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Abstract. The present paper is concerned with a development of a penalty/finite-
element approximation of a class of unilateral problems in linear elasticity. A penalty
method is applied to resolve the inequality constraint due to contact, and convergence
with respect to the penalty parameter is discussed. Then finite-element approximations
are introduced to the penalized formulation with a priori error estimates in terms of the
penalty and mesh parameters. Several numerical examples are also given in the end of
the paper.

1. Introduction. The present study is concerned with the development of a
penalty/finite-element approximation to a class of contact problems which involve a
deformation of a linearly elastic body supported unilaterally on a frictionless foundation.
The kinematical restriction due to the rigid foundation is resolved by penalty methods,
and the variational formulation of the penalized problem is discretized by finite-element
methods.

The contact problem which will be discussed in this paper is called the Signorini
problem and was solved by Fichera [1] in 1963. Details of the mathematical analysis such
as existence, uniqueness, and regularity of the solution can be found in the monograph
by Duvaut and Lions [2] or the paper by Kalker [3], for example. Finite-element analysis
of the Signorini problem formulated by variational inequalities are studied by Hlava6ek
and LovisSek [4] and Kikuchi and Oden [5]. Since every admissible displacement is
restricted by a constraint given by an inequality, the form of inequality must be solved
directly in order to get a solution. This situation is not favorable for computations,
despite the fact that the form of the inequality can be solved by various gradient methods
with projection maps specially designed for constraints, as shown in Glowinski, Lions,
and Tremolieres [6].

In order to avoid the constraint on admissible sets, one of the methods commonly
used is the Lagrangian multiplier method with Uzawa's iterative algorithm. Formula-
tions of contact problems in elasticity by this method are given in, e.g., Paczell [7] and
Kikuchi and Song [8] together with finite-element approximations without convergence
analysis. This method has been used by many authors without explicit mention in order
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to solve contact problems by finite-element methods (see Chan and Tuba [9] or Hughes
et al. [10]). However, the Lagrangian multiplier method leads to slow convergence of its
Uzawa iterative algorithm because of the restriction on the multiplier, while the displace-
ment field is free from any constraints.

Another candidate for the resolution of the inequality constraints is the exterior pen-
alty method introduced by Courant, Friedrichs, and Lewy [11] and extended by Zangwill
[13]. As Courant [12] indicated, the penalty method makes physical sense. For example,
the idea of penalty methods resolving the Dirichlet boundary condition u = 0 is that very
stiff springs are set along the boundary (instead of the fixed condition). This means
mathematically that the Dirichlet boundary condition is approximated by the third type
of boundary condition du/dn = - u/e for a small enough penalty parameter e > 0. Phy-
sically £_1 is the stiffness of the springs. We will apply this method to resolve the
constraint due to the rigid foundation in contact problems.

Following the abstract mathematical analysis of penalty methods given by Lions [14]
and Aubin [15], we will obtain (i) convergence of the penalty method for the Signorini
problem with explicit estimates in terms of the penalty parameter e, (ii) error estimates of
the penalty/finite-element approximation with respect to e and the mesh parameter h of
the finite-element model, and (iii) several numerical examples which demonstrate the
applicability of the present method to other practical contact problems.

The penalty resolution discussed in this paper seems to have a very close relation to
the methods of interface (or bond, film) finite elements for solving two-body contact
problems applied by Tsuta and Yamaji [16] and Yamada et al. [17]. The relationship of
these two methods for a class of contact problems is discussed in Okabe and Kikuchi
[18]-

2. A penalization of an unilateral problem. Suppose that a body Q is supported
unilaterally on a rigid foundation and that r( is a part of the boundary T of the body in
which the true contact surface is included. Let s be the normal distance between the rigid
foundation and the body. Then the unilateral contact condition

«„ — s < 0, a < 0, (u„ — s)a = 0 on Tc (2.1)

must be satisfied. Here un and a are the normal displacement and stress (contact pres-
sure) on the boundary defined by

u„ = UjHi and a = (2.2)

respectively, where n is the unit vector normal to the boundary. The condition (2.1)
means that the body cannot penetrate the rigid foundation and that the contact pressure
exists at the point which the body touches the foundation.

It is a rather simple idea in physics that the rigid foundation can be approximated by
continuously distributed springs the stiffness of which is given by 1/e for sufficiently small
e > 0. If e -> 0, the spring foundation becomes rigid. Thus condition (2.1) may be replaced
by the relation

a, = — (l/e)(w,:n - s)+, a+ = max{a, 0} (2.3)

which represents the boundary condition for the unilateral spring support. The replace-
ment of (2.1) by (2.3) means that intense stress is produced on the boundary as a penalty,
when the constraint un — s < 0 due to the rigid foundation is violated. The replacement
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(2.3) of the rigid foundation by the stiff spring is called penalization of the constraint (2.1),
and the parameter e is called the penalty parameter.

