PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 74, Number 2, May 1979

PENCILS OF HIGHER DERIVATIONS OF
ARBITRARY FIELD EXTENSIONS

JAMES K. DEVENEY AND JOHN N. MORDESON

ABSTRACT. Let L be a field of characteristic p = 0. A subfield X of L is
Galois if K is the field of constants of a group of pencils of higher
derivations on L. Let F O K be Galois subfields of L. Then the group of L
over F is a normal subgroup of the group of L over K if and only if
F = K(L?") for some nonnegative integer r. If L/K splits as the tensor
product of a purely inseparable extension and a separable extension, then
the algebraic closure of K in L, K, is also Galois in L. Given X, for every
Galois extension L of K, K is also Galois in L if and only if [K : K?] < oo.

0. Introduction. Throughout we assume L is a field of characteristic p # 0.
A rank ¢ higher derivation on L is a sequence d = {d)|0 < i <t + 1} of
additive maps of L into L such that

d.(ab) = X {d;(a)d; ()i +Jj = r}

and d, is the identity map. The set of all rank ¢ higher derivations forms a
group with respect to the composition d © e = f where f, = Z{d,e,|m + n =
Jj}- Let H(L/K) be the set of all higher derivations on L trivial on K and
having rank some power of p. Given d in H(L/K), v(d) = f where rank f =
p(rank d), f,, = d; and f; =0 if p {,. Two higher derivations f and g are
equivalent if g = v'(f) or f = v’(g) for some i. The equivalence class of d is
d and is called the pencil of d. The set of all pencils, H (L/K), can be given a
group structure by defining df to be the pencil of d’f’ where d’ € d, f' € f
and rank d’ = rank f’ [3]. A subfield K of L will be called Galois if K is the
field of constants of a group of pencils on L or equivalently if L/K is
modular and n,.K(L’i) = K [2, Proposition 1]. In §1 it is shown that if
F O K are Galois subfields of L, then H(L/F) is an invariant subgroup of
H(L/K) if and only if F = K(L?") for some nonnegative integer r. This
generalizes the result given in [2, Theorem 8] for the bounded exponent finite
transcendence degree case.

Let K denote the algebraic closure of K in L. L/K is said to split when
L =J @, D where J/K is purely inseparable and D/K is separable. §2
examines the question of when K is Galois in L, given L/K is Galois.
Sufficient conditions are shown to be the splitting of L/K. Moreover, for
every Galois extension L of K, K is also Galois in L if and only if
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[K: KP] < oo (and in this case L/K splits). In view of these results it
appeared that K being Galois in L was related to L / K splitting. However, an
example is constructed with L/K and L/K both Galois and yet L/K does
not split.

Pencils of higher derivations were originally constructed by Heerema to
incorporate into a single theory the Galois theories of finite and infinite rank
higher derivations. Basically the infinite higher derivations would be the
group of L/K (L/K being separable). However, in the proof of Theorem 2.2,
an example of a Galois extension is constructed with L/ K being relatively
perfect, and hence having no infinite rank higher derivations. Thus in this
most general setting some different fields of constants are obtained.

1. Invariant subgroups. Let F O K be Galois subfields of L. This section
develops necessary and sufficient conditions for H(L/F) to be H(L/K)-
invariant.

(1.1) LeMMA. Suppose L/K is purely inseparable Galois. Let F* be an
intermediate field of L/ K such that L/ F* is modular and F* /K has exponent
< 1. If for every maximal pure independent set M of L/ K every element of M
has the same exponent over F* that it has over K, then F* = K.

1 i+l

PROOF. Suppose some ¢ in L has ¢?' in F* but not in K(K?~' n L”""). By

modularity,

1 i+l

K(K*'nL*""y=K(L*"")n KP7},
and hence ¢’ is not in K(L?"""). Forj < i, ¢” cannot be in K(L?"""). Thus ¢
is pure independent [9] and is part of a maximal pure independent set of
L/K. But ¢ has exponent i + 1 over K and exponent i over F*, contrary to
the hypothesis. Hence
F*ALPCK(K ' 'nL'™), i=0,1,....

In an entirely similar manner as in the proof of [7, Lemma 2, p. 339] we
obtain F* = K(F* N L?) = - - - = K(F*n L?) = ....Hence

KCF=() K(F*FnL")C () K(L”) =K,

ie., F* = K.

(1.2) LeMMA. Suppose L/K is purely inseparable Galois. Let F be an
intermediate field of L/K such that L/F is modular and F N L?" C K for
some nonnegative integer n. If for every maximal pure independent set M of
L/ K every element of M has the same exponent over F that it has over K, then
F =K.

PRrOOF. The proof is exactly the same as the proof of [7, Lemma 3, p. 340]
with “maximal pure independent set” replacing “modular base” there.
_(1.3) THEOREM. Suppose p # 2. Let K C F be Galois subfields of L. Then
H(L/F)is H(L/K)-invariant if and only if F = K(L?") for some nonnegative
integer r.
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ProOOF. If F = K(L*") for some r, then H (L/K) leaves F invariant. Hence
clearly H (L /F) is H(L / K)-invariant. Conversely, suppose H(L /F) is
H(L / K)-invariant. We prove the theorem first for the case p > 3. Suppose
N,K(F N LP)(L?) = F for all nonnegative integers j. Then

K= N K(FnL')L") =F
J i
a contradiction. Let j be such that N, K(F N L?)(L*") C F and set
= ﬂ K(F n L”)(L").

