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Abstract. Due to the expensive and time-consuming annotations (e.g.,
segmentation) for real-world images, recent works in computer vision re-
sort to synthetic data. However, the performance on the real image often
drops significantly because of the domain shift between the synthetic
data and the real images. In this setting, domain adaptation brings an
appealing option. The effective approaches of domain adaptation shape
the representations that (1) are discriminative for the main task and (2)
have good generalization capability for domain shift. To this end, we
propose a novel loss function, i.e., Conservative Loss, which penalizes
the extreme good and bad cases while encouraging the moderate exam-
ples. More specifically, it enables the network to learn features that are
discriminative by gradient descent and are invariant to the change of do-
mains via gradient ascend method. Extensive experiments on synthetic to
real segmentation adaptation show our proposed method achieves state of
the art results. Ablation studies give more insights into properties of the
Conservative Loss. Exploratory experiments and discussion demonstrate
that our Conservative Loss has good flexibility rather than restricting an
exact form.

1 Introduction

Deep convolutional neural networks have brought impressive advances to the
state of the art across a multitude of tasks in computer vision [1,2,3]. At the
same time, these significant leaps require a large amount of labeled data. For
some pixel-level tasks, e.g., semantic segmentation, obtaining a fine-grained label
is expensive and time-consuming. In [4], they report that it takes more than 90
minutes for manually labeling a single image. Recent advances in Computer
Graphics [5] offer an alternative solution to address the data issue. In [5], they
automatically capture both images and fine-grained labels from GTAV game
with the speed faster than human in several orders of magnitude.

However, models trained on the synthetic data fail to perform well on the real-
world images. The main reason is the shift between training and test domains [6].
In the presence of the domain shift, the model trained on the synthetic data often
tends to be biased towards the source domain (synthetic images), making them
incapable to generalize to the target domain (real images).
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Fig. 1: We show the tendency of mIoU on the source domain and target domain.
The curves indicate the trends and points denote the actual mIoU. Besides, we
display the samples from source domain (GTAV) and target domain (Cityscapes)

Traditional approaches for domain adaptation mainly focus on the image
classification task, which can be summarized as two lines: (1) minimizing the dis-
tance between the source and target distributions [7,8,9]; (2) explicitly ensuring
that two distributions close to each other by adversarial learning [10,11]. Existing
works [12,13] used the similar idea, i.e., gradient reversal layer, to our proposed
loss in the domain adaptation for image classification, which was achieved by
multiplying a negative scalar during the backpropagation. However, since there
exist large category discrepancies between pixels in one image, the manner of
uniformly reversing the gradients for all pixels with same scalar is not suitable
for the structured prediction in the segmentation. Those drawbacks limit the
gradient reversal layer to generalize to the segmentation adaptation.

Semantic segmentation provides pixel-level label for input image, which car-
ries more dense and structured information than image classification, and thus
making its domain adaptation difficult. Hence, the domain adaptation techniques
in the classification task which focus on sparsely high-level features do not trans-
late well to the segmentation adaptation [14]. Few works have explored the do-
main adaptation for segmentation [14,15,16]. Orthogonal to those works focusing
on manipulating the data statistics [15] or applying the curriculum learning [14]
to adaptation, we propose the novel Conservative Loss to realize it without in-
troducing extra computational overhead.

We observe that with training step goes by, the performance on the target do-
main first rises and then falls. We show the trends of mIoU on the experiment of
synthetic (GTAV data [5]) to real (Cityscapes data [4]) segmentation adaptation
in Fig 1. It can be observed that the performance on source domain and target
domain would not reach the best at the same time because of the domain shift.
Since there is no ground truth for target domain during training, it is required
to find the saddle point of target domain on the source domain. It is note-worthy
that the saddle point for target domain does bias to the best score on the source
domain but not reach, which delivers a balance between the discriminativeness
and domain-invariant. This phenomenon is consistent with many domain adap-
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tation theories [17,18,19]. Therefore, we focus on learning representations with
two following characteristics which are: (i) discriminative for semantic segmen-
tation on the source domain (corresponding to the ‘first rises’) and (ii) invariant
to the change of domains.

