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Abstract—Programming accelerators such as GPUs with
low-level APIs and languages such as OpenCL and CUDA
is difficult, error-prone, and not performance-portable. Au-
tomatic parallelization and domain specific languages (DSLs)
have been proposed to hide complexity and regain performance
portability. We present PENCIL, a rigorously-defined subset of
GNU C99—enriched with additional language constructs—that
enables compilers to exploit parallelism and produce highly
optimized code when targeting accelerators. PENCIL aims to
serve both as a portable implementation language for libraries,
and as a target language for DSL compilers.

We implemented a PENCIL-to-OpenCL backend using a
state-of-the-art polyhedral compiler. The polyhedral compiler,
extended to handle data-dependent control flow and non-affine
array accesses, generates optimized OpenCL code. To demon-
strate the potential and performance portability of PENCIL

and the PENCIL-to-OpenCL compiler, we consider a number
of image processing kernels, a set of benchmarks from the
Rodinia and SHOC suites, and DSL embedding scenarios for
linear algebra (BLAS) and signal processing radar applications
(SpearDE), and present experimental results for four GPU
platforms: AMD Radeon HD 5670 and R9 285, NVIDIA
GTX 470, and ARM Mali-T604.

Keywords-automatic optimization; intermediate language;
polyhedral model; domain specific languages; OpenCL

I. INTRODUCTION

Software for hardware accelerators is currently written

using low-level APIs and languages such as OpenCL [1] and

CUDA [2], which have a steep learning curve, are laborious

and error-prone to program with, and lack performance

portability: the performance of an accelerated application

may vary dramatically across platforms. Hence, developing

software at this level is unattractive and costly.
A compelling alternative for developers is to program in

higher-level languages and to rely on compilers to automat-

ically generate efficient low level code. For general-purpose
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languages in the C family, this approach is hindered by the

difficulty of static analysis in the presence of pointer alias-

ing. The possibility of aliasing often forces a parallelizing

compiler to assume that it is not safe to parallelize a region

of source code, although aliasing might not actually occur

at runtime. Domain-specific languages (DSLs) can help to

side-step this problem: it is often clear how parallelism

can be exploited given high-level knowledge about standard

operations in a particular domain, such as linear algebra [3],

image processing [4] or partial differential equations [5]. A

drawback of the DSL approach is the significant effort re-

quired to implement a compiler generating highly optimized

OpenCL or CUDA code for multiple platforms.

To address the above problems, we present PENCIL, a

platform-neutral compute intermediate language. PENCIL

aims to serve both as a portable implementation language

for libraries, and as a target language for DSL compilers.

PENCIL is a rigorously-defined subset of GNU C99 that

enforces a set of coding rules predominantly related to

restricting the manner in which pointers can be manipu-

lated. These restrictions make PENCIL code “static analysis-

friendly”: the rules are designed to enable better optimiza-

tions and parallelization when translating a PENCIL program

to a lower-level program. PENCIL is also equipped with

language constructs such as assume predicates and side

effect summaries for functions, which assist with propagating

to a PENCIL compiler optimization-enabling information.

PENCIL is easy to learn, as it is C-based. It also interfaces

with non-PENCIL C code, which allows legacy applications

to be ported incrementally to PENCIL. From the point of

view of DSL compilation, PENCIL offers a tractable target:

all a DSL-to-PENCIL compiler has to do is to faithfully

encode the semantics of the input DSL program into PEN-

CIL—a PENCIL compiler takes care of auto-parallelization

and optimization for multiple accelerator targets. Because



DSL-to-PENCIL compilers have tight control over the code

they generate, they can aid the effectiveness of the PENCIL

compiler by communicating domain-specific information via

the language constructs that PENCIL provides.

We demonstrate the capabilities of PENCIL and its novel

static analysis-friendly features in a state-of-the-art polyhe-

dral compilation flow—extended with a PENCIL front-end

and implementing advanced combinations of loop and data

transfer optimizations. To this end, we consider a number

of applications with irregular, data-dependent control and

dataflow, making this the first time a fully-automatic polyhe-

dral compilation flow is capable of parallelizing a variety of

real-world, non-static-control applications. The applications,

which originate from hand-written benchmark suites or were

generated by DSL-to-PENCIL compilers, are:

• seven image processing kernels written in PENCIL and

covering computationally intensive parts of a computer

vision stack used by Realeyes, a leader in recognizing

facial emotions (http://www.realeyesit.com);

• five benchmarks extracted from the SHOC [6] and

Rodinia [7] suites and re-written in PENCIL;

• six kernels generated using the VOBLA linear algebra

DSL compiler [3];

• two signal processing radar applications generated from

code written in the SpearDE streaming DSL [8].

To assess performance portability, we present an experi-

mental evaluation of generated OpenCL code on four GPU

platforms: AMD Radeon HD 5670 and R9 285, Nvidia

GTX 470, and ARM Mali-T604. The performance results

are promising, considering the implementation efforts for

these applications and benchmarks. For example, for the

VOBLA linear algebra DSL, we were able to generate code

that has performance close to the cuBlas [9] and clMath [10]

BLAS libraries [11]. For the Realeyes image processing

benchmarks, we could match, and sometimes outperform,

the OpenCV image processing library [12].

In summary, our main contributions are:

• PENCIL, a platform-neutral compute intermediate lan-

guage for direct accelerator programming and DSL

compilation;

• a polyhedral compilation flow that leverages the fea-

tures of PENCIL to handle applications that go beyond

the classical restrictions of the polyhedral model, in-

cluding forms of dynamic, data-dependent control flow

and array accesses;

• an evaluation of PENCIL on multiple GPUs and several

real-world, non-static-control applications that were

previously out of scope for polyhedral compilation.

II. OVERVIEW OF PENCIL

PENCIL is a subset of the C99 language carefully de-

signed to capture static properties essential for implementing

advanced loop nest transformations. The language provides

constructs that help parallelizing compilers to perform more

accurate static analyses and generate efficient target-specific

code. The constructs allow communicating information that

is difficult for a compiler to extract, but that can be easily

captured from DSLs or expressed by expert programmers.

Our aim was for PENCIL to be a strict subset of C99.

However, where necessary and when no alternatives existed,

we exploited the flexibility of GNU C extensions such as

type attributes and pragmas. The pragmas were inspired by

familiar annotations for exploiting vector- and thread-level

parallelism, but retain a strictly sequential semantics.

PENCIL is not coupled to any particular compiler or target

language. However, as we have validated PENCIL using a

polyhedral compiler targeting OpenCL, we will refer to this

compiler when discussing the implementation of PENCIL.