If no frictional effect is assumed on the contact surface, the contact condition addi-
tional to (2.1) is

a] =0, a] = G^nj — anj on Tr. (2.4)

That is, there are no stresses in the direction tangential to rc.
Suppose that the body is fixed on a part T0 of the boundary, and that the body is

subjected to the body force / and the traction t on the boundary = T - fD — r(-.
Then the equilibrium equations are

- (Tjj j = f in Q, u, = 0 on ro, aijnj = ti on T, . (2.5)

Suppose that the body is linearly elastic:

<?ij = Eijkhekh(u). (2.6)

Here Eijkh is a piecewise constant fourth-order tensor such that

Ei jkh = Ekhi j — Eijhk>

m> 0: EijkhXkhXij > mXmnXmn, Xtj = Xj(, (2.7)

and ekh is the linearized strain tensor defined by

£«,(") = (uk.h + uh,k)/2. (2.8)

We have used the summation convention and uk h = duk/dxh, etc.
A variational principle for the problem penalized as above is then given by

u, e V: B(u,, v) + (1 /e){(u,n - s)+, v„) =f(v), v e V (2.9)

where

V = {veHl(Cl): v = 0 on rD}, (2.10)

B(u, v) = I £ljWl£Wl(u)£lV(r) dx, (2.11)

f(v) =1 fvtdx + I t,v, ds, (2.12)
•'n ■ r,

H1(fi) = {t;: VteL2^) and vUj e L2(fi)}. (2.13)

Let the Sobolev norm || ■ || t be defined by
I, 11/2

Ikll i = jj Mi + VijVi.j) dxj (2.14)

The function (•, •) is the L2(rc) inner product defined by

(t, vn) = I wn ds (2.14)
•rt

with the norm III ■ III:
= (t, x)il2.
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We will assume that the boundary of the domain Q is smooth enough so that
Vi e Hll2(r) and v„ = vtn, e H1/2(r) for vt e H1(Q), etc. As shown in Ne£as [19, p. 88], it
suffices to assume

QeC1,1. (2.15)

In Sees. 6 and 7 we also use the Sobolev spaces HS(Q) and //r(r( ) with norms || • ||s
and || ■ ||r, rc, respectively, for arbitrary real numbers s and r. Details of such spaces can
be found in, e.g., Aubin [15, Chapter 6] and Ne£as [19, Chapter 2].

3. Existence of the solution of the penalization. Let the operator A : V -» V be
defined by

(A(u), v> = B(u, u) + (l/e)((u„ - s)+, v„) (3.1)

where V is the dual of V. By applying Korn's inequality [19, p. 192],

eij(v)Eij(v) dx > cm || i; || \, v e V
•a

with the assumption meas(r„) > 0, the convexity assumption (2.7)2 on the strain energy
function yields the strong monotonicity of B:

B(u — v, u — v) > cm||M — i;||i.

Since

((a - c)+ - (b - c)+)(a - b) > ((a - c)+ - (b - c)+)2,

for every real number a, b, c, we obtain

((u„ - s)+, un - v„) - ((vn - s)+, un - v„) > HI fa - s)+ - (v„ - s)+ III2 > 0.

Thus for some constant m > 0,

</!(«)- /!(f), u - v) > m||u - u||f (3.2)
for every u, v e V. That is, the operator A is strongly monotone on the space V.

On the other hand, the inequality

((a — c)+ — (b — c)+) d < |a — b \ \d\

for every real numbers a, b, c, and d implies

<A(u) - /l(y), w> < M\\u - y|| i ||w||! + (l/e)l||u„ - t?„III l||w„III
for every u, v, w e V. Here

M = I max max | Eijkh(x) | Imeas(Q). (3.3)
' i, j,k,h J6(] '

Applying the trace theorem [19, p. 99], we have

IK III ^ cIMIi-
Then

<X(m) - A{v), w> < (M + C/s)||« - v\\ t ||w|| v (3.4)
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That is, the operator A : V -> V is strongly continuous.
Thus, the existence theorem for the penalized problem (2.9) follows from the theory of

nonlinear monotone operators [14, p. 171]:

Theorem 3.1. Suppose that (2.7) and (3.3) hold. Then there exists a unique solution u, to
the penalized problem (2.9) provided that

/e L2(Q), reL2(rV), and seff"2(r,.). (3.5)

Moreover, uis uniformly bounded in e:

II".: Ill < H/IL/W (3-6)
where

I, 11/2

= ||/||o+ |Jr ■

Because of the reflexivity of the Sobolev space H1(Q), there exists a subsequence of
{u,.} € V which converges weakly to an element u e V as e -»0. Let such a subsequence be
denoted again by {u,}. We shall show that the limit u belongs to the set

K = {veV: v„ - s < 0 on rc} (3.7)

and is the solution of the variational inequality

ueK: B(u, v — u) >f(v — u), v e K. (3.8)

The inequality (3.8) is the variational principle for the unilateral problem with the
contact condition (2.1).

