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ABSTRACT

We present the results of a series of high-resolution, three-dimensional numerical experiments that investi-
gate the nature of turbulent compressible convective motions extending from a convection zone into a stable
layer below. In such convection, converging flows in the near-surface cellular convecting network create
strong downflowing plumes that can traverse the multiple scale heights of the convection zone. Such struc-
tures can continue their downward motions beyond the convecting region, piercing the stable layer, where
they are decelerated by buoyancy braking. If these motions mix entropy to an adiabatic state below the con-
vection zone, the process is known as penetration; otherwise it is termed overshooting. We find that in three-
dimensional turbulent compressible convection at the parameters studied, motions generally overshoot a sig-
nificant fraction of the local pressure scale height but do not establish an adiabatic penetrative region, even at
the highest Péclet numbers considered. This is mainly due to the low filling factor of the turbulent plumes.
The scaling of the overshooting depth with the relative stability S of the two layers is affected by this lack of
true penetration. Only an S�1 dependence is exhibited, reflecting the existence of a thermal adjustment region
without a nearly adiabatic penetration zone. Rotation about a vertical axis decreases the depth of overshoot-
ing, owing to horizontal mixing induced by the rotation. For rotation about an inclined axis, turbulent rota-
tional alignment of the strong downflow structures decreases the overshooting further at mid-latitudes, but
the laminar effects of cellular roll solutions take over at low latitudes. Turbulent penetrative convection is
quite distinct from its laminar counterpart and from the equivalent motions in a domain confined by impene-
trable horizontal boundaries. Although overshooting would not be so deep in the solar case, the lack of true
penetration extending the adiabatic region may explain why helioseismic inferences show little evidence of
the expected abrupt change between the convection zone and the radiative interior. These results may also
provide insight into how overshooting motions can provide a coupling between the solar convection zone
and the tachocline.

Subject headings: convection — stars: interiors — Sun: interior — turbulence

1. INTRODUCTION

While inferences of the structure of the solar interior are
becoming more precise, theoretical explanations for these
observations are not as forthcoming. Helioseimology has
revealed (see, e.g., Thompson et al. 1996) a differentially
rotating convection zone and a solid-body rotating radia-
tive interior, joined by a thin transition region (Goode et al.
1991) that has become known as the tachocline because of
the strong gradient in angular velocity there (Spiegel 1972;
Spiegel & Zahn 1992). Theoretically, the motivation for
comprehending these interior dynamics is high, since it is
believed that the convection zone and its differential rota-
tion, especially the strong shear of the tachocline, must play
an important role in the generation of the solar magnetic
activity cycle. However, despite this intuitive understanding
of the operation of the solar cycle built upon a mixture of
observation and simple theory (for a review, see Weiss
1994), robust detailed theoretical explanations have not yet
materialized. For example, the constant-on-radii angular
velocity distribution of the convection zone deduced from
helioseismology is proving difficult to reproduce in self-con-
sistent models (Gilman 1975, 1977; Glatzmaier & Gilman
1981a, 1981b; Glatzmaier 1984, 1985a, 1985b; Gilman &
Miller 1986; Miesch et al. 2000; Elliott, Miesch, & Toomre
2000), and the cause of the solid-body rotation of the radia-
tive core has prompted much diverse speculation (Kumar &
Quataert 1997; Zahn, Talon, & Matais 1997; Gough 1997;
Gough &MacIntyre 1998).

The tachocline presents further problems. The structure
of the layer is not clear even observationally, owing to the
low resolution of the inversion kernels in helioseismic stud-
ies at that depth. Indeed, even where the convection zone
ends, where the tachocline starts, and whether they in fact
overlap, is not clearly apparent from the helioseismic inver-
sions (Christensen-Dalsgaard, Gough, & Thompson 1991;
Thompson et al. 1996). Not surprisingly then, theoretical
modeling of the dynamics of the tachocline is at a primitive
stage. Even evidently robust characteristics currently attract
contradictory theories. The remarkable thinness of the
tachocline, for instance, has spawned models based upon
both turbulent and laminar processes either with or without
magnetic fields; Spiegel & Zahn (1992) invoke anisotropic
turbulent diffusion (where the turbulence may be derived
either from purely hydrodynamic [Richard & Zahn 1999] or
magnetic [Gilman & Fox 1997, 1999; Gilman & Dikpati
2000] instabilities of the marginally stable shear profile
[Watson 1981]), whereas Gough & MacIntyre (1998) bal-
ance laminar meridional circulations with fossil core mag-
netic fields. It is fair therefore to say that while the dynamics
of the tachocline are considered crucial, they are currently
unknown in any detail, both observationally and theoreti-
cally. The tachocline dynamically is most likely not a single
layer but rather a number of sublayers, with some contain-
ing the strong toroidal magnetic field related to the activity
cycle, others being mainly hydrodynamic, and deeper layers
possibly being magnetohydrodynamic boundary layers to
the radiative interior. The uppermost layers of the tacho-
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cline must be influenced by their connection to the solar
convection zone above, but the degree of this coupling is
also not well understood. It is an important issue, however,
since these interactions may affect the mixing and transport
mechanisms for angular momentum, chemical species, and
magnetic fields at the base of the convection zone, and may
influence the nature of circulations and the instabilities
present in the tachocline layers. This paper and related
papers (e.g., Tobias et al. 2001) seek to elucidate the cou-
pling of the convection zone with the stable layers below
and therefore to address some of these issues.

The interaction between convectively unstable and stable
regions has a long history of interest since there are many
common natural instances where such an interface occurs:
for example, when ice forms on the surface of a body of
water (Malkus 1960; Furumoto & Rooth 1961; Townsend
1964; Myrup et al. 1970; Adrian 1975), or the daily transi-
tion from the nocturnal planetary boundary layer here on
Earth (see, e.g., Deardorff, Willis, & Lilley 1969). It has long
been understood that in convection where no impermeable
boundaries are present, motions can continue beyond the
region of convective driving into the surrounding stable
regions. Two such types of motion are identified. First, the
mixing action of such motions may alter the background
state and actually extend the original (linearly unstable)
region of driving. This type of extended motions is techni-
cally known as penetration. Second, motions may continue
into the surrounding stable regions by inertia, even though
their driving has been turned off, in a process referred to as
overshooting. For many of the situations of interest, the ini-
tial background state is not known, so that any penetration
that has occurred cannot be identified clearly and all that
can be detected is the overshooting from the current back-
ground thermodynamics. In such cases, the terms over-
shooting and penetration are often used interchangeably.
Indeed, in the solar case, the bottom of the convection zone
is defined as the lower end of the well-mixed adiabatic
region, and so any penetration in the true sense is already
included as part of the convection zone.

The linear theory of penetrative convection predicts only
weak unrealistic overshooting since the nonlinear feedback
on the thermal stratification is missing (Veronis 1963). Ver-
onis (and Sparrow, Goldstein, & Jonsson 1963) further per-
formed a finite amplitude analysis of penetrative convection
and discovered that the bifurcation could be subcritical.
This work then led to many further nonlinear models. Mod-
els based onmodal expansions arose first, providing station-
ary solutions for both Boussinesq fluids (Musman 1968;
Moore &Weiss 1973; Zahn et al. 1982) and then a compres-
sible (or anelastic) medium (Toomre, Gough & Spiegel
1977; Latour, Toomre, & Zahn 1981; Toomre et al. 1982;
Massaguer & Zahn, 1980; Massaguer et al. 1984). All of
these confirmed that nonlinear penetration was substan-
tially deeper than linear theory predicted, indeed compara-
ble to the depth of the unstable layer. They also gave some
insight into its dependence on the parameters, in particular
the stability of the outer regions and the aspect ratio of the
modal planforms. The canonical low-order approach of
astrophysics, that of mixing length theory, was also
attempted in parallel, but such efforts proved unreliable,
since the results vary drastically depending on the nonlocal
formulation (see Renzini 1987 for a summary). Other simple
approaches were also tried (e.g., van Ballegooijen 1982;
Xiong 1985; Kuhfuss 1986), but of particular note is that of

Schmitt, Rosner, & Bohn (1984), who employed the notion
that the penetration occurred in the form of downward-
plunging plumes. A formula was derived for the extent of
penetration in terms of the exit velocity of the plumes from
the convective region and their filling factor, and again it
was concluded that the penetration is of the order of a pres-
sure scale height. The constraints of the stationary modal
solutions were lifted with two-dimensional studies of time-
dependent fully nonlinear compressible penetration (Hurl-
burt et al. 1986, 1994; Roxburgh & Simmons 1993). The
direct simulations of Hurlburt and coworkers showed vigo-
rous penetration in large, overturning rolls with strong
downdrafts, coupled to gravity waves in the stable layer.
The latter paper (Hurlburt et al. 1994) compared further
two-dimensional simulations with the analytical models of
the penetration by Zahn with favorable results.

Most of the work mentioned so far has been highly sim-
plified compared to the solar context. A number of factors
must minimally be included in convection models for the
dynamics to be at all truly relevant to the solar problem.
Most importantly, the models must resolve as turbulent a
regime as is possible, since the Sun operates at enormous
Reynolds number (Re > 1012; see, e.g., Priest 1982). While
the Sun also includes many other complicating effects, such
as changes in the equation of state and opacities due to ion-
ization, radiative transfer, and the presence of magnetic
fields, perhaps the next most desirable property to include in
the turbulent models is the asymmetry of motions induced
by compressibility. Furthermore, we would like to relax the
constraint of two-dimensionality and study the fully three-
dimensional problem. The only tractable modeling
approach incorporating these requirements is that of
numerical simulation. The optimal numerical solution
would compute in a global geometry representing the full
star. Such approaches have yielded fundamental knowledge
about the solar interior in the past (Gilman 1975, 1977;
Glatzmaier & Gilman 1981a, 1981b; Glatzmaier 1984,
1985a, 1985b; Gilman &Miller 1986) and are being pursued
further today (Miesch et al. 2000; Elliott et al. 2000). How-
ever, this approach suffers since the computational degrees
of freedommust necessarily be assigned to the largest scales,
either leaving many smaller scales unresolved or constrain-
ing the Reynolds number to be small.

Local models, where a small three-dimensional subsec-
tion of the domain is extracted and computed, lack the cor-
rect geometry but can then apply the available numerical
degrees of freedom to resolving the dynamical scales from
the diffusive scale up to that of the small local domain. Such
simulations therefore provide a unique window into higher
Reynolds number dynamics. Many such models have
worked with boundary conditions traditionally reflecting
the impenetrable containers used in the laboratory or the
simple boundary conditions accessible to linear theory.
Indeed, local models of compressible convection of this type
abound and have provided significant insight (e.g., Graham
1975, 1977; Sofia & Chan 1984; Latour et al. 1981; Massag-
uer et al. 1984; Chan & Sofia 1986, 1987; Hurlburt et al.
1984; Cattaneo, Hurlburt, & Toomre 1989; 1990; Branden-
burg et al. 1990; Malagoli, Cattaneo, & Brummell 1990;
Edwards 1990; Hossain & Mullan 1990; Porter et al. 1990;
Toomre et al. 1990; Cattaneo et al. 1991; Jennings et al.
1992; Nordlund et al. 1992; Pulkinnen et al. 1993; Rast &
Toomre 1993a, 1993b; Bogdan, Cattaneo, &Malagoli 1994;
Porter & Woodward 1994; Hurlburt et al. 1994; Matthews
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1994; Toomre & Brummell 1995; Brummell, Hurlburt, &
Toomre 1996; Weiss et al. 1996; Brummell et al. 1998;
Tobias et al. 1998). The extension to fully turbulent, three-
dimensional simulations of compressible convection in
domains more related to astrophysical (and geophysical)
contexts, where fluids are usually confined to a region by
changing background physical conditions rather than by
impenetrable containers, has not received so much atten-
tion. One series of calculations has concentrated on mimick-
ing solar conditions as directly as possible, including the
detailed physics of realistic gases and radiative transfer,
with inflow and outflow lower boundary conditions (e.g.,
Nordlund 1982, 1983, 1984, 1985; Nordlund & Stein 1990,
1991; Stein & Nordlund 1991, 1994; Stein, Nordlund, &
Kuhn 1989; Rast et al. 1993). However, these models and
their boundary conditions are more directed toward solar
surface conditions and granulation than the deep interior.

There have been some models that have addressed three-
dimensional penetrative convection directly. Early three-
dimensional turbulent simulations have been reported in
Julien et al. (1996a) under the Boussinesq approximation in
the oceanographic context. This paper provided the first
insight into a possible reduction of penetration with the
inclusion of rotation, albeit in a rundown rather than self-
sustained simulation. The astrophysical context has been
addressed in three dimensions by Singh et al. (1994), 1995;
Muthsam et al. (1995); Singh et al. (1996, 1998a, 1998b);
Nordlund et al. (1992); and Saikia et al. (2000). The bulk of
the work by Singh, Chan, Roxburgh, and coworkers has
corroborated many the general findings of the two-dimen-
sional simulations. However, these models are very low res-
olution, using a sub–grid-scale (SGS) eddy viscosity
formulation rather than solving the Navier-Stokes equa-
tions, and it is therefore sometimes difficult to interpret the
results. For example, it is somewhat unclear in which regime
(laminar or turbulent) these models really operate, espe-
cially when the resolution is varied (e.g., Saikia et al. 2000),
thereby affecting the effective Reynolds, Rayleigh, and Péc-
let numbers of the flow. In light of the proximity of their
results to the two-dimensional simulations, and the differen-
ces from the results presented here, we suggest that the con-
clusions in these works relate to the laminar or mildly
turbulent regime.

The current paper therefore addresses the problem of
compressible penetrative convection in the turbulent regime
via local model direct simulations of the full Navier-Stokes
equations. The models here build upon the previous turbu-
lent compressible convection work of Cattaneo et al. (1991)
and Brummell et al. (1996, 1998), extending the local con-
vective domain to include a convectively stable layer below.
This paper is organized as follows. In x 2 the formulation of
the penetrative model is explained. In x 3 measures of pene-
tration are constructed and the degree of penetration is
examined for a range of parameters in the model. In x 4 the
question of the dependence of the penetration on rotational
effects is addressed. In x 5 we summarize the results and dis-
cuss the consequences for the solar interior dynamics.