In this paper, this is achieved by training with the Conservative Loss in
an adversarial framework. The Conservative Loss is extremely simple. It holds
two attributes corresponding to the properties of desired representations. First,
when the probability of ground truth label on the source domain is low, the
Conservative Loss enforces the network to learn more discriminative features via
gradient descent, which corresponds to the first property of discriminativeness.
Second, when the probability of ground truth label is much high, our loss penal-
izes this case by giving a negative value, which prevents the model from biasing
to source domain training data further increasing the generalization capability.
This corresponds to the second property of domain-invariant. Our loss function
can be seen to seek the optimal parameters that deliver a saddle point of those
two objectives. Furthermore, the generative adversarial network (GAN) [20] is
also introduced to our model. Unlike some works [10,15] where they apply the
feature-level discriminator, we utilize the GAN to further supplement the do-
main alignment by enforcing reconstructed images to be indistinguishable for
the discriminator.

We conduct extensive experiments on synthetic to real segmentation adapta-
tion. The proposed method considerably improves over previous state-of-the-art
and achieves 9.3 points of mIoU gain on Synthia [21] to Cityscapes [4] experi-
ment without introducing any extra computational overhead during evaluation.
Ablation studies verify the effect of different components to our performance and
give more insights into properties of our Conservative Loss. More discussions and
visualization demonstrate the Conservative Loss has good flexibility rather than
limiting to a fixed instantiation.

2 Related Work

Semantic Segmentation. Semantic segmentation is a highly active field,
which is a task of assigning object label to each pixel of image. With the surge
of deep segmentation model [3], most recent top-performing methods are built
on the CNNs [1,22,23].

Huge amount of human effort is required to annotate the fined-grained se-
mantic segmentation ground truth. According to [5], it did take about 60 minutes
to manually segment each image. On the contrary, collecting data from video
games such as GTAV [5] is much faster and cheaper compared with the human
annotator. For example, [5] extracted 24,966 GTAV images with annotations
within 49 hours by using a GPU parallel method. However, it is hard to apply
the model trained on the synthetic image to the real-world image because of
their discrepant data distributions.
Domain Adaptation. Many machine learning methods rely on the assump-
tion that the training and test data are in the same distribution. However, it is
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often the case that there exists some discrepancies [17,19], which leads to signif-
icant performance drop on the test data. Domain adaptation aims to alleviate
the impact of the discrepancy between training and test data.

Domain Adaptation for Image Classification. Existing works on domain
adaptation mostly focus on image classification problem. Conventional methods
include Maximum Mean Discrepancy (MMD) [7,8,9], geodesic flow kernel [24],
sub-space alignment [25], asymmetric metric learning [26], etc. Recently, do-
main adaptation approaches aim to improve the adaptability of deep neural
networks [7,13,27,28,29,30,31,32].

Domain Adaptation for Semantic Segmentation. Much less attention has
been given to domain adaptation for semantic segmentation task. The pioneering
work in this task is [15], which combines the global and local alignment methods
with a domain adversarial training. Another work [14] applies the curriculum
learning to solve the domain adaptation from easy to hard. In [16], they propose
an unsupervised learning to adapt road scene segmenters across different cities.
In [33], they perform output space adaptation at feature level by an adversarial
module. Unlike them constraining the distribution [15] or the output of the net-
work [33], we propose the Conservative Loss to naturally seek the discriminative
and domain-invariant representations.
Adversarial Learning. Recently, Generative Adversarial Network (GAN) [20]
has raised great attention. Some works extend this framework for domain adap-
tation. CoGAN [11] achieves the domain adaptation by generating cross-domain
instances. Domain adversarial neural networks [12] consider adversarial training
for suppressing domain biases. In [10], they incorporate adversarial discrimi-
native setting to help mitigate performance degradation. In our work, we also
incorporate the GAN into our model, whose discriminator drives the source im-
age towards the target one for promoting domain alignment.

3 Methodology

As presented above, the key to realize unsupervised domain adaptation is the
discriminative and domain-invariant representations. The Conservative Loss is
proposed to penalize the extreme cases and its goal is to deliver a balance between
the discriminative and the domain-invariant representations. Furthermore, we
introduce the generative adversarial networks to align the source and target
embedding. Below, we first describe the framework of our model and its network
blocks. Then, the Conservative Loss and its background are presented in details.
Finally, the alternative optimization is provided.