A. Design Goals

We designed PENCIL with four main goals in mind:

Ease of analysis. The language should simplify static code

analysis to enable a high degree of optimization. The main

impact of this is that the use of pointers is disallowed, except

in specific restricted cases.

Support for domain-specific information. The language

should provide facilities that enable a domain expert or

a DSL-to-PENCIL compiler to convey domain-specific in-

formation that may be exploited by a compiler during

optimization. For example, PENCIL should allow the user

to indicate bounds on array sizes, enabling placement or

staging of arrays in the local memory of a GPU.

Portability. A standard, non-parallelizing C99 compiler

supporting GNU C extensions should be able to compile

the language. This ensures portability to platforms without

specialized PENCIL support and allows existing tools to be

used for debugging (unparallelized) PENCIL code.

Sequential semantics. The language should have a sequen-

tial semantics to simplify DSL compiler development and

direct programming in PENCIL, and, importantly, to avoid

committing to any particular parallel patterns.

In designing the PENCIL extensions to C99, we analyzed

numerous benchmarks and DSLs [13] and identified lan-

guage constructs that would be helpful in exposing par-

allelism and enabling compiler optimizations. In deciding

which language features to include, we were guided by the

principle that all domain-specific optimizations should be

performed at the DSL compiler level, while the PENCIL

compiler should be responsible only for parallelization,

data locality optimization, loop nest transformations, and

mapping to OpenCL. This means that only those proper-

ties that are useful for improved static analysis and target

mapping need to be expressible in PENCIL. Domain-specific

properties that are not useful for optimization do not have to

be conveyed and should thus not be a part of PENCIL. This

keeps PENCIL general-purpose, sequential and lightweight.
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Figure 1. A high level overview of the PENCIL compilation flow

Figure 1 gives a high level overview of a typical PENCIL

usage scenario. First, a program written in a DSL is trans-

lated into PENCIL. Some domain-specific optimizations may

be applied prior to or during this translation, while delay-

ing target-specific optimizations to later compilation stages.

Second, the generated PENCIL code is combined with hand-

written PENCIL that implements library functions; PENCIL

is used here as a standalone language. The combined code

is then optimized and parallelized. Finally, highly optimized

OpenCL code is generated. The generated code is autotuned

through profiling-based iterative compilation.

B. PENCIL Coding Rules

We detail the most important restrictions imposed by

PENCIL from the point of view of enabling GPU-oriented

compiler optimizations. For more details, see [14], [15].

Pointer restrictions. Pointer declarations and definitions

are allowed in PENCIL, but pointer manipulation (including

arithmetic) is not, except that C99 array references are

allowed as arguments of functions. Pointer dereferencing

is also not allowed except for accessing C99 arrays. These

restrictions essentially eliminate aliasing problems, which is

important for parallelization and data movement between the

different address spaces of accelerators such as GPUs.

No recursion. Recursive function calls are not allowed, as

they are forbidden in languages such as OpenCL.

Sized, non-overlapping arrays. Arrays must be declared

using the C99 variable-length array syntax [16], and the

declaration of each function argument that is of array type

must use pencil_attributes, a macro expanding to the

C99 restrict and const type qualifiers followed by the

static keyword (see Figure 4). During optimization, the

PENCIL compiler thus knows the length of each array (in

parametric form), and knows that arrays do not overlap.

Structured for loops. A PENCIL for loop must have a

single iterator, invariant start and stop values, and a constant

increment (step), where invariant means that the value does

not change in the loop body. Precisely specifying the loop

format avoids the need for sophisticated induction variable

analyses which may fail under unpredictable conditions.

A further guideline—which is not mandatory as it cannot

be statically checked in general—is that array accesses

should not be linearized. Linearization obfuscates affine

subscript expressions, hindering effective compilation. Mul-

tidimensional arrays should be used instead.

PENCIL also supports OpenCL scalar builtin functions

such as abs, min, max, sin, cos, using a target-independent

and explicitly typed naming scheme (using suffixes to dis-

tinguish between float and double builtins).

C. Assume Predicates

We now describe assume predicates, the first main con-

struct introduced by PENCIL. The other new constructs—

the independent directive, summary functions, and the

__pencil_kill function—follow in Sections II-D–II-F.

An assume predicate, written __pencil_assume(e),

with e a Boolean expression, indicates that e is guaranteed

to hold whenever the control flow reaches the predicate. This

knowledge is taken on trust by the PENCIL compiler, and

may enable generation of more efficient code. If e is violated

during execution, the semantics of the PENCIL program

is undefined. This is not checked at runtime, but optional

runtime checking, for debugging, could be provided. In the

context of DSL compilation, an assume predicate allows a

DSL-to-PENCIL compiler to communicate high level facts.

The general 2D convolution example of Figure 2 illus-

trates the use of __pencil_assume. This image processing

kernel calculates the weighted sum of the area around

each input pixel using a kernel matrix kern_mat for the

weights. The convolution code is part of an image processing

benchmark from Realeyes (see also Section IV-A).

In Realeyes’s production environment, the size of the

kern_mat never exceeds 15×15, as indicated by the assume

predicates. While the image processing experts know this,

without the predicates the compiler must assume that the

kernel matrix can be arbitrarily large. When compiling for a

GPU target the compiler must thus either allocate the kernel

matrix in the GPU’s global memory rather than in fast local

memory, or must generate multiple variants—one to handle

large kernel matrix sizes and another for smaller kernel

matrix sizes—selecting between variants at runtime. Instead,

the __pencil_assume statements in the code communicate

limits on the size of the array, allowing the compiler to store

the whole array in local memory.

D. The Independent Directive

The independent directive is used as a loop annotation,

and is semantically similar to the equally named High

Performance Fortran directive [17]. The directive indicates

that the result of executing the loop does not depend on

the execution order of the data accesses from different loop



1 #define clampi(val, min, max) \

2 (val < min) ? (min) : (val > max ) ? (max):(val)

3

4 __pencil_assume(ker_mat_rows <= 15);

5 __pencil_assume(ker_mat_cols <= 15);

6

7 for (int i = 0; i < rows; i++)

8 for (int j = 0; j < cols; j++) {

9 float prod = 0.0f;

10 for (int e = 0; e < ker_mat_rows; e++)

11 for (int r = 0; r < ker_mat_cols; r++) {

12 row = clampi(i+e-ker_mat_rows/2, 0, rows-1);

13 col = clampi(j+r-ker_mat_cols/2, 0, cols-1);

14 prod += src[row][col] * kern_mat[e][r];

15 }

16 conv[i][j] = prod;

17 }

Figure 2. PENCIL code for general 2D convolution

iterations. As such, the accesses from different iterations

may be executed in parallel.