2. FORMULATION

2.1. Equations, Boundary Conditions, and Parameters

Our two-layer model of penetrative compressible convec-
tion in a rotating plane layer is based upon a model of con-

vection in a single layer that consists of a rectilinear domain
containing a fully compressible but ideal gas confined
between two horizontal, impenetrable, stress-free bounda-
ries a distance d apart. For a single layer, the Cartesian box
would span 0 � ~xx � xmd and 0 � ~yy � ymd in the horizontal
and 0 � ~zz � d in the vertical, with the ~zz-axis pointing down-
ward. The upper surface is held at a fixed temperature T0,
whereas a constant temperature gradient D is maintained at
the lower boundary. The fields are assumed to be periodic in
the two horizontal directions. The specific heats cp and cv,
shear viscosity l (related to the dynamic viscosity � ¼ l=�,
where � is the density), and the gravitational acceleration g
are assumed to be constant. In a layer of constant thermal
conductivity K, the temperature Tp, density �p, and pressure
pp can exist in hydrostatic balance in a polytropic state:

Tp=T0 ¼ ð1þ �~zz=dÞ ; ð1aÞ

�p=�0 ¼ ð1þ �~zz=dÞm ; ð1bÞ

pp=p0 ¼ ð1þ �~zz=dÞmþ1 ; ð1cÞ

where �0 is the density at the upper boundary,
p0 ¼ ðcp � cvÞT0�0, and m ¼ �1þ g=Dðcp � cvÞ is the poly-
tropic index and � ¼ d D=To.

Our penetrative convection configuration is built out of
two such layers on top of each other in an extended Carte-
sian domain 0 � ~zz � zmd. By specifying the polytropic indi-
ces in the two layers, we effectively impose a two-layer
piecewise continuous polytropic background hydrostatic
stratification, where the upper layer (0 � ~zz � d, layer 1) is
convectively unstable and the lower layer (d � ~zz � zmd,
layer 2) is stable. The relative convective stability of the two
domains is measured by the parameter, S (introduced by
Hurlburt et al. 1994), defined by

S ¼
m2 �mad

mad �m1
; ð2Þ

where mi is the polytropic index of layer i and
mad ¼ 1=ð� � 1Þ is the polytropic index of the adiabatic
polytrope (and � ¼ cp=cv is the ratio of the specific heats).
Larger values of S correspond to an increased relative
stability of the lower layer. We will sometimes refer to the
relative stability as the stiffness, since more stable lower
layers are more resistant to penetrating motions.

Since the polytropic index is related to the hydrostatic
heat flux and the total flux must be constant throughout the
domain, S defines a relationship between the thermal con-
ductivities,Ki, in the two layers, given by

K2

K1
¼

m2 þ 1

m1 þ 1
¼

Sðmad �m1Þ þmad þ 1

m1 þ 1
: ð3Þ

In practice in the simulations, this conductivity contrast
between the convective and stable regions is imposed
through a piecewise constant conductivity function (of ~zz)
with the discontinuous junction smoothed by a narrow
(�0.1d ) hyperbolic tangent function. Note that h represents
the hydrostatic temperature gradient in layer 1, and there-
fore to maintain the total vertical heat flux through the sys-
tem, the temperature gradient in layer 2 must be K1=K2ð Þ�.
This penetrative configuration imposes the thermal conduc-
tivity as a function of height instead of a more realistic func-
tion of temperature and density (e.g., Kramer’s law). We
have chosen this model for numerical considerations and
because it allows direct comparison between these three-
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dimensional simulations and previous two-dimensional
numerical calculations. Comparable models using Kramer’s
law will be available soon (D. H. Porter & P. Woodward
2000, private communication).

The equations for the conservation of mass, momentum,
and energy, and the equation of state for a perfect gas can
be nondimensionalized using d as the unit of length, the iso-
thermal sound crossing time at the top of the domain
½d2=ðcp � cvÞT0�

1=2 as the unit of time, and T0 and �0 as the
units of temperature and density, to produce

@t�þ

D

x �uð Þ ¼ 0 ; ð4aÞ

@t �uð Þ þ

D

x �uuð Þ ¼ � rp� PrCkT
1=2
a0

�̂�� �u
� �

þ PrCk r2
U þ

1

3
rð

D

xUÞ

� �

þ �gẑz ;

ð4bÞ

@tT þ

D

x ðuTÞ þ ð� � 2ÞT

D

x u ¼
�Ck

�
r � KzrTð Þ þ Vl ;

ð4cÞ

p ¼�T : ð4dÞ

Here u ¼ ðu; v;wÞ is the velocity, T is the temperature, � is
the density, and p is the pressure, and these are the state vari-
ables as functions of space ðx; y; zÞ and time t. The rate of
viscous heating is Vl ¼ ð� � 1ÞCk=�½ �Pr@iujð@iuj þ @jui
�2

3

D

x u�ijÞ.
A set of dimensionless numbers parameterize the prob-

lem. The Rayleigh number,

RaðzÞ ¼
�2ðmi þ 1Þ

PrC2
kz

1�
ðmi þ 1Þð� � 1Þ

�

� �

ð1þ �zÞ2mi�1 ; ð5Þ

measures the competition between buoyancy driving and
diffusive effects, and thus the supercriticality and vigor of
the convection. Ra involves the thermal dissipation parame-
ter Ckz ¼ CkKz, where Kz ¼ Ki=K1 and Ck ¼ K1=
fd�0cp½ðcp � cvÞT0�

1=2g. The latter is a thermal diffusion
parameter representing the ratio of the sound crossing time
to the thermal relaxation time in a layer. The total energy
flux into the system is then ½�=ð� � 1ÞCk��. Here Ra is
quoted as evaluated at the middle of the unstable layer in
the initial polytrope.

The Prandtl number,

Pr ¼
lcp

K1
; ð6Þ

defines the ratio of the diffusivities of momentum and heat,
evaluated in the upper layer. Note that a complete Prandtl
number Prz ¼ lcp=Kz takes different values in the different
layers, but the diffusivity of momentum, Ckz Prz ¼ Ck Pr, is
independent ofKz and therefore also of depth.

Rotation enters the momentum equation in a modified f-
plane formulation in this local model via the rotation
vector,

� ¼ �0�̂� ¼ �x;�y;�z

� �

¼ 0;�o cos�;��o sin�ð Þ ; ð7Þ

where � is the latitudinal positioning of the planar domain
on the sphere. Notice that in the z-downward coordinate
system, positive rotation is clockwise when viewed from
above the north pole, the opposite of the intuitive planetary

or solar rotation. The sense can be made more familiarly
anticlockwise by setting �0 ! ��0 (equivalently
u ! �u; x ! �x) when examining the results. The Taylor
number,

Ta0 ¼
4�2

0d
4

ðl=�0Þ
2
¼

�

�0

� �2

Ta ; ð8Þ

measures the influence of rotation (as compared to diffusive
effects). Here Ta (the more usual Taylor number) is quoted
as evaluated at the middle of the unstable layer in the initial
polytrope, for consistency with Ra.

A measure of the influence of the rotation on global
motions derived in terms of these parameters is the convec-
tive Rossby number

Ro ¼
Ra

TaPr

� �1=2

: ð9Þ

A value of Ro less than unity implies a significant influence
of the rotation, since then in the time a fluid element is
driven across the layer by buoyancy it can execute more
than one inertial rotation. A true Rossby number Rot may
be determined as the ratio of the root mean square (rms)
vorticity generated in the convection to that of the rotating
frame, i.e.,

Rot ¼
!rms

2�
: ð10Þ

It is found here that Ro and Rot are generally comparable.
In addition to the external control parameters, some

measure of the degree of turbulence encountered in the
resulting solutions is often required. The standard dimen-
sionless parameter for this is a Reynolds number, indicating
the relative balance between advective and diffusive proc-
esses. This may be defined by

ReðzÞ ¼
UðzÞ�ðzÞl

Ck Pr
; ð11Þ

where l and UðzÞ are a typical length and velocity, respec-
tively. There are a number of possibilities for the choices of
these characteristic values. We calculate and quote two
types of Reynolds numbers here, both using the (time-aver-
aged) rms velocity, Urms as the characteristic velocity, but
with one (Re) using the depth of the domain as the length
scale, while the second (Re�) uses the Taylor microscale, �.
The latter scale is defined by

��2ðzÞ ¼
VlðzÞ

UrmsðzÞ
ð12Þ

and represents the scale of dissipation associated with the
rms velocity. In general here, a value of Re� greater than
about 10, or Re of about 103 or greater, indicates a solution
that is at least moderately turbulent.

A related quantity, the Péclet number, Pe, is defined by

Pe ¼
UðzÞ�ðzÞl

Ck

; ð13Þ

and is important for penetrative convection since it meas-
ures the relative importance of advective effects and thermal
diffusion, the two ingredients determining the deceleration
of a particle entering a stable layer. Characteristic scales
may be chosen as above for the Reynolds number, but it will
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also prove instructive to create a Péclet number solely for
the downflowing plumes encountered in the simulations,
using a typical length scale and velocity from only those
regions (see x 3.7).

2.2. Boundary Conditions

At the upper and lower boundaries, we require that

�w ¼ @zu ¼ @zv ¼ 0 at z ¼ 0; zm ; ð14aÞ

T ¼ 1 at z ¼ 0; @zT ¼
K1

K2
� at z ¼ zm ; ð14bÞ

which ensure that the mass flux and mechanical energy flux
vanish on the boundaries. The total mass in the computa-
tional domain is conserved and the imposed heat flux is the
only flux of energy into and out of the system. The heat flux
is imposed at zm such that, in the hydrostatic polytropic
state, the temperature gradient at the interface z ¼ 1 would
be fixed at h as required.

2.3. Numerical Solution

Equations (4) are solved numerically as an initial value
problem by a semi-implicit, hybrid finite-difference/pseudo-
spectral scheme. The vertical structure is treated by fourth-
order finite differences in the interior. Forward and back-
ward differences at the boundaries provide reflection criteria
to ensure that the mass flux and mechanical energy flux van-
ish there and that the temperature conditions are satisfied.
The horizontal components are treated by a Fourier collo-
cation method that immediately ensures that the require-
ments of periodicity are fulfilled. The pseudospectral
method calculates all linear operations and derivatives in
spectral space ðkx; ky; zÞ and performs the nonlinear multi-
plications in configuration space ðx; y; zÞ, with the trans-
form between spaces achieved by fast transform methods.
The time discretization is based on a three-level Adams-
Bashforth scheme, which has good stability criteria and yet
requires only one new evaluation and two storages on the
nonlinear fluxes at every time step. The thermal conduction
terms in the temperature equation are treated implicitly with
a Crank-Nicolson method to avoid overly restrictive time-
step constraints near the upper boundary where the density
is low due to the stratification. We solve the full Navier-
Stokes equations for fluid motions without recourse to
adaptations to lessen the effects of viscosity. While this
means that the Reynolds number, Re, is restricted by the
resolution, it also means that no assumptions are imposed
about the effective role of viscosity. The version of the code
used for these studies has been extensively parallelized using
message-passing and/or vendor memory-management rou-
tines and was run very efficiently on the massively parallel
IBM SP-3, Cray T3E, and SGI Origin 2000 machines at res-
olutions up to 5122 � 575.

3. PENETRATIVE CONVECTION

The problem as posed is governed by many dimensionless
parameters engendering a large parameter space. In the
solar context, these parameters are set by the nature of the
star and in particular the properties of the gas. The solar val-
ues of many of these properties are not known exactly, but
some order of magnitude estimates for the dimensionless
numbers exist (see, e.g., Priest 1982). For example, it is esti-

mated that the Reynolds number is of order 1012 or greater,
and the Prandtl number is of order 10�8 or less. These
parameters indicate that the solar gases are likely in very
turbulent fluid motion. Such values are not currently attain-
able in numerical simulations. While we cannot simulate the
Sun then, we hope to gain insight into some of the basic
physical processes that might be occurring in the solar inte-
rior. Our aim here then is to investigate the dynamics of a
turbulent fluid for a range of parameters that can be simu-
lated with current resources and to ascertain which features
could possibly be considered robust.

We therefore survey a portion of the parameter space as
outlined in Table 1. Our primary calculations are based
around an investigation of the effect of varying the relative
stability, S, of the stable zone below the convective region.
We use initial conditions based around a � ¼ 10;m1 ¼ 1
polytrope with a � ¼ 5=3 gas in the convective region for all
simulations, and then, unless otherwise specified, use the
benchmark parameters Ra ¼ 5� 105 and Pr ¼ 0:1. These
parameters correspond to a highly supercritical (more than
100 times critical) and therefore turbulent solution with a
significant degree of background stratification (density con-
trast �25 across the convection zone). The convective part
of the domain has aspect ratio 6� 6� 1 (x : y : z) for all
simulations, but the full domain depth varies according to
the stiffness of the stable region, ranging from zm ¼ 2 for the
stiffest stable region considered (S ¼ 30) to zm ¼ 3:5 for the
most pliable (S ¼ 0:5). These cases are directly comparable
to the nonpenetrative cases of earlier studies (Cattaneo et al.
1991; Brummell et al. 1996, 1998). As well as considering the
dependence on S, we also investigate the variation of
selected cases with changes in degree of supercriticality
(nonlinearity) and with rotation, including an examination
of the effect of varying the latitudinal positioning of the f-
plane domain. We begin here with a general description of
the mechanism and characteristics of penetrating and over-
shooting convective motions, and define the measures nec-
essary for quantifying the results.

3.1. Overview of PenetrativeMotions

Figure 1 provides an overview of penetrative convection
as compared to convection in a nonpenetrative purely con-
vective domain. The figure shows two different views of typi-
cal snapshots from both nonpenetrative (case 0) and
penetrative simulations (case 2) carried out at the bench-
mark parameters. Shown are volume renderings of the verti-
cal velocity (Figs. 1a, 1c, 1e, and 1g) and the enstrophy
density, j!j2, where ! ¼

D

� u is the vorticity (Figs. 1b, 1d,
1f, and 1h), with the upper four panels (Figs 1a, 1b, 1c, and
1d ) drawn from a simulation with an impenetrable lower
boundary at z ¼ 1 (case 0) and the lower four (Figs 1e, 1f,
1g, and 1h) from a simulation of penetrative convection with
S ¼ 1 and a stable region spanning 1 � z � 2:5 (case 2).

It has been understood for some time now from simula-
tions of convection in local domains (e.g., Hurlburt et al.
1984; Stein & Nordlund 1989; Cattaneo et al. 1991; Porter
& Woodward 1994; Brummell et al. 1996; Julien et al.
1996b) that the topology of turbulent convection differs
from the cellular nature of laminar convection. As the Rey-
nolds number increases, the simple cellular overturnings of
laminar convection are replaced by a plume-dominated con-
vective system. The thin turbulent boundary layers shed
compact upflows and downflows, or plumes, which interact
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or breakup in the interior to form small-scale turbulent
motions (Fig. 1b). The asymmetry imposed by stratified
compressible convection (Hurlburt et al. 1984) emphasizes
this difference. A seemingly laminar surface network of
downflows, with downward-directed plumes concentrated
at the interstices of the network (Fig. 1a), masks the small-
scale turbulent interior (Cattaneo et al. 1991). The latter is
created from secondary instabilities and interactions of the
plumes, as they concentrate and accelerate in the strength-
ening density background, eventually ‘‘ splashing ’’ against
the lower boundary. The plume structures themselves can
be turbulent and can be very complicated at very high Re
(D. H. Porter et al. 1990; Porter &Woodward 1994).