Theorem 3.2. Suppose that conditions in Theorem 3.1 hold. Then the sequence {uj e V
of the solution of the penalized problem (2.9) converges to a unique solution of the
variational inequality (3.8) as e -> 0, provided that Q e C1,

Proof. From (2.9),

B(u,, v - u, ) + (1/e)((m,;„ - s)+, v„ - uj =f(v - u,) (3.9)

for every v e V. For any v e K, (v„ — s)+ = 0. Then

B(u,. , v - u,.) > B(ur , v-ur)~ (l/e)((i>„ - s)+ - (u,.„ - s)+, v„ - u,n) =f(v - u,),

B(u,. , v — u,.) >f(v — u,.), v e K. (3.10)

Since v -> B(v, v) is strictly convex and Gateaux-differentiable on V,

lim inf B(u,, ur) > B(u, u).

Since v^>f(v) is linear and continuous, we can take the limit of (3.10) as e -»0:

B(u, v — u)>f(v — u), v € K.
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We next show that u e K. Putting v satisfying v„ = s on rc (p,eH1/2(r) since
Q e C1'1) into (2.9) yields

- s)+, K, - s)+) = e{B(u,, v - ur) -f(v - u(:)}

< e{B(u,:, v) -/(v - u,)}

< e{M\\ur ||i HdIIj + CH/UIMl! + ||«e||i)}.
Passing to the limit e -»0 yields

lll(«B - s)+ III < lim |||(«„ - s)+ III = 0.
t:-*0

That is, un — s < 0 in the sense of /-2(rc). However, un e H1/2(rc) and s e Hi!2(TL). Then

un — s < 0 in the sense of /f1/2(rc);
that is, u e K.

Since uniqueness of the solution of the variational inequality (3.10) is clear from the
inequality

B(u — v, u — v) > m\\u — r||i,

every convergent subsequence of {»,.} has the same limit u e K, which is the solution of
(3.10). Therefore, the original sequence {mJ itself must converge to the limit u e K as
e -> 0 because of the uniform boundedness of the sequence {«,}.

4. Existence of the contact pressure. It has been shown that the penalty solution u,.
converges to the solution u of the variational inequality as e -»0. It will be shown in this
section that the approximation

o-,: = -(!/£)(",:„ - s)+ (4-1)

to the contact pressure converges to that of the unilateral problem as e -> 0.

Theorem 4.1. Suppose that the conditions of Theorem 3.2 hold. Then the sequence
{||<T£||f/2,rc} is uniformly bounded in e and {ctJ converges to a e N as s-»0. Moreover,
the pair {«, a} e K x N satisfies the mixed (or saddle point) formulation

B(u,v)-[a,vn]=f{v), veV,

[t — a, u„ — s] > 0, re N, (4.2)

where [•, ■] is the duality pairing on (//1/2(rc))' x Hll2(rc), and

N = {T£(H1,2(rf))': i<0}. (4.3)

Proof. Substitution of (4.1) into (2.9) yields

B(u,,v)-[a,,vn]=f(v), veV,

since [t, u„] = (t, t;„) for t e L2(rc). By applying the trace theorem that the trace map is
surjective from Hl(Q) into H1I2(T), there is a positive constant a such that

a||T||i/2, r<- — SUP (fr «V|/Ni)-

Then
lk£||f/2,rc<(M||Me||1 + ||/|U)/a.
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This means that {|c,: ||*2,r<} is uniformly bounded in e, and thus there exists a sub-
sequence of {awhich converges to a weakly in (//1/2(rc))'.

Next we shall show that the limit <r of a convergent subsequence of {<r,.} belongs to the
set N. This follows from a, < 0 and closedness of the set N.

The first equation of (4.2) is clear. Indeed, (2.9) and (4.1) imply

B(u,, v) - (a, , vn) =f(v), veV.

Passing to the limit e -» 0 yields

B(u, v) - [a, u„] =f(v), v e V.

On the other hand,

0 > (a,, um - s) = B(u,:, u,:) -f(u,.) - (a,, s).

Taking the limit as e -»0, we have

0 > B(u, u) — f(u) - [a, s] = [<x, u„ - s] > 0;

That is,

[a, u„ - s] = 0

The second inequality of (4.2) then follows from the fact that a e JV and u e K.

It should be noted that the limit a of the sequence {<tJ may not belong to the space
L2(rr), even though each entry of the sequence belongs to L2(rc). Indeed, suppose that a
flat punch is indented into the semi-infinite linearly elastic foundation in R2. Then the
contact pressure is given by Garlin [20, p. 45] as

a = C/y/a2 — x2 in ( — a, a)

for some proper constant C. The x-axis is assumed to be the surface of the foundation,
and the flat punch is located within the interval [-a, a] on the x-axis. It is clear that
a $ l3{-a, a).