3.1 Framework Overview

Our framework is illustrated in Figure 2. In our setting, there are two domains:
source domain (image and label) and target domain (image only). Our framework
aims to achieve good performance on the target domain by applying the model
trained on the source domain.
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Fig. 2: The pipeline of our framework. E denotes the encoder, G denotes the
generator, and D is the discriminator. S is the pixel-wise classifier for semantic
segmentation. The red color represents the network blocks for the source domain,
and the blue for the target domain. We also display the Conservative Loss and its
backpropagation. ր represents the gradient ascend and ց denotes the gradient
descend

Our model consists of two major parts, i.e., GAN and Segmentation part.
The GAN aims to align the source and target embedding. More specifically,
the generator and discriminator are playing a minimax game [20], in which the
generator takes source embedding as input and generates the target-like image to
fool the discriminator, while the discriminator tries to classify the reconstructed
image [10,11]. The segmentation part can be seen as a regular segmentation
model. For each part, the detailed components are shown in the following:

• The encoder(E) performs the feature embedding given source or target im-
age, whose architecture is a fully convolutional network. The generator(G)
reconstructs the image based on the embedding. The discriminator(D) does
classify the reconstructed images as real or fake. S is the pixel-wise classifier.

• The GAN consists of encoder, generator and discriminator.
• The segmentation part consists of encoder and pixel-level classifier. Note
that the encoder does work in both GAN and Segmentation.

The detailed architecture of generators and discriminators is described in the
supplementary material because of the limited page space.

3.2 Background

In this section, we briefly introduce the theory of domain adaptation and present
its relation to our proposed loss.
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Many theoretical analyses of domain adaptation [17,18,19] have offered a
upper bound on the expected risks of target domain, which depends on its source
domain error (test-time) and the divergence between two domains. Formally,

ǫT ≤ ǫS +
1

2
d(S, T ) + C, (1)

where S and T denote the source domain and target domain, respectively. ǫ is
the expected risk. d is the domain divergence, which has different notions, for
example H-divergence [19]. C is a constant term.

It can be observed that two terms ǫS and d(S, T ) closely relate to the prop-
erties in the desired representations. The first term ǫS indicates that the model
should produce discriminative representations for getting smaller expected risks
on the source domain, which corresponds to the first property of discrimina-
tiveness. The second term d(S, T ) defines the discrepancy distance between two
distributions, in which the more similar the representations of both domains are,
the smaller it is. This correlates with the second property of domain-invariant.
More theoretical analyses are shown in the supplementary material.

Fig. 3: The proposed Conservative Loss with different a. It can be observed that
the Conservative Loss keeps low values in the middle level and punishes the
extremely good or bad cases

3.3 Conservative Loss

As explained above, the desired representations should be discriminative for
the main task on source domain and possess good generalization ability rather
than getting into the overfitting. We thus propose the Conservative Loss for the
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semantic segmentation on the source domain, which carries the two following
properties:

• When the probability of ground truth class is low, the loss function gives
a positive value, which enables the network to learn a more discriminative
feature by using gradient descent method.

• When the probability is high, the loss function delivers the negative value,
which makes the network avoid the bias towards the source domain via the
gradient ascend further learning the better generalization.

The Conservative Loss is formulated as:

CL(pt) = (1 + loga(pt))
2 ∗ loga(− loga(pt)), (2)

where pt is the probability of our prediction towards ground truth. a is the base
of logarithmic function, which also indicates the intersection point with x-axis,
that is 1

a
. The Conservative Loss is visualized for several values of a ∈ [2, e, 3, 4] in

Figure 3, in which e is Euler’s number and e ≈ 2.718. Specifically, (1+loga(pt))
2

acts as a modulating factor, which delivers the large values when pt is much low
or high. loga(− loga(pt)) is designed as the switch of gradient direction, in which
when pt >

1
a
it is negative, otherwise it is positive.