The replacement of the lower impenetrable boundary
with a bounding stable layer leads to substantial differences
(Figs. 1e, 1f, 1g, and 1h). Most obviously, a downflowing
plume that would previously have been forcibly turned as it
impinges upon the lower wall is now afforded a more gentle
deceleration by the pliable fluid below. Motions can extend
beyond the convective layer, overshooting into the origi-
nally stable lower region. This has been anticipated in the
astrophysical context for some time (e.g., Schmitt et al.
1984; Zahn 1991) and observed previously in numerical sim-

ulations in both two dimensions (Hurlburt et al. 1986, 1994;
Jennings et al. 1992) and three dimensions (Nordlund et al.
1992; Singh et al. 1994, 1995; Saikia et al. 2000). It can be
seen clearly in Figures 1e and 1g that vertical motions read-
ily extend past the z ¼ 1 line demarking the interface
between the convectively driven layer with the stable zone.
Some weaker and more diffuse up and down motions can
also be detected (Fig. 1g) deep in the stable layer. These may
be associated with internal gravity waves excited by the
downflows impinging on the stable layer.

The companion pictures, Figures 1f and 1h, show the cor-
responding enstrophy densities. These fields generally offers
a clearer depiction of the flow in terms of the plumes and
other vorticity elements associated with the turbulence.
Strong vertical tubelike vortices can be seen to be associated
with the junctions of the upper surface network in w. These
are coherent structures (in time and space) that represent
the major downflow sites of the compressible convection
(see also Cattaneo et al. 1991; Brummell et al. 1996, 1998).
Smaller scale vorticity can be seen to be related to the decel-
eration of these downflowing plumes in the stable region,
just below the interface. The structure of this enstrophy den-
sity field should be contrasted with that associated with the

TABLE 1

Parameters and Measured Penetration Depths for the Compressible Penetrative Convection Simulations

Case No. Case Tag Resolution nx, ny, nz S zm Ck Ra Pr Ta � Ro Dp

0................ S=l 1282� 128 l 1.0 0.07 4.9� 105 0.1 . . . . . . . . . . . .

1................ S=0.5 1282� 350 0.5 3.5 0.07 4.9� 105 0.1 . . . . . . . . . 0.94

2................ S=1 1282� 350 1 3.5 0.07 4.9� 105 0.1 . . . . . . . . . 0.85

3................ S=2 1282� 300 2 3.0 0.07 4.9� 105 0.1 . . . . . . . . . 0.73

4................ S=3b 1282� 300 3 2.5 0.07 4.9� 105 0.1 . . . . . . . . . 0.57

5................ S=7b 1282� 192 7 2.0 0.07 4.9� 105 0.1 . . . . . . . . . 0.40

6................ S=15_3D 1282� 192 15 2.0 0.07 4.9� 105 0.1 . . . . . . . . . 0.32

7................ S=30b 1282� 192 30 2.0 0.07 4.9� 105 0.1 . . . . . . . . . 0.28

(5) ............. S=7b 1282� 192 7 2.0 0.07 4.9� 105 0.1 . . . . . . l 0.40

8................ S=7b_rot1 1282� 192 7 2.0 0.07 5.0� 105 0.1 5� 104 90 10.0 0.37

9................ S=7b_rot2 1282� 192 7 2.0 0.07 5.0� 105 0.1 5� 106 90 1.0 0.26

10.............. S=7b_rot4 1282� 192 7 2.0 0.07 5.0� 105 0.1 1� 107 90 0.71 0.25

11.............. S=7b_rot2_p0 1282� 192 7 2.0 0.07 5.0� 105 0.1 5� 106 0 1.0 0.25

12.............. S=7b_rot2_p15 1282� 192 7 2.0 0.07 5.0� 105 0.1 5� 106 15 1.0 0.21

13.............. S=7b_rot2_p30 1282� 192 7 2.0 0.07 5.0� 105 0.1 5� 106 30 1.0 0.15

14.............. S=7b_rot2_p45 1282� 192 7 2.0 0.07 5.0� 105 0.1 5� 106 45 1.0 0.20

15.............. S=7b_rot2_p67 1282� 192 7 2.0 0.07 5.0� 105 0.1 5� 106 67 1.0 0.22

(9) ............. S=7b_rot2 1282� 192 7 2.0 0.07 5.0� 105 0.1 5� 106 90 1.0 0.26

16.............. S=3b_lo 1282� 300 3 2.5 0.15 1.0� 105 0.1 . . . . . . . . . 0.62

(4) ............. S=3b 1282� 300 3 2.5 0.07 4.9� 105 0.1 . . . . . . . . . 0.57

17.............. S=3b_hi 1282� 300 3 2.5 0.05 1.0� 106 0.1 . . . . . . . . . 0.54

18.............. S=3b_vhi 2562� 300 3 2.5 0.02 5.0� 106 0.1 . . . . . . . . . 0.46

19.............. S=3b_vvhi_a 2562� 300 3 2.5 0.015 1.0� 107 0.1 . . . . . . . . . 0.44

20.............. S=3b_vvhi_b 2562� 300 3 2.5 0.011 2.0� 107 0.1 . . . . . . . . . 0.35

21.............. S=3b_vvvhi 5122� 575 3 2.5 0.0077 4.0� 107 0.1 . . . . . . . . .

22.............. S=2_low 1282� 300 2 3.0 0.22 5.0� 104 0.1 . . . . . . . . . 0.82

(3) ............. S=2 1282� 300 2 3.0 0.07 4.9� 105 0.1 . . . . . . . . . 0.73

23.............. S=1_low 1282� 350 1 3.5 0.22 5.0� 104 0.1 . . . . . . . . . 0.97

(2) ............. S=1 1282� 350 1 3.5 0.07 4.9� 105 0.1 . . . . . . . . . 0.85

24.............. S=1_vhi 2562� 350 1 3.5 0.050 1.0� 106 0.1 . . . . . . . . . 0.77

(17) ........... S=3b_hi 1282� 300 3 2.5 0.05 1.0� 106 0.1 . . . . . . . . . 0.54

25.............. S=3b_pr_lo 1282� 300 3 2.5 0.07 1.0� 106 0.05 . . . . . . . . . 0.55

(4) ............. S=3b 1282� 300 3 2.5 0.07 4.9� 105 0.1 . . . . . . . . . 0.57

(25) ........... S=3b_pr_lo 1282� 300 3 2.5 0.07 1.0� 106 0.05 . . . . . . . . . 0.55

26.............. S=3b_pr_vlo 2562� 300 3 2.5 0.07 2.0� 106 0.025 . . . . . . . . . 0.54

Note.—All simulations also have � ¼ 10; � ¼ 5=3;m1 ¼ 1;xm ¼ ym ¼ 6. Case numbers in parentheses are cases repeated in the table for ease of
comparison of solutions. The penetration factor Dp is measured in units of the convection zone depth. To convert to units of the pressure scale
height, multiply the values by 2 (approximately).
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Fig. 1.—Comparison of penetrative and nonpenetrative simulations. Shown are volume renderings from a representative time of (a, c, e, and g) the vertical
velocity w and (b, d, f, and h) the enstrophy density !2, where ! ¼

D

� u. Here and in subsequent volume renderings, the vertical velocity is colored so that yel-
low-red depicts upflowing material and light blue-blue is downflowing. The enstrophy density has strong values exhibited as white-yellow, intermediate values
as purple, and weaker values as blue-black. In both cases, the opacity of the field is tied to its absolute value, so that strong values appear opaque whereas weak
values appear translucent. This figure shows two different view points, from above and to the side, for two simulations at the benchmark parameters
(Ra ¼ 5� 105;Pr ¼ 0:1;Ta ¼ 0; � ¼ 5=3; � ¼ 10;m1 ¼ 1; and x : y : z ¼ 6 : 6 : zm), but where one (a–d ) has an impenetrable, stress-free lower boundary at
z ¼ 1, whereas the other (e–h) is a penetrative solution (case 2) with S ¼ 1; zm ¼ 3:5.



nonpenetrative convection. Most noticeable is the quieter
interior of the convection zone in the penetrative case,
with less small-scale turbulent motion there. This is due
to a less direct connection between the upflows and
downflows. The small-scale turbulence is most likely a
result of secondary shear instabilities (Cattaneo et al.
1991) and breakup of the fast downflows where they
decelerate rapidly. With the pliable penetrative interface,
the deceleration is not as rapid, and the return upward
flow is not generated immediately by the enforced turning
at an impenetrable wall. The net result is that less small-
scale turbulent vortex action is generated and it is less
likely to be carried straight into the interior of the con-
vective domain. This has a number of consequences for
mixing and transport, as will be discussed later.

3.2. Mechanism of Penetration and Overshooting

Amore quantitative understanding of the mechanism for
these extended motions can be gleaned from an examination
of the thermodynamics of the flow via mean variables and
fluxes. The mean temperature T and density � (whereX rep-
resents the average of X over the two horizontal directions)
define the mean thermodynamic state. The total heat flux
available and its division into the adiabatic part and the
superadiabatic part that drives the convection are

Ftot ¼
�

ð� � 1Þ
Ck� ; ð15aÞ

Fad ¼ Ck�ðmþ 1Þ ; ð15bÞ

Fsub ¼ Ftot � Fad : ð15cÞ

Energy fluxes may be defined from the kinetic energy and
total energy equations as follows:

Fk ¼
1

2
�wjuj2 ; ð16aÞ

Fe ¼
�

� � 1
�wT 0 ; ð16bÞ

Fp ¼ wp0 ; ð16cÞ

Fr ¼ CkKz

�

� � 1
@T=@z ; ð16dÞ

Wb ¼ �ðmþ 1Þw�0 : ð16eÞ

These are the kinetic, enthalpy, acoustic and radiative
fluxes, and the buoyancy work, respectively, involving the
fluctuating variables T 0 ¼ T � T , p0 ¼ p� p, and
�0 ¼ �� �. We will also refer to

Fra ¼ Fr � Ck��=ð� � 1Þ ; ð17aÞ

Fc ¼ Fe þ Fk ; ð17bÞ

FT ¼ Fc þ Fra ; ð17cÞ

which are the radiative flux adjusted by the Ftot, the convec-
tive flux, and the total flux in the convective state (where the
latter two omit the negligible viscous flux).

The three quantities Fe, Fp, and Wb are correlations
between the vertical velocity and the thermodynamic fluctu-
ations, and the horizontal averages of these fluxes, denoted
by an overbar [e.g., Fkðz; tÞ], give the net vertical transport
of the quantities across a horizontal plane at any time. A
detailed study of the energetics of nonlinear convection that
includes a discussion of the roles of the quantities above can

be found in Hurlburt et al. 1984. Since all of the simulations
described here achieve a statistically steady state, the hori-
zontal mean fluxes are further averaged over time to pro-
duce a function purely of the vertical variable denoted by
angle brackets, e.g., hFkðzÞi.

The model for the penetrative system used here is defined
in terms of a polytropic hydrostatic state with a thermal
background created such that the upper layer is convec-
tively unstable and the lower layer is stable. In terms of the
polytropic indices, this requires that the upper layer have
index m1 < ma and the lower layer m2 > ma, where
ma ¼ 1=ð� � 1Þ. This defines a mean temperature and den-
sity profile, such that the entropy gradient is positive in the
upper layer and negative in the lower layer, ensuring the
required stability criteria in the layers. An example of these
is shown in Figure 2, together with the statistically steady
state profiles that the simulation relaxes to, for the simula-
tion at the benchmark parameters with S ¼ 7 (case 5). The
dashed line profiles are the polytropic states, and the solid
lines the simulation results. In the absence of motions, the
fixed imposed flux of heat is carried by radiation, and then
the temperature gradient in the two layers is fixed by the
ratio of the conductivities (eq. [3]), with the upper gradient
fixed at the input value of h (Fig. 2b). When motions set in
as a result of the convective instability in the upper layer,
the temperature gradient in the relaxed state must return to
the original values at the boundaries, but a number of ther-
modynamic effects due to the induced convective mixing will
affect the interior. First, the overall stratification sags, redis-
tributing density such that the mean increases in the lower
layer and decreases in the upper layer (Fig. 2c). This is a
standard feature of compressible simulations formulated in
this way and simply implies that polytropes are artificially
top heavy. The mean temperature cools overall (Fig. 2a), as
it is allowed to do since only the flux is imposed as a lower
boundary condition. Convection then acts in its natural
manner to remove the driving gradient in the bulk of the
overturning flow. The entropy gradient (Fig. 2d) shows that
the interior becomes close to isentropic (adiabatic) in the
interior of the convection zone. The temperature gradient is
also reduced there (Fig. 2b), and then this temperature gra-
dient matches to the polytropic radiative values both at the
upper boundary and where the motions die out below the
interface in the lower stable region. In this latter matching
region, the entropy gradient switches from positive (unsta-
ble) to negative (stable) as it must, but the switching point is
not necessarily exactly at z ¼ 1, owing to the redistribution
of the background stratification by the convective mixing.
In the example shown, the adiabatic region does not appear
to extend below z ¼ 1, indicating that, technically, over-
shooting is taking place but not penetration. The feedback
on the mean stratification may be somewhat limited by the
fact that the thermal diffusivity is dependent only on depth
and not on the temperature or density, and this may effect
the structure of the adiabatic region and its transition to
subadiabaticity. However, preliminary analyses of simula-
tions where this restriction is not present since a Kramer’s
law conductivity function was used (D. H. Porter & P.
Woodward 2000, private communication), appear to show
similar results for the mean thermodynamic balances. The
feedback process, and therefore the termination of the adia-
batically mixed region, certainly depends on the parameters
of the problem, in particular the relative stiffness of the sta-
ble layer and the Péclet number. However, the lack of an
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extended adiabatic region appears to be a robust feature of
all our three-dimensional simulations as will be discussed in
detail later.

Having exhibited the underlying mean state, the time-
and horizontally averaged fluxes shown in Figure 3 illus-
trate how the fluctuations about these means act in the
convective motions. This plot shows the contributions
to hFei; hFki; hWbi, and the total convective flux,
hFci ¼ hFe þ Fki, from different portions of the flow—the
upflows, the downflows, and the strong downflows—as
functions of depth. Here a downflow is declared strong if its
value is greater than 40% of the maximum value of jwj.
While this thresholding method is not an ideal representa-

tion of the coherent structures, it does provides some indica-
tion of the contribution from plumelike downflow
structures.