In the subsequent analysis of finite-element approximations of the contact problem,
however, we will assume that the contact pressure belongs to L2(rf ), although this
assumption may not be true in all contact problems. Under this assumption, the mixed
formulation (4.2) will be written as

B(u, t') — (a, v„) = f(v), v g V, (t — a, u„ — s) > 0, t e N n l}{rf). (4.4)

5. Finite-element approximations. Let Vh be the finite-element approximation of the
space V defined by (2.10). Let /( •) be the operation of numerical integration given by

'(«)= z £ »eA?jH(Zj) (5.1)
e=1 7=1

where E is the number of elements related to the boundary rr, G the number of points,
w* the weight, and c] the local coordinates of points of numerical integration respectively.
Here vh and xh denote finite-element approximations of v and t. The function vhn is the
normal displacement of i/1 defined by

vhr,(£ej) - vh(^j) ■ n(£ej) (no summation),
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where j is the nodal point of the finite-element model. Moreover, vhn is the polynomial the
order of which is same as that of vh. Under these conventions, the approximation of (2.9)
is given by

uhe e Vh: B(u£\ vh) + (1 /e)/((i4„ - s)+, vh„) = f(vh), vheVh. (5.2)

If the trapezoid rule is used for /(■), then G = 2, w\ = w\ = h/2, £,\ = — 1, and = 1,
where h is the length of the finite element. If Simpson's rule is applied, then G = 3,
we! = w| = h/3, we2 = 4/1/3, « = -1, & = 0, and = 1.

We now define the finite-dimensional approximation a* of the contact pressure such
as (4.1). Let Wh be the space spanned by Lagrangian-type interpolation functions given
on points of numerical integration (5.1). If the points of integration do not coincide with
nodal points of the finite-element model on Tc, Wh is nonconforming; that is, every
element of Wh need not to be continuous. If Vh is approximated by four-node isopara-
metric quadrilateral finite elements (Qj elements), and if the trapezoidal rule is applied
for numerical integration / within an element, the space Wh is the set of piecewise linear
polynomials which are traces of elements of Vh on the boundary. If the one-point Gaus-
sian rule is used for the same elements, the space Wh is the set of all piecewise constant
functions which are nonconforming. Let the approximation <7* be defined by

tfltj) = - (V£)(M«i ~ s)(tej)+ (5-3)
and a? e Wh, and let

Nh = {r* e Wh: th({J) <0, 1 < j < G, 1 < e < £'}. (5.4)

Applying arguments similar to those in Theorem 3.1, we obtain the following results:

Theorem 5.1. Suppose that same conditions in Theorem 3.1 hold. Then the sequence
{«(!} e Vh converges to the solution uh e Kh of the variational inequality

uh e Kh: B(u\ vh - uh)>f(vh - uh), vh e Kh (5.5)

as e -> 0, where

Kh = {vhEVh: (vhn - s)({J) < 0, 1 < e < E\ 1 <j<G}. (5.5)

The nonlinear equation (5.2) is solved by the method of successive iterations. Let 'w?
be the rth approximation of uj1, and let

(V„ - s)(^r = ('<n - S)(«J) if ('" V„ - s)(^) > 0,
= 0 if ('-y,-S)©<0. (5.6)

Then the variational equation in Vh

ye vh) + (l/£)/((V„ - s)+, oj) =/(."), vh e Vh (5.7)

becomes linear and may be solved by customary methods for the solution of systems of
linear equations. We will repeat the above procedure until a small enough tolerance
||,+ 1u* — 'uJ || j /||'+ 'u* ||! is obtained.

It can be easily verified that the operator A,: Vh-> (Vh)\ defined by

(A,Cuh), vhy = vh) + (l/e)/(('u?„ - s)+, vhn),
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is monotone continuous and coercive on Vh independently of the parameter t, t = 1, 2,
M. Thus, existence of a unique solution 'u) of the problem (5.7) is assured, and

furthermore || 'u) || j is uniformly bounded in t. Therefore there exists a subsequence of {'u*}
which converges to the limit u) as t-* oo. Because of the uniqueness of solutions to the
problem (5.2), the sequence {'u)} itself converges to the solution u) as t -* oo.

As shown in Sec. 8, convergence of (5.7) is sometimes obtained with zero tolerance
within a few iterations.

6. Convergence with respect to e and h. In this section we obtain the a priori esti-
mates of the form B(u — u), u — u)) and Ilk — <rj!||| in terms of the penalty parameter e
and the mesh size h of the finite-element model.