In practice, independent is used to indicate that a loop

has no loop carried dependences. The directive can also

be used when some dependences exist but the user wants

to ignore them. In such cases the execution order of the

data accesses may have to be constrained using specific

synchronization constructs. Examples include reductions im-

plemented via atomic regions, and the use of low-level

atomics to give semantics to so-called “benign races”, where

the same value is written to a location by multiple threads in

parallel. It may be necessary to invoke external non-PENCIL

functions to enable parallelization of an algorithm that can

tolerate arbitrarily-ordered execution of intermediate steps.

The independent directive has an effect only on the

marked loop, not on any nested or outside loops. It accepts

a reduction clause, the purpose of which is to enable paral-

lelization of loops whose only dependences are on variables

into reductions are computed. For brevity we do not discuss

this clause further.

Figure 3 shows a code fragment of our PENCIL imple-

mentation of the breadth-first search benchmark from the

Rodinia [7] benchmark suite. The benchmark computes the

minimal distance from a given source node to each node

in the input graph. The algorithm maintains a frontier and

computes the next frontier by examining all unvisited nodes

adjacent to the nodes in the current frontier. All nodes in a

frontier have the same distance from the source node.

The for loop of Figure 3 can be parallelized because

each node in the current frontier can be processed indepen-

dently. This creates a possible race condition on the cost

and next_frontier arrays, but this race condition can

be ignored, because all conflicting threads will write the

same value. By specifying the independent pragma, the

programmer guarantees that the race condition is benign,

enabling parallelization.

E. Summary Functions

The effect of a function call on its array arguments is

usually derived from analyzing the called function. In some

/* Examine nodes adjacent to current frontier */

#pragma pencil independent

for (int i = 0; i < n_nodes; i++) {

if (frontier[i] == 1) {

frontier[i] = 0;

/* For each adjacent edge j */

for (int j = edge_idx[i];

j < edge_idx[i] + edge_cnt[i]; j++) {

int dst_node = dst_node_index[j];

if (visited[dst_node] == 0) {

/* benign race: threads write same values */

cost[dst_node] = cost[i] + 1;

next_frontier[dst_node] = 1;

}

}

}

}

Figure 3. PENCIL code fragment for breadth-first search

cases, the results of such an analysis may be too inaccurate,

and in the extreme case, when no code is available, the

compiler must conservatively consider the possibility that all

elements of each array argument are accessed. To mitigate

this problem, PENCIL allows the user to associate a summary

function with each function. A summary function has a

signature identical to the function it is associated with, and

the association informs the PENCIL compiler that it may

derive the memory accesses from the summary function.

In practice, summary functions are used to describe the

memory access patterns of library functions called from

PENCIL code (and whose source code is usually not avail-

able for analysis), and of non-PENCIL functions called from

PENCIL code, as they may be difficult to analyze otherwise.

To associate a summary function with a function foo(),

a programmer uses the attribute pencil_access(name),

where name is the name of summary function describing

the accesses of foo().

Summary functions are not executed, but only used for

analyzing memory footprints: A summary function must

access the same memory elements as the function it is

associated with, or an over-approximation thereof. Providing

a summary function can enable more precise static analysis

than the default conservative assumption that all elements of

all array arguments can be accessed. In general, a summary

can be simpler than the function it summarizes: it only

needs to capture sets of accesses, not their order and number

of occurrences. As an example, if a function were to be

executed on a processor having no direct access to main

memory, the compiler could use its summary to determine

the memory elements that would need to be marshaled into

and out of the function (cf. [18]).

The functions __pencil_use and __pencil_def are

designed to be used in summary functions to mark memory

accesses. A call to __pencil_use(A[e]) indicates that a

read from array A at index e may occur, while a call to

__pencil_def(A[e]) indicates that a write to array A at

index e must occur.

For writes, may information can also be conveyed by



__attribute__((pencil_access(summary_fft32)))

void fft32(int i, int j, int n,

float in[pencil_attributes n][n][n]);

int ABF(int n, float in[pencil_attributes n][n][n]) {

// ...

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

fft32(i, j, n, in);

// ...

}

void summary_fft32(int i, int j, int n,

float in[pencil_attributes n][n][n]) {

for (int k = 0; k < 32; k++)

__pencil_use(in[i][j][k]);

for (int k = 0; k < 32; k++)

__pencil_def(in[i][j][k]);

}

Figure 4. Code from Adaptive Beamformer, illustrating summary functions

using a __pencil_maybe predicate, which evaluates to a

Boolean value unknown at compile-time. More specifically,

the conditional

if (__pencil_maybe)

__pencil_def(A[e]);

indicates that a write may occur to array A at index e.

This nicely fits any static analysis capable of extracting may

and/or must information from conditional expressions and is

also consistent with the usage of wildcards in intermediate

verification languages such as Boogie [19].

Figure 4 shows a loop nest extracted from the Adaptive

Beamformer (ABF) benchmark presented in Section IV-D.

The code calls a function fft32 (a Fast Fourier Transform).

The function only reads and modifies (in place) 32 elements

of its input array in, it does not modify any other parts of the

array. The function is not analyzed by the PENCIL compiler

because it is not a PENCIL-function. Without a summary

function the compiler would conservatively assume that the

whole array passed to fft32 is accessed for reading and

writing, preventing parallelization. The summary function

indicates that each iteration of the loop nest only reads and

writes 32 elements of the input array, allowing the compiler

to parallelize the loop nest.

Writing summary functions for library routines is the

most common use case for summaries, and is the library

developer’s responsibility. The summary functions should be

provided in the library’s header files and are used directly

by the PENCIL compiler. In less common cases, summary

functions are either written by the PENCIL programmer or

automatically generated by a DSL compiler.

F. Kill Statements

The __pencil_kill builtin function allows the user to

refine dataflow information within and across any control

flow region. The __pencil_kill function is polymorphic

and signals that its argument (a variable or array element)

is dead at the program point where the call to the function

occurs, meaning that no data flows through this argument

from any statement instance executed before the kill to any

statement instance executed after.