The kinetic flux hFki clearly illustrates the extended
motions. The asymmetry of compressible convection, where
downdrafts are narrow and updrafts are broad, leads to a
downward-directed (positive) kinetic flux (Hurlburt et al.
1984). The nonzero value of this kinetic flux for some depths
below z ¼ 1 indicates the existence of substantial motions in
the stable region. Since the contributions to the kinetic flux
are dominated by a term proportional to w3, the positive
flux stems mainly from the downflows, with a major contri-
bution from strong downflows, cancelled in part by the
small negative effect of the upflows. It is clear from such
analysis and from the overviews of the flow (Fig. 1) that
plumes plunge into the stable layer and stir up motions
there. The peak kinetic flux occurs just above the interface
and the motions die out by about z ¼ 1:5 in this case. Meas-
ures of the extent of these motions and their dependence on
the parameters of the model are the main topic of this paper
and will be addressed shortly.

The motions eventually die out in the stable region where
the convective driving is absent, i.e., where the entropy gra-
dient becomes subadiabatic (negative). In the original for-
mulation, the division between stable and unstable, as
defined by imposed regions of sub- and superadiabaticicity,
was exactly at z ¼ 1. However, feedback from the convec-
tive overturnings adjusts the positioning of these regions
somewhat. After traversing the slightly superadiabatic con-
vection zone, the negative entropy perturbations of the
downward motions switch sign relative to the mean, and the
motion is decelerated. This is most clearly demonstrated by
the buoyancy work, hWbi, of the downflows (Fig. 3c). This
measure is related to the density perturbations, which are
somewhat easier to interpret than the entropy perturba-
tions. A positive value ofWb corresponds to less dense fluid
moving upward or more dense fluid moving downward, as
is typical in convection. A negative Wb indicates the oppo-
site, with less dense fluid moving downward or more dense
fluid moving upward. This less intuitive situation represents
buoyancy braking or deceleration of the motions. Figure 3c
clearly shows this braking in the downflows in the subadia-
batic region, down to the level where motions cease. There
is a small region of negative buoyancy work in the upflows
at the start of the subadiabatic region that probably corre-
sponds to splashing; some downflowing dense fluid imping-
ing upon the stiffer layer is turned rapidly upward by
pressure gradients forming small pockets of upward-
moving dense fluid. Lower down, the upflow profile of Wb

returns to a positive value where downflows become
warmed, expand, and begin to rise, creating the return
upflows for the convective motions. The overturning
motions of convection appear to be much more discon-
nected in the penetrative case when compared to the nonpe-
netrative. The main return flows in overshooting convection
originate deep in the stable layer and are associated with the
penetrating plumes, which are not very space filling. There
is somewhat of a splash layer, but this is much less active
than the return flows associated with an impenetrable wall.
Notice also that there is a small amount of buoyancy brak-
ing in the upflows near the upper boundary too owing to the
competition of pressure and temperature effects, as was
noted and explained in the two-dimensional simulations of
Hurlburt et al. (1984).

Fig. 2.—Mean stratification in an example penetrative simulation (case
5). The dashed lines represent the stratification for the piecewise polytrope
initial condition upon which the penetrative model is based. The solid line
shows the nonpolytropic background state of the statistically steady state
attained in the time integration of the model. The profiles shown are hori-
zontal and time averages of (a) the mean temperature, (b) its gradient, (c)
the mean density, and (d ) the mean entropy gradient.
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Fig. 3.—Example of the mean fluxes in a penetrative calculations and their distribution among different components of the flow. Shown from case 5 are the
time- and horizontally averaged (a) enthalpy flux hFei, (b) kinetic flux hFki, (c) buoyancy work hWbi, and (d ) total convective flux hFci ¼ hFk þ Fei. For each,
the solid line exhibits the total mean flux, whereas the dashed line represents the contribution from the downflows and the triple-dot–dashed line shows the
component from the upflows. The single-dot–dashed line shows the contribution from the strong downflows, where strong is arbitrarily defined as any value
greater than 40% of the maximum value of jwj.



Figure 3a shows the corresponding enthalpy transport,
indicating clearly that heat is transported upward in the
convectively driven region as expected, whereas in the stable
zone, heat appears to be carried in the wrong direction. This
effect reflects the temperature equivalent of the density
result exhibited in the buoyancy work. The effect is mainly
due to the downflows, where the change in sign of the
entropy perturbations at the unstable-stable zone interface
is achieved by changing signs in the temperature and density
perturbations relative to their respective means. The down-
flows in the stable zone are suddenly warm relative to their
surroundings, owing to a change in the background stratifi-
cation, and so heat is carried downward until diffusion
smooths out the perturbation or buoyancy braking forces
the motions to cease.

3.3. Measures of the Extent of Penetration and Overshooting

The most immediate questions related to penetrative con-
vection are associated with how far the motions penetrate
and/or overshoot, and how these results depend on the
parameters of the problem. To answer such questions, we
require definitions of an instantaneous and then a time-
averaged penetration depth that describe where motions
overshooting into the stable layer cease. Such measures
have traditionally been defined using the kinetic flux (see,
e.g., Hurlburt et al. 1986, 1994; Singh et al. 1994; Saikia et
al. 2000) since it is directly related to the motions and is con-
veniently signed. Previous calculations have marked the ces-
sation of convective motions as the first zero of this signed
quantity found in the stable layer below the interface. Here
we still use the kinetic flux as the variable of interest, but use
instead the point at which Fk reaches a certain fraction, �k,
of its maximum value. A factor of 1%, or �k ¼ 0:01, has
been used for the results displayed here (this choice is justi-
fied in the next section). While all the measures are related
to the depth where the kinetic energy of the flow has
dropped significantly, the latter description is somewhat
more consistent. First, the measure can be defined in this
manner using the unsigned mean kinetic energy instead of
the signed kinetic energy flux if required. We have found
that similar results are reported both ways. Second, the
measure we use is always defined, whereas the zero crossing
is not always present in Fk. This fact also makes our meas-
ure more consistent in the sense that the average of its
instantaneous values of Fk is approximately equal to the
measure evaluated on the time-averaged kinetic flux hFki.
This not necessarily true of the earlier definition since the
time average may end up with no zero crossing. Clearly, in
the limit �k ! 0, the measure defined here approaches that
of the earlier publications if there exists a zero crossing in
Fk.

Figure 4 shows how a measure of the penetrating
motions of this type is constructed, using the simulation
case 5 shown in the previous figures as an example. Fig-
ure 4a shows the horizontally averaged kinetic flux,
Fkðz; tÞ, as a function of depth and time. The form of
these curves does not depart drastically from the average
(shown earlier in Fig. 3b and here in Fig. 4c), yet exhibits
some time-dependence reflecting activity in the turbulent
convective flow. From these curves, we can extract the
time-dependent penetration depth, zpðtÞ, as that depth
(away from the upper boundary) where the kinetic flux

falls to �k of its maximum value, i.e.,

zpðtÞ ¼ zj
	

Fkðz; tÞ ¼ �k max



Fkðz; tÞ
��

: ð18Þ

Figure 4b shows the time series of zp for this example. The
measure is time-dependent but with a well-established mean
indicated on the plot by the horizontal dashed line. We will
designate this mean value as the overshoot depth, zo. This
value is also shown on Figure 4c, which plots the time-aver-
aged value of the mean kinetic flux, hFki as a function of
depth. The crosses on this plot denote the penetration
depth, zom, obtained by using this mean curve only, and it

Fig. 4.—Illustration of the measurement of the penetrating and over-
shooting motions. Using case 5 as the example, (a) shows the horizontally
averaged kinetic flux Fk as a function of time, t; (b) shows the time series of
zpðtÞ extracted from the kinetic flux, with its time average zo indicated as the
horizontal dashed line; and (c) shows the time-averaged mean kinetic flux
hFki, with the calculated levels zom and zo indicated by the crosses and the
dashed line, respectively.
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can be seen that the values correspond closely (zo ¼ 1:43
and zom ¼ 1:41). The penetration depth in numerical simu-
lations has traditionally been quoted as the fractional
increase in depth of motions below the original convection
zone depth, and so we define the penetration fraction,
Dp ¼ zo � 1. For practical purposes, it may be more sensible
to quote the depth in terms of the pressure scale heightHp at
the bottom of the convective layer. We note here that
Hpðz ¼ 1Þ under the polytropic initial conditions is
ð1þ �Þ= �ðm1 þ 1Þ½ � ¼ 0:55, and is the same for all our simu-
lations. The nonlinear states that the simulations relax to,
however, are not polytropes and provide a somewhat differ-
ent (and case dependent) value for Hp, ranging between
0:45 � Hp � 0:49. In general here, we quote Dp, but a value
in terms of the pressure scale height is always roughly twice
as large.

3.4. Dependence of �k: GravityWaves

These penetration measures of course depend on the
choice of �k. We therefore present Figure 5, illustrating what
the measure represents for different values of �k, to justify
our choice of �k. Figure 5a shows a time trace of the penetra-
tion depth zpðtÞ for a small time interval extracted from an
example simulation (case 3) for three different small values
of �k ¼ 0:01; 0:005; 0:0025. In this plot, horizontal lines of
the same line style as the time traces mark the values of zo
calculated for each �k (and they are marked as arrows in
Figs. 5b, 5c). The three time traces agree fairly closely, and
only during specific events do they disagree significantly.
The question is whether these specific events should right-
fully be included in the penetration measure or not. For
example, an event is occurring at t ¼ 10:2 (solid vertical line)
that is being picked up by the smaller values of �k, but not
by the largest value. A plot of the kinetic energy flux at
t ¼ 10:2 from which these measures were derived is shown
as Figure 5b. The levels that the various �k pick out as the
penetration depths zpðt ¼ 10:2Þ are shown as horizontal
dot-dashed lines. The end of the strong kinetic flux variation
is chosen by the largest value of �k, but a small positive tail
is picked up by the smaller values. Since Fk is an average
measure, this weak tail could possibly correspond to a sig-
nificant deep plume event that fills little space, a result that
would be interesting. However, Figure 5c shows that this is
not the case. This gray-scale plot shows a two-dimensional
map of the maximum of the kinetic energy taken over the
third dimension (the line of sight) at the time of the event
under consideration (t ¼ 10:2). The horizontal dot-dashed
lines again correspond to the zpðt ¼ 10:2Þ associated with
the three �k. For clarity, the gray scale is scaled independ-
ently for the portions above and below the solid triangle
pointer on the left. It can be seen that strong (light colored
area) kinetic energy can be found down to the level of zp
formed from �k ¼ 0:01 (top dot-dashed line) but that
between this line and the left triangle pointer the plot is solid
black. If the map was not rescaled below the left triangle
pointer, the whole map below the line for zpð�k ¼ 0:01Þ
would be black. This indicates that the kinetic energy values
are much weaker everywhere below the first dashed line than
above, and thus there is no evidence for a small highly ener-
getic region, such as a plume, below that level. We have
rescaled the region below the left triangle pointer so that the
topology of the weak kinetic energy fluctuations shows up.
It can then be seen that large-scale gentle motions do exist

lower down, and these are responsible for the weak tail in
Fk. These motions are associated with gravity waves gener-
ated in the stable layer by the impinging plumes and are not
related to any significantly deep penetration event. It
appears that a value of �k ¼ 0:01 generally gives good
results concerning the plume-driven penetration, while
excluding gravity wave motions.

Fig. 5.—Filtering of the effects of gravity waves from the measurement
of the penetration and overshooting using �k. Using case 3 as an example,
(a) shows an excerpt from the time series for zpðtÞ � 1, where a couple of
seemingly deep events show up for small values of �k. The series for three
different �k (�k ¼ 0:0025: solid line; �k ¼ 0:005: dotted line; �k ¼ 0:01: dashed
line) are shown superimposed. The vertical line at t ¼ 10:2 marks the event
examined in the subsequent panels. The horizontal lines of the same styles
(and the arrows in the subsequent panels) show the three similar averaged
values of zo corresponding to these different �k; (b) shows the mean kinetic
flux Fk at t ¼ 10:2 (solid line). The three widely varying instantaneous
zpðt ¼ 10:2Þ for the three values of �k are shown as the horizontal dot-
dashed lines here (and in the next panel); (c) shows a two-dimensional (x-z)
gray-scale plot of the maximum kinetic energy down the line of sight (the
third dimension, y), thereby displaying any significant motions in the full
domain. The gray-scaling is done independently above and below the black
triangle pointer on the left in order to show up the gravity waves in the
lower portions of the domain below the triangle.
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It should be noted that these measures cannot fully repre-
sent the mechanism of penetration, by virtue of their aver-
aged nature. A better measure of penetration would be
defined on the extent of overshoot of individual plumes, but
this is difficult since it is not simple to identify turbulent
plumes in a robust and practical manner. Despite this, since
most theories assume a mean effect of numerous plumes and
many of the interesting questions address the level to which
such penetrating flows affect the mean structure of the envi-
ronment, our approach will suffice for now.

3.5. Time Dependence: Impulsive Events

Before addressing the dependence of the time-averaged
penetration fraction Dp on the parameters, we would first
like to comment on the time dependence of the overshooting
motions. Figures 4a and 4b show there is a significant fluctu-
ation of the penetrative measures about the mean value.
While the aspect ratio of our domains are not enormous
(x : y : z ¼ 6 : 6 : 1), there are a significant number (at least
�10, depending upon the parameters) of strong, coherent
plumes present at any one time in the domain. A calculation
with a much larger horizontal extent may give a less time-
dependent value of zpðtÞ; we have effectively replaced a
larger domain average by a time average to obtain the rele-
vant plume and penetration statistics. Either way, the ques-
tion of the distribution of penetrating plumes is interesting.
Figure 6 presents histograms of the distribution of
Dpt ¼ zpðtÞ � 1 (the time-dependent equivalent of Dp) for
the time series of three of the simulations at different stiff-
nesses (S ¼ 1; 7; 30 [cases 2, 5, and 7]). The figure shows the
mean value, zo, for each distribution as a vertical dotted line
and also quotes the second and third moments of the distri-
bution (m2, the variance, and m3, the skewness). While the
variation of the mean with S will be discussed shortly, we
note here that each distribution is asymmetric, with a dis-
tinct tail containing great numbers of plumes at higher val-
ues of Dpt than lower. This is quantitatively reflected in the
positive skewness values. The distribution of Dpt is biased
toward penetration events that are deeper than the mean.
Furthermore, the increasing skewness with decreasing S

seems to reflect a greater ease of deep penetration with a
more pliable interface.