In the following, we have raised two lemmas to analysis the appealing prop-
erty of our Conservative Loss.
Lemma 1: The objective function of domain adaptation system contains a

saddle point, which relates to the zero point of Conservative Loss.

As the pipeline in Fig 2 shown, the full objective consists of two parts, in-
cluding the loss Ls

seg,pt
for Segmentation and the loss LGAN for GAN . The sign

of Ls
seg,pt

dynamically depends on pt. When pt is much high, the negative value
leads to the gradient ascend for escaping the bias to source domain. Otherwise,
the positive value makes the features discriminative. It can be seen that our
loss balances the two objectives (discriminativeness and domain-invariant) that
shape the representations during learning, and its zero point acts as the saddle
point. More details are shown in the supplementary material.
Lemma 2: Our loss encourages the moderate examples in large range, which

makes the overall optimization more stable.

From the loss form, it can be observed that the loss focuses on the hard
negatives and positives, and tends to give the low value for the probability in
the middle level. For instance, with a = e, the loss values of pt = 0.9 and pt = 0.1
are -1.8 and 1.4, respectively, while the loss values of pt = 0.5 and pt = 0.6 are
-0.03 and -0.06. In such setting, the loss extends the range in which an example
receives low loss, which brings a stable optimization even in the case of the
gradient descend and ascend frequently alternate due to the joint optimization
of Ls

seg,pt
and LGAN .

In practice we use a λ-balanced variant of the Conservative Loss:

CL(pt) = λ(1 + loga(pt))
2 ∗ loga(− loga(pt)). (3)
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As our experiments will show, different balanced factors λ yield slightly differ-
ent performance. While in our main experiments we use the Conservative Loss
defined above, its exact form is not crucial. In Section 4.5 we offer other forms
of our loss which also maintain the two properties, and experimental results
demonstrate that they can also be effective.

3.4 Model Objective

Our full objective is to alternatively update the three network blocks, i.e., dis-
criminators(D), generators(G) and encoder(E). Note that S is a pixel-level clas-
sifier which has no learnable parameters in our model. Hence, the objective
contains three terms: LD, LG and LE . We then explain the various losses used
in our method and describe the alternative optimization scheme.
Adversarial Loss. Inheriting from GAN [20], we apply the adversarial losses
which are derived from the discriminator to all three blocks. We term them as
LGAN,D,LGAN,G and LGAN,E. For each adversarial loss it consists of two parts,
i.e., Ls

GAN for the source image and Lt
GAN for the target image. Thus we can

obtain the adversarial loss by LGAN = Ls
GAN + Lt

GAN . It is noted that for the
encoder, the adversarial loss does a cross-domain update (i.e., classifying the
image as real or fake from source domain to target domain and vice versa),
which enforces the network to generate similar embeddings for two domains.
Reconstructed Loss. The generator performs the image reconstruction. We
use L1 distance as Lrec because L1 encourages less blurring.
Segmentation Loss. As Section 3.3 introduced, the Conservative Loss is
applied to the semantic segmentation in the domain adaptation setting.

During training, we iteratively optimize all three learnable parts (Encoder,
Generator and Discriminator). During inference, only the encoder and segmenta-
tion classifier are used to produce the results on target domain. The alternating
update scheme is described as following:

(1) Update discriminators: the overall loss is LD = LGAN,D.
(2) Update generators: the loss involves the adversarial loss and reconstructed

loss. The overall loss is LG = LGAN,G + Lrec.
(3) Update encoder: since the encoder does work in both two components, i.e.,

GAN and Segmentation, the overall loss is a combination of several losses,
including adversarial loss and segmentation loss on source domain; LE =
LGAN,E + Ls

seg.

4 Experiments

4.1 Dataset

Following previous works [14,15], we use GTAV [5] or Synthia [21] dataset as the
source domain with pixel-level labels, and we use Cityscapes [4] dataset as the
target domain. We briefly introduce the datasets as following:
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GTAV has 24,966 urban scene images rendered by the gaming engine GTAV.
The semantic categories are compatible with the Cityscapes dataset. We take
the whole GTAV dataset with labels as the source domain data.
Synthia is a large dataset which contains different video sequences rendered
from a virtual city. We take SYNTHIA-RAND-CITYSCAPES [21] as the source
domain data which provides 9,400 images from all the sequences with Cityscape-
compatible annotations. Inheriting from existing methods [14], we take 16 com-
mon object categories for the evaluation.
Cityscapes is a real-world image dataset focused on the urban scene, which
consists of 2,975 images in training set and 500 images for validation. The res-
olution of images is 2048 × 1024 and 19 semantic categories are provided with
pixel-level labels. We take the unlabeled training set as the target domain
data. The adaptation results are reported on the validation set.