Theorem 6.1. Suppose that conditions of Theorems 4.1 and 5.1 hold. Then

B(u -u),u- u)) < B(u - u), u - vh) + (a, vhn - u„) + (a - zh, u„ - u).„)

+ (zh - a, u„ - s) + £,(t\ u)„ —«s) + /(t" - a), zh)e (6.1)

for every vh e Kh and zh e Nh, where

El(f,g) = (f,g)-I(f,g), V f g e C(Q).
Proof. From (4.4) and (5.2),

B(u — u), u — u)) = B(u — u), u — vh) + B(u — u), vh — u))

= B(ll - u), U - l/1) + (<T, - U?„) - /((T?, - W*„).

The last two terms are then estimated by

(a, vhn - u)n) - I(aJ, - uh[n) = (<r, t'J - u„) + (a - zh, u„ - u)n) + (ta, u„ - s)

- (t\ u)n - s) - /(ffj, - s) + U?„ - s)

< (a, vhn - u„) + (a - zh, u„ - u)n) + (zh - a, un - s)

~ Ei(t\ u)„ - s) - I(zh, u\n - s) + 1(a), u)„ - s)

< (a, vhn - u„) + (a - r\ u„ - «?„) + (t* - <r, u„ - s)

- £,(z\ - 5) + /(a? - t\ (u)h - s)+).

Then the estimate (6.1) follows from

/(<j? - zh, (u)„ - s)+) = 1(a) - zh, — sa)) < -1(a) - zh, zh)e.

The first four terms of the right-hand side of (6.1) are the error of the interpolations by
finite-element methods. The fifth and sixth terms are errors of the numerical integration
method I. The last one is part of the penalty approximation.

Let the approximation Ah of the trace operator v ->■ v„ be defined by

(zh, \(vh)) = I(zh, vhn). (6.2)

Theorem 6.2. Suppose that conditions of Theorem 6.1 hold. Further suppose that there
exist an element vh e Vh and positive number oih such that

Ah(vh) = zh, < |||t*III (6.3)



10 NOBORU KIKUCHI AND YOUNG JOON SONG

for every xh e Rg(Ah). Then

/(zh - a*, zh - a?) < M\\u - m?||1II|t'' - o-?lll/ah + |||t'1 - <rIII \\\xh - cr?Ill

-£/(t\t* - cr?) (6.4)

for every ih e Nh.
Proof. From (4.4) and (5.2),

I(th - a*, 1%) = I (a - a*, vhn) + /(t* - <7, t'J)

= (cr, vh„) - I(ahc, vh„) + I (a, vhn) - (a, vh„) + I(rh - a, vHn)

= B{u - i/1) + /(t* - (T, «£) + /(cr, t>S) - (ff, 1%)

= B(u - m* , d") + (t* - a, t£) + E,(t\ vh„).

Applying (6.3) yields

I(zh - cr?, zh - a*) < M\\u - uj||x lilt'1 - «rj|||/a* + (t* - a, zh - cr?) + E,(zh, vhn).

Then the estimate (6.4) follows by applying Schwartz' inequality to the second term of
the right-hand side of the above inequality.

Remark 6.1. Similar estimates have been derived by using a different methodology for
obtaining errors of the finite-element approximations in Oden, Kikuchi, and Song [21].
There, errors of ||u — m?||i and Ilk — a* III are obtained through a mixed finite-element
method.

It is an easy task to obtain a priori error estimates for ||u — u? ||t and Ilk — of1 III from
(6.1) and (6.4), using results of numerical integration, interpolation properties of finite-
element methods, and assumptions on the regularity of the solution. We will give an
example of this.

Example 6.1. For the numerical integration I, we suppose that

/(it vhn) > Cjltflll2, /( t\ vh„) < C2 |||Tfc III llli^HI (6.5)
and

|E,(z\ i£)| < C,h'\ |£,(t\ ta)| < C4h^ (6.6)
for every vh e Vh, zh e Wh, and xh e Wh. Let the finite-element model satisfy the following
interpolation properties:

v' e Kh: ||d — y'||r < Cs/i"11|v||s, r 1 e Nh: ||r - r'||9,r(. < C6/i"2||T||m. r(. (6.7)

for every v e Hs(Q) and t e Hm(Tc), where

Hi = min{/c + 1 — r, s — r}, r < s,

H2 = min{k + 0.5 - g, m - g), g < m, (6.8)

and (k, £) is the order of complete polynomials included in interpolations of v and z,
respectively. The numbers r and g may be negative, as shown in Babuska and Aziz [22,
p. 95],

Suppose that

u e HS(Q), ffEru(rf) (6.9)
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under the assumption that

s e Hs~° S{TC). (6.10)

Further suppose that the constant ah in condition (6.3) is represented by

ah = a.hA, S e R. (6-11)