Once again, since the measure Dpt is a spatially averaged
measure, this result does not give us any direct information
about the possibility of deep penetration by individual
plumes, although the distribution indicates that this is
likely. We can check this conjecture by examining particular
events in the zpðtÞ time series and analyzing their source. An
example of this is shown in Figure 7. This figure is similar to
Figure 5 except that it exhibits case 5, and Figure 7c shows a
slice of the vertical velocity field instead of the kinetic energy
measure of before. Figure 5a shows the penetration depth
(over a short time interval extracted from the full simula-
tion) where a number of deep events appear to be occurring.
All three �k agree closely for the event chosen for examina-
tion at t ¼ 41:5. Furthermore, unlike the previous example,
Figure 5b shows that this event corresponds to a genuine
deepening of the kinetic energy flux profile, rather than
merely a weak additional tail induced by gravity waves. This

Fig. 7.—Illustration of a significant deep overshooting event from case
5. This figure is similar to Fig. 5 except that (c) shows a two-dimensional
gray-scale plot of a particular slice of the vertical velocity field w where a
strong plume can be seen.

Fig. 6.—Histograms of the distribution of Dpt for three simulations,
cases 2, 5, and 7. Themeans of the distributions are shown as vertical dotted
lines, and the higher order moments (m2, the variance, and m3, the skew-
ness) are annotated.

No. 2, 2002 PENETRATIVE TURBULENT COMPRESSIBLE CONVECTION 837



latter evidence leads us to suspect that actual penetration
events rather than gravity wave responses are causing the
penetration depth changes. Indeed, on examining the veloc-
ity field associated with this time, for example the slice
shown as Figure 5c, we can clearly see a strong downflow
event providing enough influence to deepen Fk and zp.

The events generating such deep penetration can be either
exceptional individual plumes or can result from a strong
interaction of a number of already strong plumes (as in the
case in Fig. 7). This is not a rare occurrence, as shown by the
time series zpðtÞ and the tails in the histograms, and exam-
ples such as this one can be found in all cases. In corrobora-
tion, a time series or animation of the kinetic flux profiles
often shows the arrival of these strong events as a disturb-
ance propagating downward through the profile. The time-
scale for these deeper penetrating events appears to be on
the order of 20–25 time units. This number is comparable
with estimates of a large-scale overturning time (based sim-
ply on the rms velocity and the average plume separation),
although no large-scale overturning really exists. The coher-
ence time for the velocity field is significantly shorter, on the
order of 5–7 time units, and so these events, while fairly reg-
ularly spaced, are relatively infrequent. The extent of pene-
tration, as measured by the horizontally averaged measure
Dpt, which tends to smooth the actual events somewhat, can
be increased by up to 50% in such episodes. This significant
change is of interest, since the mixing of passive fields, such
as chemical abundances or even active ingredients, such as
magnetic fields (Tobias et al. 1998, 2001), may be influenced
by these dramatic events. Such fields may be transported
deeper than might be expected from time-averaged meas-
ures. It may even be possible that the majority of the trans-
port of such quantities occurs in these rare events rather
than by a gradual deposition via the more normal penetra-
tive motions. Furthermore, even deeper and yet rarer events
may exist that have not been picked up in the finite time his-
tories of these simulations. It is intriguing to speculate
whether, if one waited long enough, massive events may
occur accomplishing the majority of the mixing and
transport.

3.6. Dependence on S

We now examine the dependence of the overshooting
convection on the parameters of the model. Of primary
importance, is how the long-term influence of the over-
shooting, as measured by Dp, depends on the relative stabil-
ity of the lower layer, S. A series of penetrative solutions are
therefore presented with fixed Rayleigh and Prandtl num-
bers, Ra ¼ 4:9� 105 and Pr ¼ 0:1, but with varying stabil-
ity ratios, S ¼ 0:5; 1; 2; 3; 7; 15; 30 (cases 1–7).

Figure 8 shows the mean fluxes, hFki, hFei, hFci, hWbi,
and hFrai, for most of the cases mentioned above, and for
S ¼ 1 (case 0). Here the label S ¼ 1 represents a nonpene-
trative case, where a stress-free lower boundary is imposed
at z ¼ 1 (comparable to case 3 of Cattaneo et al. [1991] and
case R0 of Brummell et al. [1996, 1998]). It should be noted
that there is a significant difference between this case, where
no stable layer exists, and the limit S ! 1 in a penetrative
case where a lower stable layer does exist, as demonstrated
by Figure 8. In the nonpenetrative case, the boundary con-
ditions at the lower edge of the domain enforce a heat flux,
h, that must remain fixed for all time. In the penetrative
cases, while the background polytropic state is set up so that

in hydrostatic balance the heat flux would have the same
value h at z ¼ 1, as soon as motions set in this condition can-
not be enforced. Similarly, w ¼ 0 at z ¼ 1 for all time in the
nonpenetrative case, forcing the fluxes to vanish there. Fig-
ure 8 shows that the penetrative fluxes are not pinned to
z ¼ 1 and can choose a different form. Indeed, while over-
shooting always extends the positive profile of the kinetic
flux hFki below the z ¼ 1 interface, the remaining fluxes
change sign either above or below z ¼ 1 depending on S. In
the penetrative cases, the deceleration of the downward
motions is by buoyancy braking in the stable region rather
than by the pressure effects of a lower impenetrable wall.
The buoyancy work becomes negative at a depth that
depends on the adjustments made to the background strati-
fication. Since this depends on the relative stability of the
layers, the point at which the buoyancy work becomes nega-
tive, and therefore the kinetic flux peaks and the other fluxes
switch sign, is shallower for higher S. The nonpenetrative
case is an anomaly, since less adjustment of the mean strati-
fication is possible, and the downflow motions are deceler-
ated by the wall rather than by buoyancy braking, leading
to no changes in sign of the fluxes in the interior of the con-
vective region. For S ¼ 1, the zeroes of the other fluxes are
necessarily tied to the zero of the kinetic flux, rather than its
peak, as is the case for penetrative motions. Even as S
becomes large, it is not clear that the S ¼ 1 case will be
recovered, since some interaction with the lower stable
region is always allowed, even if it is in the form of gravity
waves.

A corollary of these observations is that an understanding
of the dynamics of a convection zone built on the intuition
of the S ¼ 1 case may lead to a false sense of the depth of
the zone. When a strongly stable lower layer is present, the
convection zone (as it might intuitively be defined on the
fluxes other than the kinetic flux) appears to be compressed
into a shallower layer than might be expected. This counter-
intuitive feature is also realized in the more common defini-
tion of the convection zone depth based on the entropy
gradient (see Fig. 10, discussed in detail shortly).

Returning to the main topic, Figure 8 clearly exhibits a
variation of the kinetic flux profile with S and therefore a
dependence of the penetration depth with S. Figure 9 sum-
marizes this dependence by showing the values of Dp versus
S gleaned from the primary set of simulations. The error
bars for each point indicate the rms error induced by the
fluctuations in the time averaging for each simulation. As S
is increased over the range 0:5 � S � 30, the penetration
depth Dp generally decreases. This implies that the more sta-
ble the lower layer, the less the overshooting penetrates into
that layer. This general trend is expected, since raising S
steepens the density and entropy gradients in the stable
layer, thereby decreasing the downward buoyancy driving
of a fluid element entering the overshoot region, and thus
providing an increased resistance (or buoyancy braking) to
penetrating motions. For the range of S studied, the average
overshooting is between 0:28 � Dp � 0:94, measured in
units of the convection zone depth, and roughly twice as
much in units of the pressure scale height.

Two scaling law lines are added to Figure 9, drawn as
dotted lines, representing lines where Dp is proportional to
S�1/4 and S�1. These scaling laws arise from the modeling
presented in Hurlburt et al. (1994). In that paper, it is pro-
posed analytically, and confirmed with two-dimensional
numerical simulations, that two regimes of scaling with S
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exist. At lower S, where the unstable layer is more pliable,
motions penetrate and mix their thermodynamic properties
efficiently just below the interface, creating a nearly adia-
batic region there. This then matches to the deeper underly-
ing quiescent stable layer through a thermal adjustment
region. The calculations of Hurlburt et al. (1994) show that
a scaling of S�1 may be associated with the presence (and
dominance) of the nearly adiabatic region which occurs at
lower S, whereas for stiffer lower layers (higher S), that
region is suppressed and the existence of solely the thermal
adjustment region leads to a scaling of S�1/4. These scaling
laws were also later seen in the three-dimensional work of
Singh et al. (1995).

Figure 9 indicates that the measured Dp in the primary
sequence of turbulent simulations carried out in this study
(cases 1–7) appear to be roughly consistent with a scaling
law of S�1/4 for all S. No strong evidence for S�1 regime
even at low S is exhibited. Judging from the results of Hurl-
burt et al. (1994), this would imply that there is very little
real penetration in this highly nonlinear three-dimensional
problem and only overshooting. In other words, although
motions continue below the interface, there is no extension
of the well-mixed adiabatic interior of the convection zone
into the stable region.

This can be confirmed by examining the mean entropy
gradient profiles for our range of S, shown in Figure 10. As

Fig. 8.—Mean fluxes for different values of S (cases 2–7 and 0). Each value of S exhibits the mean kinetic flux hFki (solid line), the enthalpy flux hFei (dotted
line), the total convective flux hFci ¼ hFk þ Fei (dashed line), the buoyancy work hWbi (single-dot–dashed line), the adjusted radiative flux
hFrai ¼ hFri � Ck��=ð� � 1Þ (triple–dot–dashed line), and the adjusted total flux (neglecting viscous effects) hFT i ¼ hFc þ Frai (long-dashed line).
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mentioned earlier in reference to Figure 2d, the entropy gra-
dient profile in the convection zone generally consists of a
strong driving superadiabatic gradient near the upper boun-
dary and an adiabatic interior, where the entropy has been
homogenized by the convective mixing. This interior must
then be matched to the negative entropy gradient of the
lower stable layer via a transition region surrounding the
interface at z ¼ 1. The jump in entropy in this region is

related to the stability of the lower layer and obviously is
larger for the high S (more stable, very subadiabatic) lower
layers. At the lower, more pliable S (S ¼ 0:5; 1; 2; 3), how-
ever, just below the interface the entropy gradient adjusts
toward a more isentropic (zero entropy gradient) profile
again over a small region, before matching to the required
entropy gradient below. It was such a region—this ‘‘ bump ’’
returning toward zero in the entropy gradient profile—that
Hurlburt et al. (1994) identified as the nearly adiabatic
region responsible for the S�1 dependence. We see here that
this effect is distinctly less pronounced in these three-dimen-
sional simulations than it was in their two-dimensional cal-
culations. At these parameters, very little return to
adiabaticity is seen in the stable region, even at low S, and
thus the S�1 scaling is not seen.

The explanation for this is most likely that these simula-
tions are of turbulent three-dimensional convection and
therefore have significantly different structure from laminar
and two-dimensional situations. The nature of the three-
dimensional penetration is that strong downflowing plumes
span the convection zone and penetrate out of the driving
region into the stable layer. Away from the upper boundary,
these structures are isolated regions and have a low filling
factor, i.e., the area covered at any depth by such entities is a
small percentage of the total area (10%–20% at z ¼ 1). Their
ability to mix and homogenize the mean thermal variables
below the interface is therefore weak. The two-dimensional
simulations of Hurlburt et al. (1994) did exhibit plumelike
behavior, but these induced significant roll-like vortex over-
turnings that intruded below the interface. The plumes in
these two-dimensional simulations are also necessarily infin-
ite sheets with a larger planform filling factor than the true
three-dimensional structures. These two effects combined
provide an efficient homogenization of the thermal structure
down to the lowest extent of the extended motions.

The three-dimensional simulations of Singh et al. (1995)
are not greatly turbulent and are not dominated by plume-
like penetration, possibly explaining why their results con-
cur with those of the two-dimensional simulations. To test
this hypothesis out somewhat, Figure 9 also shows a dashed
line representing the variation of the penetration depth, Dp,
with S at low S for some lower Rayleigh number calcula-
tions (cases 23, 22, and 16). These points correspond to sim-
ulations with Ra ¼ 5� 104;Pr ¼ 0:1 for S ¼ 1; 2 and
Ra ¼ 105;Pr ¼ 0:1 for S ¼ 3. These more laminar simula-
tions do have overturnings that are more cellular in nature,
which engender a larger filling factor around the interface
(>20%), but the penetration depths still do not fit an S�1

dependence well. This seems to imply that it is not purely
the structure of the convection that is responsible for the
nonexistence of the nearly adiabatic region, but that some
other mechanism is also at work. We suspect that the Péclet
number may play an important role, and therefore proceed
to examine the effect of this parameter.

3.7. Effect of the Péclet Number

Despite the increasing level of computational resources,
these models necessarily operate at parameters far removed
from their astrophysical values. For example, the Rayleigh
and Reynolds numbers in these calculations are many
orders of magnitude lower than the astrophysical estimates,
while the Prandtl number is too large (e.g., compare values
in Table 2 to the estimated astrophysical values of

Fig. 9.—Dependence of the penetration and overshooting measure Dp

on S. The solid line joins values of Dp for varying S at the benchmark
parameters (cases 1–7). In this and subsequent plots of Dp, error bars are
shown representing the rms fluctuations around the mean value of Dp. The
dashed line shows the scaling of some solutions at low Ra (cases 23, 22, and
16), while the dot-dashed line shows the result for some high Pe solutions
for low S (cases 24 and 17). Scaling laws for S�1 and S�1/4 are shown as dot-
ted lines.

Fig. 10.—Time- and horizontally averaged entropy gradient as a func-
tion of S (cases 1–7).
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Re � 1012;Pr < 10�8). It may also be expected that the
related Péclet number is very low in these simulations com-
pared to astrophysical values. It has been suggested (J.-P.
Zahn 2001, private communication) that raising the Péclet
number to emphasize advective effects over thermal diffu-
sion may lead to a more astrophysical view of the penetra-
tion and a possible return to the two-dimensional scaling.
We note that the two-dimensional simulations can often
attain artificially high Péclet and Reynolds numbers since
the lack of the third degree of freedom forces the cellular
motions into fast, flywheeling overturning motions, artifi-
cially raising the rms velocity substantially (see also Muth-
sam et al. 1995). Furthermore, models such of those of
Singh et al. (1995), where the only diffusive mechanisms in
the problem are numerical rather than physical, can also
have an artificially high effective Péclet number (depending
on the numerical grid size).