4.2 Training Setup

In our experiments, we use the FCN8s [34] as the semantic segmentation model.
The backbone is VGG16 [2] which is pretrained on the ImageNet dataset [35]. We
apply the PatchGAN [36] as the discriminator, in which the discriminator tries to
classify whether overlapping image patches are real or fake. Similar to EBGAN
[37], we add the Gaussian noise to the generator. During training, Adam [38]
optimization is applied with β1=0.9 and β2=0.999. For the Conservative Loss,
we apply a = e and the balanced weight λ = 5. The ablation study will give more
detailed explanations. Due to the GPU memory limitation, the images used in
our experiments are resized and cropped to 1024×512 and the batch size is 1.
More experimental settings will be available in the supplementary material.
Warm Start. In our experiments, two different training strategies are employed,
which are cold start and warm start. The cold start is that the whole model is
trained by using the Conservative Loss from scratch. The warm start indicates
the model is trained by first using cross entropy loss and then using our Con-
servative Loss. Many works [39,40,41] demonstrate that the warm start strategy
to gradient update provides a more stable training compared with cold start.
As the ablation study will show, the warm start performs better than the cold
start. In the next domain adaptation experiments, the model is trained using
warm start strategy for fairness.

4.3 Results

In this section, we provide a quantitative evaluation by performing two adapta-
tion experiments, i.e., from GTAV to Cityscapes and from Synthia to Cityscapes.
We compare our method with several existing models, including FCNWild [15],
CDA [14] and [33]. FCNWild [15] applies the dilated network [42] as the back-
bone and the base model of [14] is the FCN8s-VGG19 [34]. Tsai et al. [33] adopts
adversarial learning in the output space to perform feature adaptation. The de-
tailed results of each category are available in the supplementary material.
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Table 1: Results of domain adaptation from GTAV → Cityscapes. The bold
values denote the best scores in the column.

Methods Base mIoU mIoU gain

NoAdapt [15] DilatedNet [42] 21.1
FCNWild [15] DilatedNet [42] 27.1 6.0

NoAdapt [14] FCN8s [3] 22.3
CDA [14] FCN8s [3] 28.9 6.6

Tsai et al. [33] FCN8s [3] 35.0 −

Ours-NoAdapt FCN8s [3] 30.0
Ours FCN8s [3] 38.1 8.1

Table 2: Results of domain adaptation from Synthia → Cityscapes.

Methods Base mIoU mIoU gain mIoU-2

NoAdapt [15] DilatedNet [42] 17.4
FCNWild [15] DilatedNet [42] 20.2 2.8

NoAdapt [14] FCN8s [3] 22.0
CDA [14] FCN8s [3] 29.0 7.0

Tsai et al. [33] FCN8s [3] − − 37.6

Ours-NoAdapt FCN8s [3] 24.9
Ours FCN8s [3] 34.2 9.3 40.3

GTAV → Cityscapes. For a fairness, the result is evaluated over the 19 com-
mon classes. From Table 1 shown, our proposed method achieves the best perfor-
mance (mIoU=38.1), which has 9.2 points higher than [14] and 11 points higher
than [15]. Due to the different experimental settings and backbone network (base-
line method [14] also mentions the difference), our own baseline performance is
higher than other methods. However, the highlight is the performance gain.
We can find that the proposed method yields an improvement of 8.1 points
higher than 6.0 in [15] and 6.6 in [14].
Synthia → Cityscapes. We report the results of mIoU in Table 2. It is noted
that [33] reported the results on Synthia [21] to Cityscapes adaptation with only
13 object categories (excluding wall, fense and pole). We also report this results
as the mIoU-2. Our proposed model achieves a mIoU of 34.2, and more im-
portantly our model obtains a 9.3 points of performance gain which is higher
than the performance gain of [14] (7.0) and [15] (2.8). Compared with [33] on
13 categories, our method also achieves the better performance. In particular,
our model does not use any additional scene parsing data except the source do-
main and target domain data, while the [14] uses another dataset, i.e., PASCAL
CONTEXT dataset, to obtain the superpixel label.