Under the above assumptions, the estimate (6.1) becomes

m\\u - «2||J < M\\u - mJ|| ! ||u - vf\h + || <7 ||s-1.5, n- IK - "Jl.S-s.rY

+ II — **||-0.5, rr||Mn — u?n||o.5,rf + ||t* ~~ a || 0.5 - J, Tc || un ~ S||s-0.5,rc

+ C3hM + lilt" - a? Ill lllrNlle.
Applying Young's inequality, (6.6) and (6.7), we can obtain that

II" - "?||i < C(||m||„ ||ff||,_1.j,r<>2:'1 + 111^ - oJHIe + C3h*\ (6.12)
where = min{/c, k + 1, s — 1}. Similarly, from (6.4),

CJlilt* - <r*III2 < M\\u - mJIjIIIt* - <r?lll/ah + lllr'1 - <r||| IIIt" - cr?Ill + C4^2.
Applying Young's inequality and others, we obtain

lilt" - cr?Ill2 < C(||u - u?\\2/oc2 + |||t" - <t|||2) + CAh'\

lllrh - a?Ill < C(||m - w?\i/a.h + lllr'1 - crIII) + (C4A/2)1/2. (6.13)
Combining (6.12) and (6.13) yields

||" - «?||? < C(||m||„ M|s-1.5,r()('l2:'1 + h'2z) + C3h;i + Cll2h?-2l2e, (6.14)

where y2 = min{-<5, s — 1.5}. Substitution of (6.14) into (6.13) implies

lllr'" - <r£III < C(||«||s, ||ff||1-1.5,I-c)('i;'3 + hyl2~s e1/2)
+ C3hkll2~d + Ci'V2'4"^1'2

where y3 = min{/c — d, £+1— d, s — 1— <5, s — 1.5}. Then it follows from the triangle
inequality that

Ilk - o*lll < C(HU + V»2->e1'2)
+ C3h;i,2~* + CW*-'e112. (6.15)

The properties of interpolation of finite-element methods (6.7) are defined in res-
tricted sets Kh and Nh instead of Vh and Wh. Thus, we must recall results by Falk [23] as
well as general interpolation theories given by Ciarlet [24], Let be a set of nodal
points on Tr and let Uh be a finite-element approximation, containing piecewise com-
plete /cth-order polynomials, of the Sobolev space Hs(Q). Then, following Falk [23], we
may assume the following interpolation properties: if v e HS(Q) satisfies v — s < 0 in the
sense of HS(Q), then there is an element vh e Uh such that

\\vh - i>||m < C7i"||i;||s, n = min{s - m, k + I - m},

(v - s)(Zc) < 0. (6.7)*
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Under this interpolation property, we need to consider conditions (6.5), (6.6) and
(6.11) for specific finite elements and numerical integration.

7. Constant ah for nine-node elements. We shall consider nine-node isoparametric
quadrilateral (Q2 —) elements, specifically, in this section and shall obtain the constant
<xh, (6.3), for the case when Simpson's rule is used to integrate the penalty term
numerically.

If nine-node elements are used for the finite-element approximation, the boundary
value of the function vh e Vh is a piecewise quadratic polynomials. If Simpson's rule is
applied for the numerical integration /, the approximation rh of the contact pressure
becomes a piecewise quadratic polynomial as well as the boundary value of vh. Thus the
space Wh is spanned by basis functions which are same as boundary traces of basis
functions for Vh. Within a finite element related to the boundary Tc, the functions vhn and
zh e Wh are spanned by

AM£) = £(£- 1)A
N2(0 = m+ l)/2, {£[-1,1], (7.1)
n3(Z)= i -£2.

We first note properties of Simpson's rule for the numerical integration I.

Theorem 7.1. Let / be Simpson's rule of numerical integration. Then

J(pj,t£)> IMrJIII2, (7.2)
/( t\ fj) < 2\\\th\\\ III ({III, (7.3)

\E,(z\ i£)| < C3/i4||T',||1.5,rf||i;S||2.5irc, (7.4)

\E,(A T*)| <C4/JJ||T"||1.5,r(.||T''||1.5,r(. (7.5)

for every vh e Vh and t\ xh e Wh, where

M..rc= ! Z IK"
E' 11/2

„h\\2 IlU.rJ ,
!e= 1 I

etc., for s > 1.
Proof. Note that vhn and rh are all quadratic polynomials within an element. Let

= V! + V2Z + v3^2,

Xh = Ti + t2{ + t3{2, etc.