Our last sequence of simulations examined above (cases
23, 22, and 16) lowered Ra for fixed Pr, and thus actually
lowered the Péclet number. We therefore now investigate
the effect of increasing the Péclet number by decreasing Ck

at fixed Prandtl number (and thereby increasing Ra) over a
series of simulations at S ¼ 3 (cases 16–21). We chose S ¼ 3
since it was the stiffest stable layer that exhibited the slight
return toward adiabaticity just below the unstable-stable
interface: a stiff calculation is both more computationally
efficient and more likely representative of the transition
between the solar convection zone and the tachocline. In
this series of simulations, Ck is reduced over the range
0:15 � Ck � 0:0077, so that 1� 105 � Ra � 4� 107. Main-
taining constant Pr means that the viscosity is also reduced,
and this contributes to the associated increase in measured
Reynolds numbers (see Table 2). The Péclet number can be
measured in an assortment of ways depending on the choice

TABLE 2

Measured Parameters for the Compressible Penetrative Convection Simulations

Reynolds Numbers (Re) Vertical Velocity,wrms Péclet Numbers (Pe)

urms umax � cz Full cz Down urms

Case Tot cz Tot cz Tot cz Max z=1 Max z=1 Full Down

0......... 416 411 1157 1142 41.1 40.7 0.27 . . . 0.32 . . . . . . . . .

1......... 334 319 1870 1267 4.3 3.9 0.30 0.24 0.45 0.39 218 49.0

2......... 337 341 1855 1388 4.2 4.0 0.32 0.25 0.48 0.41 229 48.3

3......... 339 319 1769 1293 5.5 5.5 0.33 0.27 0.51 0.44 218 42.5

4......... 314 298 1636 1200 6.5 7.8 0.32 0.25 0.49 0.42 198 36.0

5......... 315 320 1627 1320 8.8 10.8 0.33 0.23 0.49 0.37 196 27.4

6......... 286 321 1525 1386 7.8 10.4 0.33 0.21 0.50 0.34 186 17.9

7......... 241 290 1286 1230 6.7 9.8 0.31 0.17 0.46 0.27 153 9.5

(5) ...... 315 320 1627 1320 8.8 10.8 0.33 0.23 0.49 0.37 196 27.4

8......... 296 323 1488 1307 9.0 14.5 0.33 0.21 0.48 0.34 185 47.7

9......... 276 286 1007 1026 15.2 9.9 0.29 0.14 0.33 0.18 112 36.6

10....... 319 294 1066 1025 11.2 16.5 0.30 0.15 0.32 0.17 112 36.8

11....... 335 391 1304 1380 10.7 12.4 0.37 0.17 0.43 0.20 130 23.8

12....... 329 360 1249 1307 10.4 10.8 0.33 0.16 0.40 0.19 122 24.8

13....... 296 284 945 979 11.6 9.1 0.27 0.12 0.31 0.14 88 19.7

14....... 308 284 1019 1025 11.5 8.9 0.27 0.12 0.32 0.15 94 19.9

15....... 290 261 981 929 15.4 9.2 0.27 0.12 0.30 0.15 93 18.8

(9) ...... 276 286 1007 1026 15.2 9.9 0.29 0.14 0.33 0.18 112 36.6

16....... 147 149 745 545 3.9 5.0 0.37 0.28 0.54 0.48 97 17.0

(4) ...... 314 298 1636 1200 6.5 7.8 0.32 0.25 0.49 0.42 198 36.0

17....... 402 413 2108 1744 7.3 8.0 0.33 0.24 0.48 0.38 258 47.4

18....... 715 785 3935 3748 11.2 9.5 0.28 0.19 0.43 0.30 470 88.2

19....... 974 1062 5088 5276 13.8 11.2 0.28 0.17 0.41 0.26 582 113.8

20....... 2010 2220 10062 11514 26.8 19.0 0.28 0.15 0.41 0.22 726 144.7

21....... 1655 1795 8384 9830 20.9 13.0 0.25 0.13 0.37 0.20 922 184.2

22....... 119 119 612 420 2.5 3.2 0.39 0.32 0.58 0.54 80 14.8

(3) ...... 339 319 1769 1293 5.5 5.5 0.33 0.27 0.51 0.44 218 42.5

23....... 124 123 670 425 2.1 2.5 0.37 0.30 0.54 0.51 86 17.4

(2) ...... 337 341 1855 1388 4.2 4.0 0.32 0.25 0.48 0.41 229 48.3

24....... 451 455 2432 1976 4.9 4.1 0.32 0.23 0.47 0.38 297 62.7

(17) .... 402 413 2108 1744 7.3 8.0 0.33 0.24 0.48 0.38 258 47.4

25....... 617 648 3298 2672 9.6 10.8 0.35 0.26 0.52 0.41 200 37.3

(4) ...... 314 298 1636 1200 6.5 7.8 0.32 0.25 0.49 0.42 198 36.0

(25) .... 617 648 3298 2672 9.6 10.8 0.35 0.26 0.52 0.41 200 37.3

26....... 1258 1350 6699 5564 15.1 14.9 0.37 0.27 0.52 0.41 206 39.3

Note.—Here urms and umax imply that a quantity has been created using either the rms value of the velocity or the maximum veloc-
ity value, respectively, and � implies that the quantity is the Taylor microscale value. The label ‘‘ Tot ’’ implies that the quantity was
calculated as an average of the whole domain, whereas ‘‘ cz ’’ implies that it was calculated only over the convection zone. The col-
umn header ‘‘ Full ’’ implies that both upflows and downflows were included in the average, whereas ‘‘Down ’’ means that only
downflows were used. The measure of the vertical velocity is given both as the maximum of its space- and time-averaged profile in z
(denoted by ‘‘Max ’’) and as its value at the base of the convection zone (denoted by z ¼ 1). Case 20 is only marginally resolved,
probably leading to some of the unexpected table entries.
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of the characteristic velocity, U, and length scale, l, as for
the Reynolds number. Table 2 exhibits two Péclet numbers
each evaluated at the base of the convective layer, z ¼ 1.
One, denoted by Petot, is based on the rms velocity and the
depth of the convection zone (unity). The other, Pedown, is
based on the rms velocity in the downflows only and a
length scale of the downflows, calculated by taking the
square root of the fractional area that they occupy. Most
theories of plume penetration (Schmitt et al. 1984; Hurlburt
et al. 1994) use the latter characteristic quantities to evaluate
the penetration. For this set of simulations,
97 � Pedown � 922 and 17 � Petot � 184, exhibiting an
order-of-magnitude variation over the series of simulations.
The Péclet numbers can be significantly higher in the con-
vection zone where the kinetic flux peaks, and drop off in
the stable region as the velocities reduce there. This varia-
tion of parameters then appears to provide one route
toward more astrophysical values as desired. However, this
path through parameter space is not the only choice with
the desired properties, and others are discussed presently.

Figure 11 shows qualitatively what a high Péclet number
solution looks like. The case shown (case 20) has
Ra ¼ 2� 107 (Ck ¼ 0:011). Immediately apparent in the
volume renderings is the increased complexity of the flow.
The greater degree of nonlinearity has decreased the cellular
spacing between the downflows (Fig. 11a) and thus reduced
the distance between plumes in the enstrophy density field
(Fig. 11b). The downflows and vortical structures are also
all narrower because of the reduction in the thermal and vis-
cous diffusivities (both have reduced compared to case 4
since the Prandtl number was kept constant at Pr ¼ 0:1).
This is further evident in the enstrophy density rendering as
a substantial increase in small-scale turbulence associated
with the base of plumes. This effect is probably enhanced by
stronger buoyancy braking in the stable region due to the
slower thermal diffusion time associated with the plumes.

We now examine quantitatively whether these higher Péc-
let number simulations and their apparent increased levels
of turbulence lead to stronger thermodynamic mixing in the
stable layer due to the effects observed above. Figure 12
exhibits the entropy gradient for the series of simulations
run with varying Ck at fixed Pr for S ¼ 3 (cases 16, 4,17,
18,20, and 21). The interior of the convection zone
(0 � z � 1) becomes much closer to adiabatic as Ck

decreases, indicating that the convection operates more effi-
ciently at the higher Pe. This may be expected since this var-
iation of parameters means that the Rayleigh number
increases, implying that the convection is more supercritical,
or in other words, more strongly forced. It is noteworthy
that in these three-dimensional simulations it is necessary to
go to much higher Ra than in the two-dimensional simula-
tions of Hurlburt et al. (1994) in order to establish this well-
mixed interior convective flow. The two-dimensional
entropy profiles showed highly isentropic interiors at
Ra ¼ 105, whereas these three-dimensional simulations
require more than Ra ¼ 2� 107 for a similar profile. This
adds further evidence to the notion that the topology of
three-dimensional compressible penetrative convection is
not as connected as the two-dimensional motions, in the
sense that the return upflows are not driven as directly by
the downflows.

In Figure 12 the end of the relatively well-mixed region
occurs around z ¼ 0:9. Empirically, this point seems rela-
tively independent of Ck, as is the entropy gradient in the

deep stable region (z � 1:5) by construction. However, the
transition region between the upper adiabatic region and
the deep profile is strongly dependent on the Péclet number.
At lower Pe (higher Ck, lower Ra [e.g., case 16]), the transi-
tion to a value close to the deep stable layer occurs abruptly,
over a depth of roughly 0.2 units. A small reverse trend
toward a more adiabatic profile then occurs as mentioned
previously, reminiscent of the nearly adiabatic region in
Hurlburt et al. (1994). As Pe is increased, the trend is not to
make this reverse ‘‘ bump ’’ more nearly adiabatic, but
instead to form a less abrupt transition region. Instead, the
adiabatic convection zone becomes linked to the deep stable
interior gradient by a smooth, almost linear ramp in the
entropy gradient.While it is true that points in the transition
zone become generally closer to the adiabatic value as the
Pe number is increased, the region is not an isentropic pla-
teau encroaching upon adiabaticity. Although the
decreased diffusivity for the higher Pe cases allows the
downflowing plumes to retain their thermal content more
readily in the overshoot region, the low filling factor of the
plumes still does not permit sufficient mixing to make the
zone adiabatic. For all parameter values evaluated in these
studies, even the highest Pe, the overshoot zone appears
more like an adjustment region. This bodes badly for a S�1

scaling law that demands an extended adiabatic region even
at high Pe, favoring the existence of the thermal adjustment
S�1/4 law.

The penetration depth Dp decreases with increasing Pe (as
shown by the values given in Table 1 and on Fig. 12). One
might expect this result to stem from a competition between
increased buoyancy braking in the stable region due to the
decreased Ck (acting to lower Dp) and enhanced vertical
velocities due to the higher supercriticality with higher Ra
(raising Dp). However, another factor arises, owing to the
nature of the penetrative model, that appears to dominate.
This is the fact that reducing Ck implies a reduction of the
energy flux [¼ Ck��=ð� � 1Þ] supplied to the system. This
leads to a reduction in the actual rms downflow velocities
with increasing Pe (Fig. 13a), rather than the expected
increase at the higher Pe and Ra. Furthermore, since the vis-
cosity is decreasing to match the decrease in Ck in order to
keep Pr fixed, the filling factor f of the strong downflows at
the base of the unstable region is also decreasing (Fig. 13b),
although the total downflows are increasing in area slightly.
The slower downflow velocities and their decreased filling
factor will both tend to decrease the overshooting depth.

The measured scaling of Dp with Pe here, shown in Figure
14, is less drastic than the f 1=2w3=2 (measured at z ¼ 1) law
predicted by the models of Schmitt et al. (1984). This devia-
tion was anticipated by Hurlburt et al. (1994). The decrease
in penetration depth with increasing Péclet number shows
no sign of tailing off at high Péclet numbers: the last four
points in the figure are suggestive of a scaling law of
Dp � Pe�1=2 (dashed line; the best fit is Pe�0:46), although the
data is not sufficient to be truly convincing. It is perhaps also
instructive to examine the scaling directly with Ck to elimi-
nate the effects of the downflow velocity and filling factor.
Figure 15 exhibits that a scaling of Dp � C

1=3
k fits the lower

Ck portion of the curve reasonably well (the best-fit line to
the last three points has exponent 0.30). This is considerably
less steep than one might expect from purely a reduction of
the input energy flux.

The form of the entropy profiles (Fig. 10) seems to indi-
cate that the nearly adiabatic region of Hurlburt et al.
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Fig. 11.—Example volume renderings from a representative time of (a) the vertical velocityw and (b) enstrophy density !2 for a high Péclet number solution
(case 21). This solution lowers Ck to Ck ¼ 0:0077, leading to a Rayleigh number of Ra ¼ 4� 107 and a Péclet number for the downflows of about 185. The
inset shows details of a downflow. The data resolution had to be downsized for visualization purposes.



(1994) is not being recovered even at high Pe. However, the
reduction of Dp with increasing Pe at one point (S ¼ 3),
while suggestive of a flattening away from S�1 rather than a
steepening toward it, is insufficient to infer the scaling with
S at high Péclet number. Therefore, a further high Pe calcu-
lation was conducted at S ¼ 1 with Ck ¼ 0:5 and Pr ¼ 0:1
(Ra ¼ 106 [case 24]), for comparison with case 17. The pene-
tration depths Dp for these calculations are included on Fig-
ure 9 as the dot-dashed line. These two points minimally
suggest that the S dependence is much less steep than S�1,
seemingly again much closer to the S�1/4 dependence
related to a thermal adjustment region.

3.8. Other Parameter Routes to Higher Reynolds Numbers

It is of course possible to traverse other routes through
parameter space toward more astrophysical values, for
example, by decreasing the Prandtl number either at fixed

Rayleigh number or at fixed Ck. The former path requires
PrC2

k fixed and therefore an increasing Ck as Pr decreases.
In this case, both the viscosity must decrease and the input
energy flux increase. On the second path where the Prandtl
number is decreased for fixed Ck, the input energy flux is
fixed, and we are solely varying the viscosity of the fluid (a
course previously followed in Cattaneo et al. 1991; Brum-
mell et al. 1996, 1998, for example). Alternately, we could
increase Ra and decrease Pr at the same rate in order to
operate at fixed viscosity, thereby varying Ck independently
(although now the input energy flux varies too). While con-
vection is technically governed by the dimensionless ratios
of parameters that we are working with, it is sometimes ben-
eficial to consider the underlying physical parameters vary-
ing individually. We have therefore performed two further
simulations at S ¼ 3 to exhibit the trends associated with at
least the first two of these different paths. Cases 17 and 25
follow the first track (fixed Ra ¼ 106, Pr ¼ 0:1; 0:5, giving

Fig. 12.—Variation of the time- and horizontally averaged entropy gradient with the Péclet number for S ¼ 3 (cases 16, 4, 17, 18, 20, and 21). Horizontal
lines in styles corresponding to the cases and the annotations to the key show the overshooting depths zomeasured for each case.
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Ck ¼ 0:05; 0:07), whereas cases 4, 25, and 26 follow the
second (fixed Ck ¼ 0:07, Pr ¼ 0:1; 0:5; 0:25, giving
4:9� 105 � Ra � 2� 106). We have not studied the third
route where solely Ck changes, since then the input energy
flux would change between simulations unless theta was
adjusted for each case. If that were done, the underlying
polytrope for each case would be different and the results
would be difficult to compare.