4.4 Ablation Study

In this section, we perform the thorough ablation experiments, including exper-
iments with different components, different factors in the Conservative Loss and
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Table 3: Results of ablation study for different components in the proposed
model. CL means the Conservative Loss. CE means the cross entropy loss

Model FCN8s+CE FCN8s+GAN+CE FCN8s+GAN+CL

mIoU 30.0 34.4 38.1

Table 4: Results of ablation experiments for a and λ in the Conservative Loss

a (with fixed λ = 5) 2 e 3 4

mIoU 37.5 38.1 37.3 36.8

λ (with fixed a = e) 1 5 10 20

mIoU 37.2 38.1 37.9 37.8

different training strategies. Those experiments demonstrate different contribu-
tions of components and provide more insights of our method.

Effect of different components. In this experiment, we show how each com-
ponent in our model affects the final performance. We consider several cases
as following: (1): the baseline model, which contains only the base segmentation
model (FCN8s in our model) and is trained using source data only. (2) the FCN8s
and GAN component, which consists of base model and GAN and is trained us-
ing both source data and target data with the cross entropy loss. (3) the full
model, which involves three parts, i.e., base model, GAN and Conservative Loss.
We perform the ablation experiments on GTAV→Cityscapes setting.

The results of ablation study are shown in Table 3. It can be observed that
each component plays an important role in performance improvement. More
specifically, our full model achieves the best results and obtains 8.1 points per-
formance gain. The GAN part also gets 4.4 performance gain compared with
FCN8s+CE. Note that the GAN component could introduce the unlabeled tar-
get domain data into the whole model, so the Conservative Loss is applied based
on the GAN and there is no variant of FCN8s+CL.

Effect of a and λ in the Conservative Loss. In this part, we design the
ablation experiments for a and λ in the Conservative Loss. As shown in Equa-
tion 2, a is the base of logarithm and denotes the intersection point with x-axis.
λ is a balanced factor. We show the impacts of different a and λ in Table 4.

Since there are two variables, we perform the ablation study for one variable
with another fixed. For the ablation of a (with fixed λ = 5), it can be observed
that a = e achieves the best result. Furthermore, we can find that all different
a obtain much better performance compared with the cross entropy loss (34.4
in Table 3), which demonstrates that our loss performs consistently better and
has high robustness. For the ablation of λ (with fixed a = e), different λ show
slightly different results and λ = 5 obtains the best performance.

Warm start & Cold start. As described in Section 4.2, we use a warm start
strategy to train the proposed model. In this experiment, we compare the two
training strategies. For the cold start strategy, we clamp the Conservative Loss
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with [min = −10, max = 10], while this constraint is not exist in the warm start.
We use the λ-balanced Conservative Loss with λ = 5 and a = e.

Table 5: Results of two training strategies, i.e., cold start and warm start. CL
means the Conservative Loss

Loss Function [14] CL with cold start CL with warm start

mIoU 28.9 35.2 38.1

In Table 5, it can be observed that the Conservative Loss with cold start
outperforms [14] with a large margin (6.3 points). The warm start performs
better than the cold start because it enables the network to train stably.

4.5 Discussion

In this section, we design several experiments to verify the capability of the pro-
posed method. We show the effect of adaptation on distribution to measure how
domain gap is reduced in the feature level. We compared with several classifica-
tion losses and homogeneous losses to show its superiority and flexibility.
Visualizations. To verify the effect of adaptation on the distribution, we use t-

⋆⋆  Cityscapes (Target)♠♠ GTAV (Source)

Road

Car

Terrain

Person

FCN8s Ours

Fig. 4: We show the effect of adaptation on the distribution of the extracted
features. ♠ denotes the point from source domain and ⋆ is from target domain

SNE [43] to visualize feature distributions in Figure 4. 100 images are randomly
selected from each domain and for each image the features from last convo-
lutional layer (the channel size equals to class categories.) are extracted. We
compare the distributions of our model with FCN8s (No adaptation). Four cate-
gories are sampled to display for a clearly visual effect. We observe that with the
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adaptation applying, the distance between two domains with same class becomes
closer and the discrepancy between different classes also gets clear.