The information is used in several ways, as explained in

detail in [20]. The effect of __pencil_kill is illustrated

by the following example:

__pencil_kill(A);

for (int i = 0; i < n; i++) {

if (B[i] > 0)

A[i] = B[i];

}

If the above loop is mapped to a GPU kernel, then the A

array needs to be copied out from the GPU to the host after

computation, because some elements of A may be written to

by the loop. This copy-out overwrites the original contents

of A on the host. Since not all elements of A may be written

to, the array must in principle also be copied in to ensure that

the elements not written to retain their original values after

the copy-out. The __pencil_kill(A) statement indicates

that the data in A is not expected to be preserved by the

region and that the copy-in may be omitted.

III. POLYHEDRAL COMPILATION OF PENCIL CODE

We next explain how specific PENCIL features can be

compiled with a polyhedral compiler. (But, to reiterate,

PENCIL is not tied to any particular compilation technique.)

A. Polyhedral Compilation

Polyhedral compilation uses an abstract mathematical rep-

resentation to model programs. Each statement in a program

is represented using three pieces of information: an iteration

domain, access relations and a schedule. The representation

is first extracted from the program’s AST, it is then analyzed

and transformed (loop optimizations are applied during this

step), and finally it is converted back into an AST.

The iteration domain of a statement is a set that contains

all execution instances of the statement (a statement in a loop

has an execution instance for each loop iteration upon which

it executes). Each execution instance of a statement in a loop

nest is uniquely represented by an identifier and a tuple of

integers (typically, the values of the outer loop iterators).

These integer tuples are compactly described by quasi-

affine constraints. For example, the statement on Line 9 of

Figure 2, call it S0, has the following iteration domain:

{ S0(i,j) : 0 ≤ i < rows ∧ 0 ≤ j < cols }

A quasi-affine constraint is a constraint over integer values

and integer variables involving only the operators +, -, ×, /,

%, &&, ||, <, <=, >, >=, ==, !=, and the ternary ?: operator,

where the second argument of / and % must be a (positive)

integer literal, and where at least one of the arguments of

× must be a piece-wise constant expression. An example

of a quasi-affine constraint for a statement in a loop nest is

10× i+ j + n > 0, where i and j are loop iterators and n

is a symbolic constant (i.e., a variable that has an unknown

but fixed value for the duration of an execution). Examples

of non-quasi-affine constraints are i× i > 0 and n× i > 0.



To be able to extract a polyhedral representation, all loop

bounds and conditions need to be quasi-affine with respect

to the loop iterators and a fixed set of symbolic constants.

This condition is called static-affine.

Access relations map statement instances to the array

elements that are read or written by those instances, where

scalars are treated as zero-dimensional arrays. An accurate

representation requires the index expressions in the input

program to be static-affine.

Finally, the schedule determines the relative execution

order of the statement instances. Program transformations

are performed via modifications of the schedule and depend

on dependence relations. These relations map statement

instances to statement instances that depend on them for

their execution, and are derived from the access relations

and the original execution order. In particular, two statement

instances depend on each other if they (may) access the same

array element, if at least one of those accesses is a write and

if the first is executed before the second.

B. Compilation of PENCIL

We adapted PPCG [21], an existing polyhedral compiler

for GPUs, to handle PENCIL. PPCG relies on the pet

library [22] to extract the iteration domain and access

relations; the dependence analysis is performed by the isl

library [23]. A new schedule is computed by isl using a

variant of the Pluto algorithm [24] (this latter step applies

most loop nest transformations).

We next discuss the changes we made to PPCG to support

PENCIL. For more details, including details on support for

arrays of structures, we refer the reader to [20].

Assume predicates. pet keeps track of constraints on the

symbolic constants of a program (i.e., of variables that have

an unknown but fixed value throughout an execution). The

constraints are automatically derived from array declarations

and index expressions. In particular, constraints are derived

that exclude negative array sizes and negative array indices

(negative indices are not allowed because they could result in

aliasing within an array). The constraints are used by PPCG

when generating an AST from a schedule to simplify the

generated AST expressions.

An assume predicate provides pet with additional con-

straints on the symbolic constants that may not be au-

tomatically derivable. For example, Lines 4, and 5 in

Figure 2 provide additional constraints on the symbolic

constants ker_mat_rows and ker_mat_cols. Although

the argument of a __pencil_assume statement can be any

expression, PPCG currently only exploits quasi-affine ones.

The kill builtin. A kill statement in pet represents the

fact that no dataflow on the killed data elements can pass

through an instance of the statement. This information can

be used during dataflow analysis to stop the search for

potential sources of data elements. When pet comes across

1 if (se[e][r] != 0)

2 sup = max(sup, img[cand_row][cand_col]);

Figure 5. Code extracted from dilate

1 for (int i = 0; i < N; i++)

2 for (int j = 0; j < M; j++)

3 for (int k = 0; k < M; k++) {

4 B[i][j][k] = 0;

5

6 if (A[i][j][k] == 0)

7 break;

8 }

Figure 6. Code containing a break statement

a variable declaration, two kill statements that kill the

variable are introduced, one at the location of the variable

declaration and one at the end of the block that contains the

variable declaration. The use of the __pencil_kill builtin

introduces additional kill statements to pet.

Non-static-affine array accesses. To handle non-static-

affine accesses, pet has been modified to distinguish may-

writes vs. must-writes. Any index expression that cannot be

statically analyzed or that is not affine, is treated as possibly

accessing any index. This over-approximation typically re-

sults in the compiler statically identifying more dependences

than will actually be exhibited at runtime.

Non-static-affine conditionals and loop guards. PPCG

treats any non-static-affine conditional or loop with a non-

static-affine loop guard as a single macro-statement together

with its body (i.e., as a statement encapsulating both con-

trol and body). Any write inside such a macro-statement

is treated as a may-write. For example, the conditional

of Figure 5, extracted from the dilate benchmark, cannot

be analyzed. The if-statement and its body are therefore

considered as one macro-statement and the assignment to

sup is treated as a may-write.

While loops, break and continue. While loops and loops

containing break and continue statements are treated like

non-static-affine conditionals: the loop and its body are

considered to be a single macro-statement. For example, due

to the break in Figure 6, PPCG treats the entire loop headed

at Line 3 as a single statement. This means that PPCG can

schedule (i.e., change the order of execution of) the loop

headed at Line 3 and its body as a whole, but it cannot

schedule the individual statements in the body.

The independent directive. When the independent di-

rective is used to annotate a loop, the iterations of that loop

may be freely reordered with respect to each other, including

reorderings that result in distinct iterations accessing over-

lapping data. Through the directive the user asserts that no

dependences need to be introduced to prevent such reorder-

ings and that any variable declared inside the loop is private

to each iteration. pet handles the independent directive

by building a relation between the statement instances that

excludes them from depending on each other. Moreover,



pet builds a set of variables that are local to the loop.