Then

(t\ xh) = X M6t\ + 2t2 + 6T3/5 + 4t1t3)/3,
e = 1

/(xh, rh) = Y, /!(6ti + 2t2 + 2t3 + 4t1t3)/3.
e—i

Since xh and vh„ have same form, we can easily conclude (7.2) and (7.3). Note that

/(T* 14) < {/(!*, t'")}1/2{/(fjj, t;J)}1/2.
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Direct evaluation of the term E, provides the estimate (7.4). In fact,

I*)| = z 4/i I t3 1/15 = S4A5|(T*|r.mir.ri/15
e~ 1 e = 1

< (4/i4/15)||(t',)"|| _0 5i F(. ||(^n)"||o.5, r( ^ C3IIT'*IIi.5, r< \\vn II2.5, r<

where g" means the second derivative of g in the global coordinates, i.e. d2g/dx2. Si-
milarly, we have

t*)| = Z 4^|t3t3|/15 <(4hVl5)||(TT||o,rc||(Tfc)"||o,re-
e = 1

Applying the inequality

II (tT || 0, re ̂  II^IU.Tc
and applying the inverse property of finite-element approximations

||tfc||2.r(.<cr"2||t"||1.5.r(.,

we can obtain the estimate (7.5):

|£,(t\ ^)|<C4/J3||t"||1.5,r,||t''||1.5.r,.

Our next objective is to find the " constant" ah which is essential to the estimates of
finite-element approximations.

Lemma 7.1. If Simpson's rule is applied for numerical integration, there exists an vhn,
vh 6 Vh and = vh • n, such that

I(th, fj)> lilt* III IIIpJIII (7.6)
for every zh e Wh.

Proof. Taking

Wj) = A$j)> 1 <j<G, 1 <e<E (7.7)
in (5.1) yields

/( t\ «i)-{/( t*, T *)}1/2{/(»S.«4)}1/2-

Then (7.6) follows from the results in Theorem 7.1.

Lemma 7.2. For every vh e Vh, there exists a constant /? such that

phll2m < lllttflll, (7.8)

where h is the mesh size of finite elements.
Proof. We recall the trace theorem on //'(O) and the inverse property of the finite-

element approximation:

Klli<CK||1/2,rr (7.9)
for vh $ ker(^), and

Klli/2,rc^ CT1/2infill, (7.10)
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where yc„: H^Sl) -* H1/2(rc) is the trace operator defined by

Yn(v)( = v„) = v ■ n on Tf

if v ■ n e C0C(rc). Then (7.8) follows from (7.9) and (7.10).
Combining these two results, we can obtain the constant och

Theorem 7.2. Let Simpson's rule be applied for the numerical integration I. Then there
exist an element vh e Vh and a positive constant /? such that

A*(b») = t\ phl>2\\i?\\i< Hit* III (7.11)
for every xh e Rg(Ah), i.e., a.h = /3h1/2.

Proof. By using the results in Lemma 7.1 and 7.2, it can be proved that

vh e V„: (t* A„(t/1)) = I(r\ vh„) > phl/2|||r*III ||r"||

On the other hand, (7.3) implies

(t\ A^)) = /(ta, t") < 2|||t"|||2-
Thus, we have

Ph1'2 Ml KljiC lilt'1 III2

Let us now apply the result ah = [3h112 to the estimate obtained in Sec. 6.

Example 7.1 (Continuation of Example 6.1). If the following regularity

u e H3(Q) and a e H3/2(rc) (7.12)

is assumed, interpolations vh and xh of u and a satisfy

II II 2.5, r(' ^ Ml, ||T'I|| 1.5, Tf- ̂ ^2
for positive constants Mj and M2 independent of the mesh size h of the finite-element
model. Thus, the estimates (6.14) and (6.15) yield

||u — u?||i < C(h2 4- /i_1/4e1'2), Ilk - ff?Ill < C(h3/2 + h~3,4e112). (7.13)

Furthermore, if e = h912, then

||w — m?|| i < Ch2, |||cr — <rj*III < Ch312 (7-14)
are obtained.

Remark 7.1. As shown in (7.13) and (7.14), the rate of convergence of a — a* differs
from that of u — uhc by quantities of the order of magnitude 0(h1/2). However, it is
possible to recover 0(h112)-rate of convergence using duality arguments. Indeed,

it h it ^lk-*?||-l/2.rc= SUP  Oi •
veHHtl) IFIIl

<<r - ffj, vny = <<7 - 0-?, v„ - vhny + B(u - uh, vh) - £,(<7?, vhn), Vvh e Vh.

If we assume the interpolation v' of v in Vh for then we have

Ik ~ (J-:||-l/2,rc ̂  Cjlllo- - (T?lllhl/2 + C2||m - M*||! + C3h2.
Here we have used (6.7) and Theorem 7.1. Thus, we have

Ik - II-1/2.r< ̂  C(h2 + h~ 1/4e1/2)
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and if e = h912,

Ik - II -1/2. r(- < Ch2.
Thus the final estimate of errors of the penalty finite-element approximation for

@2-elements with Simpson's rule has been obtained as

II" - 4111 + Ik - of ||-1/2,r£- ̂ C(^2 + T1/4e1/2)

which indicates 0(/i2)-convergence in the mesh parameter of the finite element model and
0(e1/2)-convergence in the penalty. This estimate shows that the approximation (5.2) is of
good quality for both penalty and finite-element methods. Note that the penalty part of
the estimate include the negative power of the mesh parameter. This means that the
penalty parameter cannot be arbitrary in the mesh size h. In order to keep
0(/?2)-convergence, it suffices to take e = h912.