Then N K(L’) = K; and L/K. is modular [7, Lemma 1, p. 339], [9,
Proposition 1.2(b), p. 40] Thus K; is Galois in L and H(L / F) is invariant in
the smaller group H(L/K). Now F/K, is purely inseparable of bounded
exponent. By [8, Lemma 161(c) p. 56], F / K; is modular. Also F N L C K
for some n, namely n = j. Hence F N F¥" C K;. By Lemma 1.2, there exists a
maximal pure independent set X of F / K; w1th x € X such that the exponent
t of x over F is less than the exponent s of x over K. Let Y be a maximal
pure independent set of F/F. Suppose F/F is of unbounded exponent. If
F(Y)/F is of bounded exponent, then F=1J ®; F(Y) for some
intermediate field J of F / F [9, Proposition 2.6, p. 43]. Since Y is necessarily a
relative p-basis of F / F, J/ F is relatively perfect. Hence N, F (FPy=J D F,
a contradiction. Thus F(Y)/F is of unbounded exponent. Hence there exists
y € Y such that u > s where u is the exponent of y over F. Henceu > s > 1.
Let e be any positive integer such that e > u. Since L/ F is modular, L/ Fis
separable and thus preserves p-independence. It follows that there exists
d={dy d,...,d.} € H(L/K) and d' = {dy, d,,...,d,.} € H(L/F)
with first nonzero maps of positive subscript being ¢ and g’ respectively, such
thatd (x) = y,dy(y) #0,q=p° "+ 1,¢ =p*™" + L.

Since H (L / F ) is H(L/K))-invariant, d~ 1d'd restricted to F must be the
identity higher derivation, i.e. d'd = d when restricted to F. Suppose (¢ +
q)p' < p°. Then

(dld)(q+¢)p'(xp') =23 {di,d(q+q')p’—i(xpl)|0 <i<(q¢+ ql)p‘}
=3 {4 (g Y0 < i< g+ q)
= d(q+q’)p’(xpl) + dx;’(y)pl
# dig+q)p'(x?'), a contradiction..

Thus (¢ + ¢)p' > p® so p**+p“+2>p°' Hence p~*+p~"+
2p~¢ > p . Since we can take e as large as we wish, we have p™* + p7* >
plsop'*+p' > 1.Sinces—t>landu—t>2, wehavep ' +p~!
> p'~S + p'~ ie., 2 > p, a contradiction. Thus F/ F has bounded exponent
so L/K; has flmte inseparability exponent. Suppose F C L. Then as in the
proof of [2, Theorem 8], we obtain F = K; a contradiction. Hence F=L.
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Thus L/F has bounded exponent so L D F D K(L”") for some n. Now
H (L/F)is H (L/K(LP"))-invariant. Hence F = K(L?") for some r by [2,
Theorem 8].

The proof for the case p = 3 is exactly the same, once it is noted that [2,
Theorem 8] is true for p = 3. This follows from [1, Theorem, p. 277] and in
particular [1, Lemma, p. 278). Here, for large e the key inequality becomes
2p~' + 2p" > p°. Since ¢, is fixed, large e force p = 2.

2. Galois subfields. Let L be a Galois extension of K, i.e., L/ K is modular
and N,;K (LP) = K. Then certainly N ,K (K?') = K and since K is modular
over K, K is a Galois extension of K. Moreover L /K K is separable (hence
modular) so L/ K will be Galois if and only if N, K (L?") = K. We now
investigate conditions which will guarantee L/ K is Galois.

(2.1) PROPOSITION. Suppose K is a Galois subfield of L. If L/ K splits, then K
is Galois in L.

PROOF. L = S ®, K where § is an intermediate field of L/K which is
separable over K. As noted L/ K is separable, so it _sufflces to show
N,K(L?") = K. Now N KLY =nN (K(SP)Y® K) =

(2.2) THEOREM. Let K be a field. Then [K : K?] < o if and only if for every
field extension L/ K such that K is Galois in L, K is Galois in L.

PROOF. Suppose [K : K”] < oo. Let L/ K be Galois. Then N ,K(K?) = K
and since any relative p-basis of K/K is finite, we have K K/K has bounded
exponent. By [5, Theorem 4, p. 1178], L/K splits and so Proposition 2.1
applies.