This set of variables is used by PPCG to ensure that their

live ranges do not overlap in affine transformations, and to

privatize them if needed when generating parallel code.

Summary functions. pet has been modified to extract

access information from called functions. If a summary

function is provided, the information is extracted from the

summary instead.

IV. EXPERIMENTAL EVALUATION

We evaluated the performance of OpenCL code gener-

ated from PENCIL using pencilcc, a version of PPCG

incorporating a runtime library and the changes discussed

in the previous section.1 To verify that PENCIL can be used

both as a standalone language and intermediate language for

DSL compilers, we used both benchmarks written directly

in PENCIL and code generated by DSL compilers. The set of

benchmarks written directly in PENCIL consists of a image

processing benchmark suite by Realeyes (Section IV-A)

and a selected set of benchmarks from the Rodinia and

SHOC suites (Section IV-B). The code generated by DSL-to-

PENCIL compilers originates from the VOBLA and SpearDE

DSLs (Sections IV-C and IV-D).

We used four GPU platforms for our experiments: an

Nvidia GTX 470 (with an AMD Opteron Magny-Cours

2 × 12 core CPU and 16GB RAM), an ARM Mali-T604

(with a dual-core ARM Cortex-A15 CPU and 2GB RAM),

an AMD Radeon HD 5670 (with an Intel Core2 Quad

Q6700 CPU and 8GB RAM) and an AMD Radeon R9 285

(with an Intel Xeon E5-2640 8 core CPU and 32GB RAM).

Hence, we covered both a relatively large set of real-word

applications and a relatively diverse range of platforms.

Our experiments were designed to evaluate (a) whether

PENCIL enables the parallelization (mapping to OpenCL)

of kernels that cannot be parallelized with current state-of-

the-art polyhedral compilers (Pluto [24]), and (b) whether

PENCIL enables the generation of efficient code (by com-

paring the performance of the automatically generated code

to hand-crafted code).

Autotuning. We developed an autotuning compiler frame-

work to facilitate the retargeting of our compiler to dif-

ferent GPU architectures. We applied autotuning to the

pencilcc-generated code only. Autotuning the hand-

crafted reference code (mostly implemented as libraries)

would be difficult, because the code is not designed to be

autotuned (work group sizes are hard-coded, changing the

use of local and private memory requires manual modifi-

cations, etc.). Moreover, the BLAS libraries (clMath [10]

and cuBlas [9]) do not require autotuning: they are already

configured with a set of optimal parameters for their target

1Version 0.4 of pencilcc is available at https://github.com/Meinersbur/
pencilcc. The experiments in this section were performed using an
older, development version: https://github.com/Meinersbur/pencil-driver/
tree/7a0dd59708253cb121cadf0b6529bd792b35c3fd.

architectures. Our autotuning framework searches for the

most appropriate optimizations (compiler flags) by gen-

erating many different code variants and executing them

on the target GPUs. The search covers combinations of

pencilcc’s compiler flags, including different work group

and tile sizes, whether to use local and/or private memory,

and which loop distribution heuristic to use (out of two pos-

sible heuristics). Autotuning each benchmark takes several

hours (except for the six VOBLA kernels, which take up to

two days due to the large search space).

Measurements. For our experiments, we let pencilcc

instrument the generated code to measure the wall clock

execution time, which includes the GPU kernel execution

time, duration of any data copies (between the host and the

GPU), and the time taken to execute on the host any program

code that was not offloaded to the GPU. The measured times

do not include device initialization and release, and kernel

compilation times. In order to exclude compilation time,

we either invoked a dry-run computation beforehand that

was not timed (caching compiled kernels), or subtracted the

compilation time from the total execution time, depending

on the way in which the reference implementation compiled

and invoked its kernels. We used OpenCL profiling tools to

further analyze the performance of the reference implemen-

tations and the pencilcc-generated code (obtaining the

number of cache misses, device global memory accesses,

device occupancy, etc.). Each test was run 30 times. Below,

we report the median of the speedups over the reference

implementations.

A. Image Processing Benchmark Suite

The image processing benchmark suite consists of a set

of kernels covering computationally intensive parts of the

computer vision stack by Realeyes ranging from. simple

image filters to composite image processing algorithms. For

each kernel in the benchmark suite we compared a straight-

forward (non-hand-optimized) PENCIL implementation with

the equivalent OpenCL kernel from the OpenCV version

2.4.10 image processing library [12].

The image processing suite consists of 7 kernels: affine

warping, image resize, general 2D convolution, gaussian

smoothing, color conversion, dilate, and basic image his-

togram (calculating the tonal distribution in an image).

An important characteristic of the image processing ker-

nels is that they contain non-static-affine code, which a

classic polyhedral compiler does not handle efficiently due

to the restrictions of the polyhedral model. The conditional

if (se[e][r] != 0) in Figure 5 is an example of such

non-static-affine code.

Five kernels from the benchmark suite have non-static-af-

fine conditionals and read accesses. One kernel has non-stat-

ic-affine write accesses. Hence, the compiler needs to handle

all of these. Non-static-affine write accesses are difficult to



Table I
EFFECT OF ENABLING SUPPORT FOR INDIVIDUAL PENCIL FEATURES ON

THE IMAGE PROCESSING BENCHMARKS

Benchmark Non-static-affine code Independent Assume Kill

resize required - - 33% ↑
dilate required - - 10% ↑
color conversion - - - 34% ↑
affine warping required - - 23% ↑
2D convolution required - 20% ↑ 21% ↑
gaussian smoothing required - - 47% ↑
basic histogram - required - -

Table II
SPEEDUPS OF THE CODE GENERATED BY PENCILCC OVER OPENCV

FOR THE IMAGE PROCESSING BENCHMARKS

Nvidia ARM AMD Radeon AMD Radeon
Benchmark GTX 470 Mali-T604 HD 5670 R9 285

resize 1.00 1.25 2.47 8.09

dilate 0.59 0.32 0.25 2.91

color conversion 1.32 2.37 1.56 1.11

affine warping 1.06 1.93 2.44 2.85

2D convolution 0.91 - 0.95 2.53

gaussian smoothing 0.92 0.97 0.51 1.61

basic histogram 0.45 0.42 0.16 4.34

handle because they prevent the compiler, in general, from

determining whether a loop is parallelizable.