Table 2 indicates that both paths lead to increased meas-
ures of the Reynolds numbers as expected. At fixed Ck, the

rising value appears to be purely due to the reduced viscos-
ity, as indicated by the close scaling of the measures with Pr.
For fixed Ra, the increased energy flux also contributes to
an increased Re. The penetration depth Dp for the fixed Ra
cases appears to increase slightly from Dp ¼ 0:537 to
Dp ¼ 0:555 (although the margin of error in these measure-
ments is about 0.01). This effect is associated with the
increase in the downflow velocities (Fig. 16a) created by the
reduction of the viscosity and the increase in input energy
flux. For the cases at fixed Ck, with only the viscosity
decreasing, one might expect a slightly increased penetra-
tion depth again due to the decreased diffusion of the
motions. However, Table 2 shows that decreasing the
Prandtl number in this manner leads to a small but signifi-
cant decrease in the penetration depth, from Dp ¼ 0:57 for
Pr ¼ 0:1 to Dp ¼ 0:54 for Pr ¼ 0:025. This corresponds to
roughly a 6% decrease in penetration depth with a fourfold
decrease in the Prandtl number, with a best fit to this data
suggesting a weak dependence like Dp � Pr0:05. Figure 16c
shows that the rms vertical velocities in the downflows did
indeed increase in the convection zone as expected with the
lower Prandtl number but are very similar in value in the
stable region. One might expect the penetration depth to
remain the same then, with similar velocities and the same
thermal diffusivity, but the filling factor plays a role too. At
the lower viscosity, the velocity structures are narrower and
so the filling factor of the strong downflows at the interface
decreases a little (Fig. 16d). It is this then that leads to the
decrease in penetration depth. The decrease in downflow
velocity in the stable region with the reduction in viscosity
may be due to shear instabilities and entrainment in the
higher speed plumes in combination with the geometric
effects described above.

We tentatively conclude from this small amount of evi-
dence that the dependence of penetration on the Prandtl
number is only weak. When the viscosity is most signifi-
cantly effected by the changing Prandtl number (i.e., at fixed
Ck, l � Pr), the penetration depth is controlled more by the
filling factor than any velocity changes. For fixed Ra, the
effect of changing Pr on the viscosity is weaker (l � P

1=2
r ),

and therefore the filling factor is little affected, but the veloc-
ities are raised by the raising of the input energy flux with

Fig. 13.—Variation of (a) the rms vertical velocity and (b) the filling fac-
tors of the downflows ( lines without crosses) and strong downflows (lines
with crosses) with depth, for various cases at S ¼ 3 with different Péclet
numbers (cases 16, 4, 17, 18, 19, and 20).

Fig. 14.—Variation of the penetration and overshooting measure Dp

with the Péclet number, for cases at S ¼ 3 (cases 16, 4, 17, 18, 19, and 20).
Also plotted is the scaling suggested by the arguments of Schmitt et al.
(1984) and Zahn (1991) in terms of the filling factor and the plume velocity
of exit from the base of the convection zone. These scalings are shown for
both the full downflow field and the strong downflow field (representative
of the plumes) only. A further scaling line (dashed line) is plotted that fits
the three highest Péclet number points well.

Fig. 15.—Variation of the penetration and overshooting measure Dp

directly against Ck. A scaling line (dashed line) fitting the last three points is
added.
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Ck. However, keeping h fixed so that raising Ck raises the
input energy flux is somewhat artificial in the astrophysical
context, and without this effect we might expect a slight
reduction of the penetration depth in this case too. Extrapo-
lation of these results directly to the situation of the tacho-
cline is unwise. However, the indications are that the deep
penetration exhibited in these simulations (a significant
fraction of the scale height) might be eroded somewhat at
parameters more representative of the solar context.

4. PENETRATIVE CONVECTION WITH ROTATION

Since most stars and planets rotate, the influence of rota-
tion on the overshooting mechanisms described above is
also of fundamental interest. Although the Sun is not a fast
rotating body, on the larger scales of motion the Coriolis

force will certainly be felt. Supergranules are the smallest
motions that might be expected to have some weak influence
from the rotation. Motions on the order of the convection
zone depth (200 Mm) like the proposed (but hard to detect)
giant cells will possess a Rossby number approaching unity,
where their overturning timescale is comparable to the rota-
tion period, and therefore they will certainly be influenced.
In the gas giant planets, such as Jupiter, the faster rotation
will influence many scales of motion.

Here we systematically investigate the influence of rota-
tion, included via an f-plane formulation in the model, on
the overshooting characteristics of penetrative convection.
A number of simulations were run based around the S ¼ 7
benchmark simulation, extending it to various rotation
rates (Ta) and latitudes (�), for fixed values of the other
parameters. It has been a long-standing open question (see,

Fig. 16.—Variation of the rms vertical velocity and the filling factor of the downflows and strong downflows (similar to Fig. 13) along other routes to more
astrophysical parameters with S ¼ 3. Rather than varying Ck at fixed Pr as in previous plots, these plots show the effects of varying Pr with either fixed Ra (a
and b [cases 25 and 17]) or fixedCk (c and d [cases 26, 25, and 4]).
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e.g., Julien et al. 1996a) as to what the influence of rotation
is on overshooting convection, and we attempt to answer
that here for turbulent compressible convection.

4.1. Overview ofMotions with Rotation

Investigations of turbulent rotating compressible convec-
tion (Brummell et al. 1996, 1998) have already exhibited and
explained changes in turbulent convective topology due to a
rotational influence. Most notably, while the small-scale
turbulent motions decouple from the effects of rotation
(since they overturn too quickly to feel the Coriolis force),
the spatially and temporally coherent downflow structures

can become aligned with the axis of rotation. Although the
coherent structures are retained in the penetrative version of
the problem, we have found that the presence of the stable
region changes the characteristics of the convection some-
what. We therefore here investigate whether this turbulent
rotational alignment remains in the penetrative case and
describe the properties of the penetrative motions in the
presence of rotation.

Figure 17 exhibits the nature of rotating penetrative con-
vection as compared to an equivalent case that is not rotat-
ing (case 10 compared to case 5). The rotation here is
parallel to gravity (i.e., � ¼ 90�) and is the fastest rotation
rate simulated, corresponding to a Rossby number,

Fig. 17.—Comparison of rotating and nonrotating penetrative convection. Shown are volume renderings of (a and b) the vertical velocity w and (c–f ) the
enstrophy density !2 at a representative time for (a, c, and e) cases 10 and (b, d, and f ) case 5. The rotation in case 10 is about the vertical axis parallel to gravity
(� ¼ 90�).
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Ro ¼ 0:7. The figure shows volume renderings of vertical
velocity from above (Figs. 17a and 17d) and enstrophy den-
sity from above (Figs. 17b and 17e) and the side (Figs. 17c
and 17f ) for both rotating and nonrotating cases. Some
findings of the earlier nonpenetrative rotating work are
apparent, and if anything, emphasized by the more discon-
nected nature of the penetrative topology. For example, the
influence of rotation via the turning effect of the Coriolis
force leads to generally smaller scales of motion in the flow.
This is most noticeable in the upper cellular network of
downflows in the first two companion figures (Figs. 17a and
17d ); the granular cells of the rotating case are distinctly
smaller. In the enstrophy density renderings (Figs. 17b, 17c,
17e, and 17f ), this is manifested as a denser packing of the
strong downflow structures, lending an overall impression
of a greater degree of complexity in the rotating case. With
the inclusion of significant rotational effects, the coherent
plumes must all necessarily contain the same sense of verti-
cal vorticity (positive or cyclonic), since they are ‘‘ spun-up ’’
as they are formed by convergent flows in the upper boun-
dary layer. This property leads to greater interaction
between plumes, since like-signed vorticity structures will
tend to coalesce, and therefore creates stronger horizontal
mixing while retarding the vertical mixing (Julien et al.
1996b; Brummell et al. 1996, 1998). This further adds to the
increased complexity of the rotating flows and has impor-
tant consequences for the penetration and overshooting
that will be explained shortly.

Figure 18 exhibits snapshots of solutions where the Carte-
sian domain has been placed at various latitudes
(� ¼ 45�; 15�; 0�) with all other parameters remaining
fixed (cases 14, 12, and 11). The turbulent alignment of
coherent structures that was discussed in detail in Brummell
et al. (1996, 1998) is immediately apparent again in Figures
18a–18d in this penetrative companion to that work. The
coherent, strong downflowing plume structures attempt to
align themselves along the direction of the rotation vector.
This effect, a natural result of the motion of fluid parcels
subject to a rotational influence, is generally counteracted
by two effects: the enforcement of vertical vorticity at the
stress-free boundaries, and the desire of buoyancy to act in
the direction of gravity. The former, and more artificial, of
these constraints is less stringent in these penetrative cases
than it was in the previous simulations (Brummell et al.
1996, 1998), since there is no stress-free boundary imposed
at the base of the convecting domain. The alignment of the
structures is allowed to continue into the stable layer, ceas-
ing only when buoyancy braking effects decelerate the
plume to a standstill. Hence, clear alignment can be seen
over most of any coherent plume, with only a deviation
toward vertical alignment near the upper boundary.

Figures 18e–18h exhibit renderings for � ¼ 0�, where the
domain is positioned at the equator, and the rotation vector
points along the y-axis. This configuration, in conjunction
with the significant rotational influence provided at
Ro ¼ 1:0, is quite constraining on the convective flows. As
can be seen in the volume renderings of the vertical velocity
in Figure 18g, the preferred mode is one where the three-
dimensional cellular nature of the large-scale overturning is
lost in favor of horizontal roll cells aligned in the y-direc-
tion. The figure shows turbulent, yet fairly clearly defined,
north-south bands of upflow and downflow (red and blue,
respectively) associated with these aligned rolls. The associ-
ated enstrophy density renderings (Figs. 18e, 18f, and 18h)

show that the vortical nature of the turbulent solution is still
apparent. Plume structures fill a significant fraction of the
domain where the downflows of the quasi–two-dimensional
rolls exist but are wrapped around the cells (in the east-west
direction, x) by the strong, large-scale overturning of the
rolls. At such low latitudes, the turbulent alignment mecha-
nism is quenched, since it would require the contradictory
phenomenon of horizontally flowing downflows. Combined
with this, the presence of strong roll motions appears to
overpower the coherent vortical structures, and so no
clearly organized alignment of the plumes can be seen in
Figure 18f.

4.2. Dependence of Dp on Rotation Influence

The two essential features of turbulent rotating convec-
tion identified above, i.e., the horizontal complexity induced
by like-sign vortex interactions of the plumes and the align-
ment of plume structures with the rotation, are both likely
to have significant consequences for the degree of over-
shooting. We quantify this by investigating four simulations
carried out at different rotation rates, but with all other
parameters held constant. We examine cases 5, 8, 9, and 10
that operate at S ¼ 7, Ra ¼ 5:5� 105, Pr ¼ 0:1, and
� ¼ 90� and vary the Taylor number through
Ta ¼ ð0; 5� 104; 5� 106; 1� 107), corresponding to con-
vective Rossby numbers of Ro ¼ ð1; 10; 1; 0:71).
Increasing the Taylor number while keeping the other
parameters fixed does formally reduce the supercriticality of
the solution, although these simulations are far from onset
and so the incremental change is small. Furthermore, a pos-
teriori measures of the degree of turbulence, such as the
Reynolds numbers exhibited in Table 2, show that there are
no order-of-magnitude changes that might influence the sta-
tistics of interest.

Figure 19 exhibits the resulting variation of the penetra-
tion depth Dp with the Rossby number, Ro. Clearly, Dp

decreases with decreasing Ro, indicating that overshooting
decreases with an increase in rotational influence. The
points plotted indicate a relationship like Dp � Ro0:15,
although this is a best fit to only three points and is therefore
untrustworthy. This decrease in the penetration is not
immediately intuitive, since one might expect the coherent
plumes in the presence of rotation to be more efficient at
‘‘ drilling ’’ into the stable zone with their increased vortical
content drawn from the background rotation. On the con-
trary, however, the increased horizontal interaction (like-
sign vortex mergers between the purely cyclonic plumes)
brakes their vertical motion. Indeed, the rms velocities in
the downflows of the Ro ¼ 0:7 case are only 60% of the
strength of the nonrotating case, and this subsequently leads
to a decrease in the overshooting depth.

The increased horizontal mixing does not enhance the
overall thermodynamic homogenization of the interior, but
rather reduces it, since this requires vertical mixing (see
related discussions in Julien et al. 1996b for rotating Boussi-
nesq convection and Brummell et al. 1996 for compressible
nonpenetrative convection). Indeed, as can be seen in Figure
20, which exhibits the entropy gradient profiles for the simu-
lations here, both the convective interior and the overshoot
region become further removed from adiabatic as the rota-
tion rate is increased. This reflects the well-known fact that
fast-rotating systems tend to operate in a quasi–two-dimen-
sional manner in a plane perpendicular to the rotation.
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4.3. Dependence of Dp on Latitude

We investigate a series of simulations (cases 11–15 and
case 9) where the latitudinal positioning of the f-plane
model on the sphere is varied through � ¼ 0�, 15�, 30�, 45�,
67�, and 90�, while the other parameters are kept fixed at
S ¼ 7;Ra ¼ 5� 106;Pr ¼ 0:1, and Ta ¼ 5� 106 (corre-
sponding to a convective Ro ¼ 1:0). Again, it should be

noted that there are some consequences for the supercriti-
cality of the flow, but these are minor. Figure 21 shows the
values of Dp extracted from these calculations. The depend-
ence of Dp on the latitude � is not monotonic, but rather
decreases from a maximum at � ¼ 90� to a minimum at
� � 30� and then recovers somewhat, increasing again at
low latitudes (� ¼ 0�; 15�). This dependence may be
explained in terms of effects described previously. The high-

Fig. 18.—Penetrative convection with rotation at different latitudes. Shown are volume renderings of the enstrophy density !2 and the vertical velocity w at
a representative time for (a, b) case 14 at latitude 45�, (c, d ) case 12 at latitude 15�, and (e–h) case 11 at latitude 0�, the equator.
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latitude dependence may be attributed to the turbulent
alignment of the plumes. Since the penetration is created by
plumes piercing downward into the stable layer, then, away
from the pole, the alignment of the plumes with the rotation
vector means that they will be entering the stable region at
an angle, rather than vertically. This angled penetration
means that the buoyancy braking, which acts in the vertical
direction, only has to counter the vertical component of the
full plume velocity, and therefore we expect the penetration
to be overcome at a shallower depth. This argument would
imply that the penetration depth should decrease with

decreasing latitude monotonically (between the pole and the
equator) owing to the decreasing angle of incidence. How-
ever, this effect is mitigated at the lowest latitudes by the
change in the topology of the convection demonstrated in
Figures 18e–18h. The switch from a purely turbulent config-
uration, where the coherent plumes dominate the dynamics,
to one that involves a large-scale quasi-laminar overturning
roll motion, changes the penetration characteristics. The
latter situation tends to have deeper penetration due to the
larger filling factor of the motions below the interface and
the enhanced Péclet numbers associated with flywheeling
two-dimensional motions.