Loss mIoU

Cross Entropy 34.4

Focal Loss 35.8

Conservative Loss 38.1

Fig. 5: The left figure shows three classification losses, including Cross Entropy
loss (CE) in blue, Focal Loss (FL) in green and Conservative Loss (CL) in red.
The right table shows the results of all three losses on GTAV → Cityscapes
adaptation experiment

Comparison with other classification losses. In this experiment, we com-
pare the Conservative Loss to Cross Entropy Loss and Focal Loss [44]. The
Cross Entropy Loss is given by CE(pt) = − log(pt), which is plotted in Fig-
ure 5 with green line. To ensure fairness, we utilize the α-balanced Focal Loss
FL(pt) = −αt(1 − pt)

2 log(pt) and warm start in the experiment of Focal Loss,
and apply αt = 5 by using a cross-validation.

From the right table in Figure 5, it can be observed that the Focal Loss
obtains a better performance compared with the cross entropy loss because it
focuses learning on hard negative examples. However, in the domain adaptation,
the domain-invariant representations are crucial to achieve good adaptation per-
formance. The Conservative Loss does enable the network to be insensitive to
domain changes by punishing the extreme cases. It can be seen that the Con-
servative Loss yields higher result (38.1), and obtains more performance gain
(3.7) than the Focal Loss (1.4) based on the cross entropy loss.

Effect of homogeneous losses. As shown in Section 3.3, the Conservative
Loss has two properties: (1) when the pt is low, the Conservative Loss enforces
the network to learn discriminative features. (2) when the pt is high, the loss en-
ables the network to learn domain invariant features by gradient ascend method,
which aims to penalize the extremely good cases. There are several losses that
also maintain these two properties, for example the cubic equation. In this ex-
periment, we propose several homogeneous losses to verify the effect of these two
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properties, which are given by:

Loss1 = −λ1(pt − 0.5)3, (4)

Loss2 = −λ2(pt −
1

e
)3, (5)

Loss3 =







−α ∗ (pt −
1
e
)3, pt <

1
e
,

−β ∗ (pt −
1
e
)3, pt ≥

1
e
.

(6)

Equation 4 and 5 demonstrate the λ-balanced cubic equations with different
intersection points, i.e., 0.5 and 1

e
, respectively. Equation 6 is a piecewise func-

tion, which is more similar to the Conservative Loss due to these two balanced
factors.

Table 6: Results of homogeneous losses

Loss Function CE FL Loss1 Loss2 Loss3 CL

mIoU 34.4 35.8 36.5 36.7 37.8 38.1

We apply the adaptation experiment on GTAV → Cityscapes to verify their
capabilities. The results are reported in Table 6. In order to ensure fairness, all
experiments are performed based on the warm start and those hyper-parameters
(λ1, λ2, α, β) are chosen by using the cross-validation. We can observe that all
homogeneous losses perform better than the cross entropy loss (34.4) and Focal
Loss (35.8). Therefore, we can find that the exact form of the Conservative Loss
is not crucial, and several homogeneous losses also yield comparable results and
perform better than cross entropy loss and Focal Loss. Generally, we expect any
loss function with similar properties as Conservative Loss to be equally effective.

5 Conclusion

In this paper, we have proposed a novel loss, the Conservative Loss, for the
semantic segmentation adaptation. To enforce the network to learn the discrim-
inative and domain-invariant representations, our loss combines the gradient
descend and gradient ascend method together, in which it penalizes the extreme
cases and encourages moderate cases. We further introduce the adversarial net-
works to our full model for supplementing the domain alignment. Extensive
experiments demonstrate our model achieves state-of-the-art. Exploratory ex-
periments show that the Conservative Loss has high flexibility without limiting
to exact form.
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