The kernels require support for non-static-affine code,

the independent directive, and the __pencil_assume

and __pencil_kill builtins. Table I lists the features per

benchmark. In the case of non-static-affine code and the

independent directive, the table lists whether the feature

was required for OpenCL code generation. For the builtins,

the table shows the speedup obtained when support for the

feature was enabled (vs. disabled). The speedup shown is

for the Nvidia GTX 470, the effect on the other platforms

was similar. A ‘-’ indicates that a feature was not used in a

benchmark or its use did not affect code generation.

Support for non-static-affine code was required to gener-

ate OpenCL code for five kernels. For basic histogram, the

use of the independent directive enabled parallelization

and OpenCL code generation, which is difficult otherwise.

For dilate, assuming that the size of the structuring element

(the array representing the neighborhood used to compute

each pixel) is less than 16× 16 enabled pencilcc to map

the element to local memory, and allowed it to generate code

that was 20% faster compared to when it did not assume this.

The speedups associated with using __pencil_kill are

mainly due to the builtin enabling pencilcc to eliminate

redundant data copies.

Table II presents the speedups of the pencilcc-gen-

erated OpenCL code over the baseline OpenCV OpenCL

implementation. We used the same image to evaluate all

kernels (a 2880× 1607, 1.5MB image).

On the AMD Radeon R9 285 platform, the speedup of

the pencilcc-generated kernels over the OpenCV refer-

ence implementations was due to slow data copies used

by OpenCV. On this platform, OpenCV used OpenCL’s

clEnqueueWriteBufferRect, which copies data from

host to device while at the same time padding the data for

aligned memory accesses. pencilcc, on the other hand,

used OpenCL’s clEnqueueWriteBuffer, which copies

data but does not perform any padding. OpenCV’s approach

was 7× slower on the AMD Radeon R9 285 platform,

explaining the significant speedups we obtain. Note that,

although the use of clEnqueueWriteBufferRect may be

less efficient for these benchmarks, it may be more efficient

in other cases where only one data copy is performed and

many filters are applied on the same input image.

Other than the difference in data copies, there was no

significant difference in the speedups obtained on the AMD

Radeon R9 285 HD 5670 platforms, and we focus in the

latter AMD platform in the remainder of this section.

pencilcc does not apply any optimizations to data

copies other than eliminating spurious copies when the

user provides appropriate __pencil_kill statements. For

each of the image processing benchmarks, the amount of

data copied by the pencilcc-generated code (when using

__pencil_kill) was equal to the amount of data copied

by the reference implementation. Consequently, the listed

speedups (or slowdowns) were solely due to faster (or

slower) kernel execution times (except for the R9 285, as

discussed above).

The speedups of resize and color conversion on Nvidia,

ARM and AMD Radeon HD 5670 were due to the tiling of

the 2D loop nest in these two kernels, which considerably

enhanced data locality (up to 56% fewer L1 cache misses

on Nvidia for color conversion). In the case of affine

warping, the speedup was due to two optimizations: thread

coarsening, which merges multiple work items, leading to

less redundant computation, and tiling, which enhanced data

locality (up to 65% fewer L1 cache misses on Nvidia).

For basic histogram, the code generated by pencilcc

was generally slower than the OpenCV reference imple-

mentation. The OpenCV version was faster, because each

work group computes a histogram in local memory, and

the local histograms are only combined into one global

histogram during a final reduction. Automatic generation of

such reductions is not yet supported by pencilcc.

In the case of dilate, the OpenCV reference implementa-

tion was vectorized, while pencilcc currently does not

support the generation of vectorized code. The lack of

vectorization affected the performance most on AMD and

ARM. In addition, the OpenCV reference implementation

mapped the input image array to local memory while

pencilcc’s local memory heuristic decided not to apply

this mapping. As a consequence, the pencilcc-generated

code accessed global GPU memory 175 times more than

the OpenCV implementation, which led to a decrease in

performance. The same problem with the local memory

heuristic applied to gaussian smoothing.

The performance of 2D convolution matched that of the

OpenCV reference implementation on Nvidia and AMD.



Table III
SELECTED BENCHMARKS FROM THE RODINIA AND SHOC SUITES

Benchmark (Suite) Data set size Description/notes

2D stencil (SHOC) 100 iter., 4096 × 4096 grid On structured grid
Gaus. elim. (Rodinia) 1024 × 1024 matrix Dense matrix
SRAD (Rodinia) 100 iter., 502 × 458 image Image enhancement
SpMV (SHOC) 16384 rows Sparse matrix-vector multipl.
BFS (Rodinia) 4 million nodes Breadth-first search on graph

Table IV
EFFECT OF ENABLING SUPPORT FOR INDIVIDUAL PENCIL FEATURES ON

THE RODINIA AND SHOC BENCHMARKS

Benchmark Non-static-affine code Independent

2D stencil - -
Gaussian elimination - -
SRAD required -
SpMV required -
BFS required required

The reference implementation could not be run on the ARM

Mali GPU, as it used hardcoded local memory and work

group sizes that exceeded hardware limits.

B. Rodinia and SHOC Benchmark Suites

Our second set of benchmarks consists of reverse-engi-

neered benchmarks from the Rodinia [7] and SHOC [6]

suites. We selected the benchmarks, listed in Table III, based

on diversity (i.e., covering different Berkeley ‘motifs’ [25]

such as dense and sparse linear algebra, structured grids, and

graph traversal), and for their ability to pose a challenge

to traditional polyhedral compilers due to their use of

non-static-affine code. We compared the performance of

pencilcc-generated code for these benchmarks with the

Rodinia and SHOC reference implementations.

Table IV lists the PENCIL features required for each of

the benchmarks and shows the effect of the features on

pencilcc’s ability to generate OpenCL code. Support

for non-static-affine code is required by three benchmarks,

which use non-static-affine read accesses, conditionals, and

write accesses. The non-static-affine write accesses, in BFS,

prevent the compiler from parallelizing the code, and require

use of the independent directive. We did not make use

of __pencil_kill annotations for the benchmarks in this

suite. Assume predicates were useful in providing optimiza-

tion hints to the compiler for the 2D Stencil, SpMV and

BFS benchmarks. This was especially important for enabling

generation of OpenCL code that could be automatically

vectorized by the ARM Mali compiler, but for this bench-

mark suite we did not conduct a controlled measurement of

performance with vs. without assume predicates.