4.4. Mean Flows

We now address briefly the mean zonal huðzÞi and meri-
dional hvðzÞi flows that can exist when rotation is present.
These mean flows may be generated by velocity correlations
induced by the Coriolis force that lead to nonzero Reynolds
stress source terms. In turbulent simulations such as these,
the velocity correlations tend to be weak and are mainly
associated with the turbulent alignment of the vortical
downflows, as discussed in detail in Brummell et al. (1998).
We present the mean flows found in these rotationally influ-
enced simulations in Figure 22. There are no clear mono-
tonic trends associated with either the increase in rotational
influence (Figs. 22a and 22b) or the variation of latitude
(Figs. 22c and 22d) in the mean zonal and meridional flows.
This is likely due to the large fluctuations in the mean flows
induced by inertial oscillations allowed in the f-plane model,
even though these profiles are averaged over many (between
15 and 400) inertial time periods. The rms variations about
these mean values can be on the order of 3 times the average
value, and the maximum excursions can easily be twice that
value again. Such large fluctuations make it very difficult to
extract meaningful statistics about the mean flows. How-
ever, one significant conclusion may be drawn: a portion of
each mean flow exists in the overshoot region that is as sig-
nificant as those in the bulk of the convection zone. That is,
these mean flows do not cut off at z ¼ 1, but rather appear
to continue to be generated at least down to the penetration
depth. This result may be anticipated since we associate the

Fig. 21.—Variation of the penetration and overshooting measure Dp

with latitude � at S ¼ 7 (cases 9, 15, 14, 13, 12, and 11). The latitude varies
through � ¼ 90�; 67�; 45�; 30�; 15�; and 0�.

Fig. 19.—Penetration and overshooting measure Dp vs. Rossby number
Ro. Shown are the results from cases 8, 9, and 10, where Ta varies such that
the Rossby number Ro ¼ 10; 1; 0:071 at S ¼ 7 for the benchmark param-
eters at latitude � ¼ 90�. A scaling line that fits the three points is added as
a dashed line.

Fig. 20.—Time- and horizontally averaged entropy gradients for the
cases with varying rotational influence at S ¼ 7 (cases 5, 8, 9, and 10).
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generation of these mean flows with velocity correlations
built in the coherent downflows, and these are the very
motions that overshoot into the stable region. This result
implies that mean flows resulting from the dynamics of the
convection zone may extend deeper than the convection
zone itself (defined as the adiabatic region) even when no
true penetration is found. Since the zonal flow is the ana-
logue of the differential rotation under the local model
approximation, this result should be borne in mind when

interpreting the overlap of tachocline shear regions and the
convection zone from helioseismic deductions.

5. DISCUSSION

We have described the results of a series of three-dimen-
sional compressible convection simulations designed to
examine the overshooting and penetration of highly turbu-
lent convective motions from a convection zone into a stable

Fig. 22.—Mean zonal and meridional flows generated in rotating penetrative convection. The time- and horizontally veraged zonal huðzÞi and meridional
hvðzÞi flows are shown with (a, b) exhibiting the cases with varying rotational influence (cases 8, 9, and 10) and (c, d ) displaying the cases with fixed rotational
influence but varying latitude (cases 9, 15, 14, 12, and 11).
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layer below. We have found that the coherent structures (or
plumes) of the turbulent convection overshoot into the sta-
ble layer but do not thermodynamically mix efficiently
enough to create an adiabatic zone that extends below the
unstable-stable interface. This means that penetration in the
technical sense is not occurring but rather the motions are
overshooting. We ascribe this fact mainly to the small filling
factor of the strong downflowing plumes that pierce into the
stable zone. This lack of mixing to an adiabatic state occurs
despite vigorous overshooting in the cases simulated. We
find that, for the parameters studied here, average measures
such as the penetration depth Dp exhibit a significant over-
shooting when compared to the local pressure scale height,
Hp; for the range of simulations discussed,
0:4Hp � Dp � 2Hp. The variation of the relative stability of
the lower layer, S, causes a significant variation in Dp. The
penetration depth appears to follow the scaling Dp � S�1=4

approximately, in keeping with the theory presented in
Hurlburt et al. (1994) for a thermal adjustment layer. A dif-
ferent scaling (Dp � S�1) was proposed in that paper for
true penetration that extended the adiabatic region, but this
has not found in these three-dimensional calculations for
any of the parameters studied. In attempts to predict the
behavior of more turbulent solutions, we anticipate that
increasing the Péclet number by decreasing the thermal dif-
fusivity offers the most likely path toward regaining true
penetration, although no conclusive indications for its
return have been found here.

The effect of rotation on the overshooting was also exam-
ined. We find that the inclusion of rotation decreases the
penetration depth, and we attribute this to a braking of the
vertical flows by the horizontal interactions induced
between the like-sign vortical elements. Strong rotation
leads to an alignment of the turbulent downflowing plumes
with the rotation vector, so that, away from the poles, the
structures attempt to penetrate the stable region at an angle
rather than from vertically. This leads to a diminished
degree of overshooting. Near the equator, the nearly hori-
zontal rotation vector favors a convective topology that
consists of quasi–two-dimensional rolls in the north-south
direction that overpower the smaller scale turbulent vortical
motions somewhat and destroy their turbulent alignment.
This leads to an increased penetration depth compared to
mid-latitudes due to the greater filling factor of the large-
scale overturning motions and the enhanced Péclet number
of the flywheeling quasi–two-dimensional motions.

A time series analysis of the penetration shows that distri-
bution of penetration depths is skewed, with a tail incorpo-
rating some rare deeper events. It is interesting to speculate
as to whether such unexpected deeper penetrative events
could significantly affect the mixing and transport of passive
or active ingredients, such as chemical species or magnetic
fields.

We have conducted these simulations in the hope of gain-
ing some insight into the dynamics of the lower solar con-
vection zone and the tachocline. This region is thought to
play an active role in the large-scale solar dynamo that pro-
duces the solar cycle of magnetic activity. The insights that
we have sought are related to the fundamental physics of a
convection zone interfacing to a stable region. We are
unable to simulate this situation at realistic solar parameters
since it is impossible with current resources to represent the
range of turbulent scales present in the solar convection
zone. We have however conducted our simulations at the

highest degree of turbulence possible and have exhibited
scaling laws for properties when possible. These scalings
must be taken into account when applying our results to the
Sun. For example, the significant degree of penetration that
we find may be affected by the higher Péclet number, Rey-
nolds number, and S, and the lower Prandtl number of the
solar case. We may estimate the solar values from our cur-
rent results, although such guesses will be highly conjectural
since the behavior must be extrapolated over many orders
of magnitude for some parameters. Proceeding with cau-
tion, if we extrapolate from our highest Péclet number
(�1000) to an estimated solar value of Pe � 104, the pene-
tration fraction could be reduced by a factor of about 3.
Using the estimated solar value for Pr � 10�8 would further
reduce the value by a factor of 2 under the scalings that we
have found. Estimating S for the Sun is a little more diffi-
cult, since S is based upon our original polytropic initial
conditions, which of course do not exist for the solar case.
We can however compare the superadiabatic gradient in the
convection zone to the subadiabatic gradient in the over-
shoot region in the nonlinear state of both our model and a
standard solar model (e.g., Christensen-Dalsgaard et al.
1996). The solar model would give a contrast in r�rad of
about 6 orders of magnitude (over a region from just below
the bottom of the convection zone to within 10% of the top,
covering the same density contrast as our models), whereas
our models only show less than 2 orders of magnitude in this
measure. However, the large value of r�rad in the solar
case is not necessarily all due to the stability ratio of the two
layers, since the efficient convection at high Reynolds num-
ber in the convection zone will also contribute dramatically
by reducing the superadiabatic gradient there without
affecting the subadiabatic gradient below much at all. Pro-
ceeding for the sake of argument then with an increase in S
by 2 orders of magnitude, say, Dp could be further reduced
by a factor of 3 from our stiffest value. We can see that, by
these extrapolations, the seemingly large degree of penetra-
tion encountered in these simulations (40% 200%�Hp) is
quickly reduced to a range spanning 2%–11% of a pressure
scale height. This range encompasses the latest helioseismic
findings, such as the estimate of the penetration depth
�0.07Hp quoted in Monteiro, Christensen-Dalsgaard, &
Thompson (1994).

We do hope that some of the physical principals that we
find are robust and shed light on solar phenomena. For
example, how much the convection zone and tachocline
interact is a question that is fundamental to an understand-
ing of the dynamics of the layers and how they achieve their
transport and mixing. Observationally, the existence of the
tachocline is inferred from helioseismic inversions (Thomp-
son et al. 1996) and shows up as a strong shear in the differ-
ential rotation profile (although unfortunately the
helioseismic kernels cannot resolve the layer well). The char-
acteristics of the convection zone, on the other hand, are
normally predicted by numerical calculations of solar mod-
els. In these, the parameterized hydrostatic equations are fit-
ted to observed quantities, including the luminosity, radius,
and mass of the star, and the fractional abundances of
hydrogen, helium, and heavy elements (for a review see
Christensen-Dalsgaard et al. 1996). From such models, the
base of the convection zone is then taken to be where the
adiabatic region ends, and this is generally assumed to
include an extension of the adiabatically mixed region due
to penetrating convective motions (see, e.g., Christensen-
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Dalsgaard et al. 1991; Kosovichev & Fedorova 1991). With
the position and width of these two elements predicted by
different means, it is not surprising that most current predic-
tions for the internal structure of the Sun exhibit the convec-
tion zone and the tachocline as overlapping, with the degree
of overlap varying with latitude. It has been tempting from
the early simple models of penetration (Schmitt et al. 1984;
Zahn 1991) to ascribe this overlap to true penetrative
motions that extend the adiabatically mixed convection
zone beyond the original interface into the stable tachocline
region. In this paper, we have found that the highly turbu-
lent three-dimensional convective motions overshoot signif-
icantly but do not exhibit this true penetration. The
adiabatic region is not extended into the stable zone, but
contrarily appears to shrink above the interface to accom-
modate the thermal adjustment region that characterizes
the overshooting. We further note that even in the original
simulations of Hurlburt et al. (1994), the nearly adiabatic
region created by true penetration did not join contiguously
with the adiabatic interior of the convection zone. The pene-
tration zone was not a simple extension of the convection
zone but had an interior adjustment region. It is possible
that this lack of continuity is a result of the penetrative
model that we have chosen, where the thermal conductivity
is solely a function of depth. However, without actually per-
forming the simulations, it is hard to predict if making the
conductivity a function of temperature and density would
significantly change the results, since the conductivity is
then inextricably intertwined with the mean stratification.
Preliminary analyses of a model employing a Kramer’s law
conductivity function (D. H. Porter & P. Woodward 2000,
private communication) indicate that the mean temperature
and density are not drastically altered. It would seem that
none of the current models fit into the picture of an adia-
batic convection zone smoothly extended into the stable
region below to provide an overlap between the regions, as
has been envisaged previously in standard solar modeling.
One might argue again that our simulations are not per-
formed at the solar parameters and more astrophysical val-
ues for the Péclet and Reynolds numbers may provide
different results, for example, a greater degree of true adia-
batic penetration. The trends exhibited in our simulation set
appear not to concur with this hypothesis, although it is
dangerous to extrapolate these results too far.

However, our simulations here suggest that overshooting
motions do provide a physical interaction between the con-
vectively unstable and stable regions. These motions appear
to be strong, although of a low filling factor, and therefore
may achieve significant vertical transport while not mixing
well horizontally. These facts have significant consequences

for chemical mixing, gravity wave generation, and magnetic
field transport. For example, we anticipate that passive sca-
lars may be mixed down to the overshoot depth. This result
further bodes well for the solar magnetic activity cycle, since
the overshooting is essential for transporting magnetic field
from the convection zone into the strong shear of the tacho-
cline, where amplification of the toroidal field may then take
place. An efficient mechanism for transporting, or ‘‘ pump-
ing,’’ the magnetic field out of the convection zone is shown
to exist in papers related to this one (Tobias et al. 1998,
2001). The overshooting motions appear to provide the
required dynamical connection between the convection
zone and the tachocline. Since it is not provided by true pen-
etrative motions, the observational overlap of shearing and
adiabatic regions must stem from other processes. One pos-
sibility is that the mean flows induced at the base of the con-
vection zone by the action of rotation on the overshooting
coherent plumes create this effect.

The behavior of these three-dimensional simulations does
also shed some light on certain helioseismic results. Investi-
gations have deduced that there is no evidence for a sharp
transition between the adiabatic zone and the radiative inte-
rior (Basu, Antia, & Narasimha 1994; Monteiro et al. 1994;
Roxburgh & Vorontsov 1994). The smooth ramping of the
entropy gradient over a deep thermal adjustment region, as
exhibited in the high Pe simulations here, as opposed to a
sudden transition from adiabatic to subadiabatic layers,
may account for this result. The false expectation of such a
sharp transition may affect the helioseismic predictions of
the overshooting depth. Our simulations also exhibit a lati-
tudinal dependence with a reduced overshooting depth at
mid-latitudes that is consistent with an analysis of solar data
byMonteiro & Thompson (1998). The investigations of that
paper concerning the variation of the depth of the base of
the convection zone with latitude revealed a sharper transi-
tion between the convection zone and the tachocline at mid-
latitudes. In the light of our simulations, this could be asso-
ciated with the narrower thermal adjustment region associ-
ated with the overshooting at mid-latitudes (although that
paper interpreted the results in a different manner).
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Stein, R., &Nordlund, Å. 1989, ApJ, 342, L95
———. 1991, in Challenges to Theories of Moderate-Mass Stars, ed. D. O.
Gough& J.Toomre (Berlin: Springer), 195

———. 1994, in IAU Symp. 154, Infrared Solar Physics, ed. D. Rabin,
J. Jeffries & C. Lindsey (Dordrecht: Kluwer), 225
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