan shown in Fig. 8 was acquired 

about an hour after injection, and there were less than 3% AC 
coincidences. 
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There remain several questions pertaining to the PWLS 

method that may be worth pursuing. These include: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1 )  What 

is the optimal voxel size? (2) How should the different system 

response for direct and cross planes be incorporated? (3) 

Would a method such as iteratively reweighted least-squares zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[53] for variance estimation (531 improve performance enough 

to offset its considerable computational cost? (The results 

of our comparison using ideal variances suggest not.) and 

(4) Should the nonnegativity constraint be enforced in all 

situations? If the nonnegativity constraint is unneeded or 

undesirable for some tasks, then there may be even faster 

alternatives than SOR for minimizing the objective [S2], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[S4]. 
For simplicity, we have adopted a quadratic penalty func- 

tion, which permits an analytical minimization of the objective 

function with respect to each pixel value. There may be 

non-quadratic penalty functions that result in an even more 

favorable bias-variance trade-off. It remains to be seen whether 

or not the benefits of such penalty functions are significant 

enough to outweigh the increased computational requirements 

for a non-quadratic objective. As observed by Herman [8, p. 

1071 long before the advent of fast workstations: “It is unlikely 

that an efficacious reconstruction algorithm would for long 

remain unused solely because of computational reasons.” 

VI. APPENDIX: VARIANCE 

Unlike the Poisson objective, for which the variance equals 

the mean, the Gaussian objective requires a separate estimate 

of the variances or weights f l y .  This appendix describes the 

data-based variance estimate used in the simulations above. 

This estimate is based on the U priori expectation that an 

object’s projections are smooth. 

If y denotes the raw sinogram measurement, then the ideal 

Poisson-difference model is: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y, - Poisson{/!;’((L;l!/, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr , ) }  - Poisson{n,’r,} (13) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr i ,  is the / t h  detector efficiency normalization factor, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, 
is the attenuation correction factor for the /th detector pair, 7’, 

I S  the mean AC contribution to the /th detector pair, and fit is 

defined by (2). The precorrected measurement is then: 

which is an unbiased estimator of G,, as desired. The variance 

of this precorrected measurement is: 

The factor “2” reflects the fact that independent AC events are 

being added and subtracted from y. so their variances add. We 

seek an estimate of the variance of i i .  

If ;cl is an estimate of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfj,, then a natural choice for the 
variance estimate is: 

where t l  is an estimate of the mean AC event rate for the ith 

detector pair, typically the total delayed-window events for 

the slice divided by the total number of sinogram bins. For 

the simulations above, we have used the following estimate 

of a;: 
y L  = max{ Smooth{ i l  }. 7 }  

where the smoothing was performed with a I pixel FWHM 

Gaussian kernel in the radial direction only. The threshold of 

seven ensures that the method is not overly sensitive to bins 

with only a few counts. 
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