Table V shows the speedups over the OpenCL reference

implementations. The speedups for 2D Stencil and Gaussian

Elimination are mainly due to tiling which enhanced data

locality and reduced cache misses (we observed 4× fewer

L1 cache misses for 2D Stencil on Nvidia GTX 470). For

SRAD, the PENCIL-generated OpenCL code was signifi-

cantly slower than the reference implementation, mainly

Table V
SPEEDUPS FOR THE OPENCL CODE GENERATED BY PENCILCC OVER

THE RODINIA AND SHOC REFERENCE IMPLEMENTATIONS

Nvidia ARM AMD Radeon AMD Radeon
Benchmark GTX 470 Mali-T604 HD 5670 R9 285

2D stencil 3.44 3.04 2.68 5.76

Gaussian elimination 0.67 1.54 4.39 2.58

SRAD 0.22 0.34 0.43 0.56

SpMV 1.17 1.67 1.04 1.08

BFS 0.65 0.78 0.43 0.72

because pencilcc did not map a reduction to OpenCL

(pencilcc currently does not support the generation of

parallel reductions). This leads to additional data transfers

between the host and the device. For BFS, the generated

OpenCL code was also slower than the reference code, again

due to additional data transfers. These data transfers were

due to pencilcc only mapping the bodies of while loops

to the device and generating data transfers at the beginning

and end of each loop iteration.

C. VOBLA DSL for Linear Algebra

The image processing benchmarks and Rodinia and

SHOC benchmarks of Sections IV-A and IV-B demonstrate

the use of PENCIL as a standalone language. Here and in

Section IV-D, we consider benchmarks in which PENCIL is

used as an intermediate language for DSL compilers.
VOBLA is a domain specific language for implementing

linear algebra algorithms, providing a compact and generic

representation using an imperative programming style [3].

The main control flow operators of VOBLA are if, while,

for, and forall. The if and while operators have stan-

dard semantics. The for and forall operators iterate over

a scalar range (e.g., 0:3) or arrays. forall indicates that

the iterations of a loop can be executed in any order.
The VOBLA-to-PENCIL compiler is fairly simple and

does not perform any sophisticated optimizations. Advanced

loop nest transformations are handled by pencilcc. The

VOBLA compiler only uses assume predicates and the

independent directive. The __pencil_kill builtin is

only useful to eliminate spurious data transfers in non-static

control code and is not needed for the purely static control

code of VOBLA. Summary functions are only needed when

library functions are called, but these are not generated by

the VOBLA compiler.
The VOBLA compiler infers assume predicates from

relations between array sizes. For example, for the statement

C = A + B, the VOBLA compiler infers that the sizes of

A and B are equal and generates a __pencil_assume

statement that indicates this. As a consequence, pencilcc

does not need to generate code to handle the case in which

the sizes of A and B differ. This information can, e.g., be

exploited when pencilcc decides to fuse loops that iterate

over A and B, respectively.
The VOBLA compiler generates the independent di-

rective when translating forall operators: each forall



Table VI
PERFORMANCE GAINS FOR BENCHMARKS COMPILED FROM VOBLA

WHEN ASSUME PREDICATES ARE ENABLED

Benchmark Nvidia GTX 470

gemver 6% ↑
2mm 84% ↑
3mm 91% ↑
gemm 71% ↑
atax 13% ↑
gesummv 2% ↑

Table VII
SPEEDUPS OBTAINED WITH PENCILCC OVER THE BLAS LIBRARIES

Benchmark Nvidia GTX 470 AMD Radeon HD 5670 AMD Radeon R9 285

gemver 1.17 2.14 0.39

2mm 0.91 0.62 0.14

3mm 0.87 0.66 0.12

gemm 1.09 0.69 0.19

atax 0.88 1.79 0.37

gesummv 1.03 1.83 0.33

operator is translated into a PENCIL for loop that is

annotated with independent.

We used VOBLA to implement a set of linear algebra

kernels and compared the code generated by pencilcc

with equivalent code that calls BLAS library functions.

The kernels are gemver (vector multiplication and matrix

addition), 2mm (2 matrix multiplications), 3mm (3 matrix

multiplications), gemm (general matrix multiplication), atax

(matrix transpose and vector multiplication), and gesummv

(scalar, vector and matrix multiplication).

The VOBLA implementations were first compiled to

PENCIL using the VOBLA compiler and then mapped to

OpenCL using pencilcc. We compared the code with two

highly optimized BLAS library implementations:

• the clMath 2.2.0 [10] BLAS library provided by AMD

and used for comparison on the AMD platforms, and

• the cuBlas 5.5 [9] BLAS library provided by Nvidia

and used for comparison on the Nvidia platform. In

this case we used pencilcc to generate CUDA code

instead of OpenCL code.

We do not provide a comparison for the ARM platform,

as no BLAS library is available on that platform. We used

a matrix size of 4096× 4096 for all benchmarks.

Table VI shows that the code obtained for the Nvidia

GTX 470 was significantly faster with assume predicates

enabled. For example, the code generated for gemm with

assume predicates is 71% faster than without.

Table VII shows the speedups for the kernels generated

by pencilcc over the BLAS libraries. The pencilcc-

generated kernels for the Nvidia and the AMD HD 5670

platforms were close in performance to the highly optimized

BLAS libraries for 2mm, 3mm, atax and gemm (e.g., 0.69×
for gemm on the AMD platform). The main optimizations

applied to these kernels were tiling, loop fusion, and the

use of local and private memory. The BLAS library code

still outperforms the pencilcc-generated code as it im-

plements many other optimizations such as vectorization

(clMath) and the use of register tiling (cuBlas). The speedups

for gesummv and gemver were due to loop fusion and tiling

across different BLAS library calls. For example, the gemver

kernel consists of a sequence of 6 BLAS library calls and

although the individual BLAS library functions are highly

optimized, better performance can be obtained by fusing and

tiling across function calls. clMath is highly vectorized and

tuned for the AMD R9 285. Since pencilcc does not

perform vectorization, it fails to reach the performance levels

for clMath on this platform.

D. SpearDE DSL for Data-Streaming Applications

SpearDE [8] is a domain-specific modeling and program-

ming framework for signal processing applications, designed

by Thales Research and Technology. We evaluated PENCIL

using two representative SpearDE applications: Adaptive

Beamformer (ABF) and Space-Time Adaptive Processing

(STAP). Both are common signal processing applications for

radar systems. We compared the pencilcc-generated code

with the sequential CPU version, because no parallel version

was available to us.