Conversely, suppose [K : K”] = oo. Let x,, x3,..., X;,_;,... be p-inde-
pendent in XK. Let

-1 -2 -n —-n-1 -n-2 -2n
L=K(z,z2 +xP,. ., 227"+ x07" + xt +oo+xp 7))

where z is transcendental over K. Then

K=K(xt ™\ x7, . x80,),

Since L/K is a union of ascending chain of separable extensions of K, L / K
is separable. Now K (L?) = L so K is not Galois in L. Clearly K / K is purely
inseparable modular so L/K is modular [5, Theorem 1, p. 1117]. Hence in
order to show K is Galois in L it suffices to show M ,K(L”) = K. Now
{z”"+x”"'+---+x2,, in=1, 2. -} is a subbasis of L/K(z)
Hence N ;K (z)(L?) = K(2). Let K* = N K(L”) Since N,K*(L?) = K*,
K* is separably algebraically closed in L. Clearly K* C K(2). Suppose K* #
K. Then K(z)/K* is algebraic and thus K* = K(z”") for some nonnegative
integer e. Now z?* € K(L”*""). Therefore

2e+1

e €KLY N K.
By the separability of L/K, the modularity of K, /K, [4, Lemma p. 162}, and
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the following diagram,
2e+1

K k@p**th
Lp2e+1
K —_— p—
Kp2e+l =KnN Lp28+l
KN Lp2e+l

2e+ 1

we have x£, € K (LY n K = K(K?*"") which is clearly impossible.
Hence K* = K and K is a Galois subfield of L.

Consider the example constructed in the proof of Theorem 2.2. Heerema
[3] originally developed pencils of higher derivations in order to incorporate
both the finite and infinite rank higher derivation Galois theories into 1
unified theory. He considered finitely generated modular extensions L/ K. In
this case K would be the field of constants of the group of infinite rank higher
derivations (pencils with infinite extended rank in the new theory). However,
in the example above, L/ K is relatively perfect and hence has no infinite
higher derivations and yet L/ K is Galois. Thus in the nonfinitely generated
case a different type of field of constants can occur. _

In Proposition 2.1 and Theorem 2.2 the sufficient condition given for K to
be Galois in L also imply L/K splits. We now develop an example to show
that L/K and L/ K being Galois does not imply L/ K splits.

(2.3) PROPOSITION. Let F be an intermediate field of L/ K such that L/ F is
separable Galois and F/ K is Galois. Then L/ K is Galois.

PrOOF. Since L/ F is separable and F/K (F?") is modular, L/K(F?") is

modular, i =0, 1,.... Hence L/ N ;K (F?') is modular, i.e. L / K is modular
[9, Proposition 1.2(b), p. 40). Thus we have linear disjointness in the following
diagram
L k(L")
L7’
K
=

Hence F N K(L”") = K(F?"). Clearly N,K(L?") C F. Thus
N KL)y=) K(L*)nF=() K(F"')=K.

(2.4) CorOLLARY. If L/K and K/ K are Galois, then L/ K is Galois.
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PROOF. L/K is separable since L/K is modular and K is algebraically
closed in L.

(2.5) ExampLE. L/K and L/K are Galois, yet L/K does not split: Let
K=P@Gf,...,2f,...)and

L= K(z,,...,zl”*', ..)(y,uo,...,u,f_",...)

where P is a perfect field, y, uy, z,, . . ., Zjy oo

are algebraically independent
indeterminants over P and ? " = y? ' + zZ"u?_;,n=1,2,.... Then K =
—,+|

K(z,...,2f ..). Now K(y,u" Y, n=0,1,..., is an ascending
chain of separable extensions of K whose union is L. Thus L/ K is separable
and L/K is modular. In order to show L/K and L/K are Galois, it suffices
to show L/ K is Galois by Corollary (2.4) since K, / K is obviously Galois. Let
Z={zli=12,...}and Z? " = {2 ]i,j=1,2,... ). Let M = L(ZP"").
Then P(Z? ") is the maximal perfect subfield of M [6, Lemma 11, p. 392].
Hence

N K@r)yc N P ym'y=Pzr™).
Thus N,K(L?") is algebraic over K and so is equal to K. We now show L /K
does not split. We first show MK ( YNL?) = K(y, uf). Clearly K(y, u}) C
N, K(y)XL?). Now {ug, u?”',...,u?"",...} is a subbasis of L/K(y, uf).
Hence

N K, ) (L) = K(p, uf).

Thus N,K(y)L?) = K(y, uf). Suppose L/K does split, say L = S ® K,
where S is an intermediate field with S/ K separable. Let y have exponent ¢
over S. Now y?' & K = N,K(S”"). Hence there is a nonnegative integer s
such that y?' € K(S?’),y?" & K(S?"""). Suppose y?'~' € K(S”"). Then

yP € (K(S”" ) ® K(K?)) N (K(S7) ®c 1) = K(S”"),

a contradiction. Hence y has exponent ¢ over K(S?"). Thus K K (S ») and
K (8”7") are linearly disjoint over K(S?"). Since K(S?’) and K are linearly
disjoint over K, K(S”')(y) and K are linearly disjoint over K. Since K D
K?”', K(S”)(») is separable over K. Let S’ = K(S”)(y). Then L =
K(L”)y)=S'®, K and y € §'. Since {y} must be a relative p-basis of
§’/K and S’/K is separable, S'/K(y) is separable. Hence L = S’
®k(y) K(»). Now

K(nu) = () KOXL") = () (KOS™) Bxin KONE)) = S
Hence L = K(y, uf), a contradiction. Thus L/ K does not split.
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