8. Numerical experiments. Three numerical examples will be solved by the
penalty/finite-element approximation discussed in above. The first example is one of
Hertz contact problems, and the numerical results will be compared with the Hertz
solutions given by Goldsmith [25], The second example is a rigid punch problem and is
designed to check the estimates obtained in Sees. 6 and 7. The last example shows how a
two-body contact problem is solved.

Example 8.1. Let an infinitely long circular cylinder rest unilaterally on a flat founda-
tion, and let it be subjected to a uniform line load along the top of the cylinder. Under
the condition that the material of cylinder is homogeneous and isotropic, this can be

Applied Force

F = 1600

V±/k/kJhi//i /h 77577577*77^5775

Rigid Foundation

Fig. 8-l(a). A finite-element model of a Hertz problem.



Fig. 8-1(b). Deformed configuration by Q2-elements and Simpson's rule.

Pressure Distribution A 1-st iteration

500 -• d 2-nd ietration

400 A A o 3-rd iteration

300 --

374 200

100 --

X1

Fig. 8-1(c). Pressure distributions with the Hertz solution.



PENALTY/FINITE-ELEMENT APPROXIMATIONS 17

270

225

180

135

90

45

<U
u
d
CO
03
0)u
p->
4-J
a
CD
■U
coo

X1

Pressure Distribution on the Contact
Surface

Deformed Configuration _ E - iQOO

- v = 0.3
Circular Rigid Punch

R = 8. .6x6 Mesh

2.

Depth of Indentation ,' ^~N°de (^"Elements

d = 0.6 „ lL.

2- A. 6. 8.

Fig. 8-2(a). A rigid punch problem by Q2-element and Simpson's rule of numerical integration.
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Fig. 8-2(b). Convergence of the penalty method (e -»0).

considered as a problem of plane strain. Let the cylinder be characterized by a Young's
modulus of E — 1000 and a Poisson's ratio of v = 0.3. Fig. 8-l(a) shows a finite-element
model, with its physical dimensions. Here the St. Venant principle is applied so that a
quarter of the cross-section of the cylinder is solved.

The deformed configuration of the body is shown in Fig. 8-l(b) with the distribution
of the contact pressure and the Hertz solution. It is easily seen that the quality of the
numerical solutions is quite nice, even though a rather coarse mesh is used. Convergence
of the successive interation (5.7) is obtained at the third iteration. The path of the
convergence is shown in Fig. 8-l(c) for the contact pressure.

Example 8.2. Let a rigid circular cylinder be indented into a thick linearly elastic
plate which is homogeneous and isotropic (e.g., E = 1000 and v = 0.3). A finite element
model, with physical dimensions, is given in Fig. 8-2(a). An objective of this example is to
check the convergence of the method described in Sec. 5. Since the exact solutions u and
a are not available, the estimate ||u — mJ* || x cannot in general be obtained. We will
consider relative errors of the strain energy of the body E, and Eh defined by

Ec = F(«J) - F(t4), Eh = F(t4) - F(nS),
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io"1 4-
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W

10 2

io"3 J-
i 1—I—I—

0.1 0.2 0.3
Mesh Size h

Fig. 8-2(c). Convergence of the finite-element method (g2-elements, h -* 0).

where " A " indicates fixed values, and F(v) = 1/2B(v, y). It is easily shown that if the
estimate (7.14) holds, the relative errors Et and Eh are asymptotically bounded by

£„<<:,£ 4-C2, Eh <C3h4 + C4.

Numerical results are shown in Fig. 8-2(b) and Fig. 8-2(c). We again observe clear
agreement between theoretical and numerical results.

Example 8.3. The method described above can be extended to two-body contact
problems without any essential modifications of the theory. For the case of two-body
contact problems, the kinematical constraint (2.1)! of the contact condition is replaced
by

«,n ~^<s

where u'n is the normal displacement of the ith body and s is the normal distance of two
bodies.

A sample problem is solved numerically: the analysis of an elastic pin-joint problem
shown in Fig. 8-3(a). The physical dimensions of the model are also shown in Fig. 8-3(a),
and the problem is assumed to be plane strain. The successive iterative algorithm con-
verges at the third iteration with the numerical results shown in Fig. 8-3(b).
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. E = 1000

. V = 0.3

. 9-node (Q^—) Element

Simpson's Rule

Fig. 8-3(a). A finite-element model of the pin-joint problem.
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Deformed Configuration

Fig. 8-3(b). Deformed configuration and contact pressure of the pin-joint problem.
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