AFB and STAP are relatively large: ABF consists of 38

statements in the polyhedral representation (with a loop

depth reaching five), and STAP consists of 88 statements

(with a loop depth reaching seven). The STAP code is

distributed across 12 separate PENCIL functions. The func-

tions were optimized individually, because pencilcc’s

optimization pass currently does not scale to a fully inlined

version reaching about 1000 lines of code.

As shown in Table VIII, ABF and STAP benefit from sup-

port for non-static-affine code, the independent directive,

summary functions, and the __pencil_kill builtin. The

speedups reported are again for the Nvidia GTX 470.

As mentioned in section II-E, ABF calls a fast Fourier

transform function. Without a summary, the compiler as-

sumes that the function modifies its whole input array, mak-

ing parallelization impossible. The use of the independent

directive in STAP enables the parallelization of a loop with

non-static-affine array accesses.

Both ABF and STAP use PENCIL only for the com-

putationally intensive parts of the code. Many temporary

arrays used in these parts are allocated outside the PENCIL

regions. However, as pencilcc does not analyze non-

PENCIL code, it cannot assume that the arrays are temporary.

Using __pencil_kill allows the compiler to infer that the

arrays do not need to be copied between host and device. In

the case of STAP, copying the temporary arrays cannot be

completely avoided, as the code is distributed across multiple

functions and the temporaries are used in several of them.

Table IX shows the speedups of the pencilcc-generated

code over the sequential code. On all platforms, the speedup

for ABF was due to parallelization and tiling. The generated

code did not make use of local memory, but privatization



Table VIII
EFFECT OF ENABLING SUPPORT FOR INDIVIDUAL PENCIL FEATURES ON

THE SPEARDE BENCHMARKS

Benchmark Summary functions Non-static-affine Independent Kill

ABF required required - 14% ↑
STAP - required 6% ↑ 4% ↑

Table IX
SPEEDUPS WITH PENCILCC OVER THE SEQUENTIAL CPU CODE FOR

THE SPEARDE BENCHMARKS

Nvidia ARM AMD Radeon AMD Radeon
Benchmark GTX 470 Mali-T604 HD 5670 R9 285

ABF 11.00 1.88 2.05 3.69

STAP 2.94 0.51 0.89 1.72

of scalars was essential for making parallelization possible.

This was also the case for STAP, except that the generated

kernel code did not perform well on short-vector architec-

tures (ARM Mali and AMD Radeon HD 5670), which suffer

from no automatic vectorization in pencilcc.

The performance of ABF and STAP was also affected

by limitations of pencilcc’s two loop fusion/distribution

heuristics. The first tries to fuse loops as much as possible,

which maximizes temporal locality, but does not take into

account resource limits (register pressure), resulting in a

loss of performance on GPUs. The second heuristic tries

to distribute loops as much as possible, which maximizes

parallelism but may damage locality (e.g., the imaginary

and real parts of complex-valued arithmetic are computed in

separate OpenCL kernels when this heuristic is applied). The

implementation of a heuristic similar to Pluto’s smartfuse

heuristic [24] would allow a better trade-off between paral-

lelism and data locality and would enhance performance.

E. Discussion of Results

As our experiments show, the independent directive

and (in the case of SpearDE) summary functions improve

pencilcc’s ability to generate OpenCL. Assume predi-

cates and the __pencil_kill builtin enhance the quality

of the generated code. Performance-wise, 72% of the gen-

erated kernels reach at least 50% of the performance of the

hand-optimized reference implementations, and in 47% of

the cases the generated kernels outperform the reference

implementation. Our experiments also expose some limi-

tations of the current setup. In particular, the inability of

pencilcc to generate parallel reductions, its limited loop

fusion heuristics, handling while loops as black boxes, and

the lack of vectorization and register tiling.

We have not discussed the performance of our autotuning

framework. In brief: it performed well on small PENCIL

benchmarks, but for larger benchmarks (e.g., the SpearDE

ones), we ran into problems due a combinatorial explosion

in the number of compiler options. This warrants further

investigation into search heuristics and predictive modeling.

V. RELATED WORK

Summary functions have first been proposed as abstract

domain transformers of numerical libraries in PIPS [26]. As

a language construct, they find their origin in the decoupled

access/execute (æcute) model [18], which allows express-

ing memory access patterns and execution constraints of

kernels. PENCIL’s summary functions are, to the best of

our knowledge, the first attempt to abstract interprocedural

access patterns in C99.

PENCIL’s directives are inspired by directive-based lan-

guages such as OpenMP [27] and OpenACC [28]. In

PENCIL, the independent directive describes the absence

of loop carried dependences and such information can be

used to enable a range of loop nest transformations rather

than enabling loop parallelization alone. A semantically

similar directive, also called independent, occurs in High

Performance Fortran [17]. What sets PENCIL apart is its

sequential semantics. As a subset of C, it is designed to

allow advanced compilers to perform better static analysis,

enabling automatic parallelization.

PENCIL builtins such as __pencil_assume allow the

PENCIL compiler to receive additional information from a

DSL compiler or from an expert programmer. The compiler

can exploit this information to enable further optimizations.

Microsoft Visual C and clang 3.6 support, respectively,

semantically identical __assume and __builtin_assume

builtins. These builtins could be used as a substitute when

available.

DSL compilers targeting GPUs typically map DSL code

directly to OpenCL and CUDA, relying on DSL constructs

that express parallelism. Using such an approach, DSL

compilers such as Halide [4] and Diderot [29] (for image

processing) and OoLaLa [30] (for linear algebra) show

promising results. Our complementary goal is to build a

more generic framework and intermediate language to be

used by different domain specific optimizers.

Delite [31] is a generic framework for building DSL

compilers. Delite relies on information from a DSL to decide

whether a loop is parallel but has no facilities for advanced

loop nest transformations. We therefore believe that generic

DSL frameworks like Delite can benefit from using PENCIL

and a polyhedral compiler.

VI. CONCLUSION

We have presented PENCIL, a portable intermediate lan-

guage designed to enable productive and efficient accelerator

programming. PENCIL is unique in its design combining a

sequential semantics, strict compliance with C, and a rich

set of attributes and pragmas that enable static analysis.

PENCIL makes many forms of non-static-affine code and

access patterns amenable to advanced loop transformation

and parallelization within the polyhedral framework.

We have evaluated the design and implementation of

PENCIL on a representative set of benchmarks across several



GPU-accelerated platforms. Some of these benchmarks are

written in a domain-specific language and then compiled

to PENCIL. Our experiments validate the use of PENCIL

together with an optimizing compiler as a valuable building

block for enabling performance-portable accelerator pro-

gramming.
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