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Abstract

Pollen tubes extend through pistil tissues and are guided to ovules where they release sperm for fertilization. Although
pollen tubes can germinate and elongate in a synthetic medium, their trajectory is random and their growth rates are
slower compared to growth in pistil tissues. Furthermore, interaction with the pistil renders pollen tubes competent to
respond to guidance cues secreted by specialized cells within the ovule. The molecular basis for this potentiation of the
pollen tube by the pistil remains uncharacterized. Using microarray analysis in Arabidopsis, we show that pollen tubes that
have grown through stigma and style tissues of a pistil have a distinct gene expression profile and express a substantially
larger fraction of the Arabidopsis genome than pollen grains or pollen tubes grown in vitro. Genes involved in signal
transduction, transcription, and pollen tube growth are overrepresented in the subset of the Arabidopsis genome that is
enriched in pistil-interacted pollen tubes, suggesting the possibility of a regulatory network that orchestrates gene
expression as pollen tubes migrate through the pistil. Reverse genetic analysis of genes induced during pollen tube growth
identified seven that had not previously been implicated in pollen tube growth. Two genes are required for pollen tube
navigation through the pistil, and five genes are required for optimal pollen tube elongation in vitro. Our studies form the
foundation for functional genomic analysis of the interactions between the pollen tube and the pistil, which is an excellent
system for elucidation of novel modes of cell–cell interaction.
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Introduction

Cell-cell interactions can regulate the fate, morphology, and

migration patterns of cells during development of multicellular

organisms. Cell surface molecules mediate these interactions by

initiating intracellular signal transduction cascades that cause

changes in nuclear gene expression patterns [1]. Since the pollen

tube of flowering plants interacts with several distinct cell types

during its migration to an ovule, it represents an attractive model

system for studying changes in global gene expression patterns in

response to cell-cell interactions.

Flowering plants alternate between haploid gametophytic and

diploid sporophytic phases of their life cycle. Male and female

gametophytes develop through a series of mitotic divisions of

haploid spores, which are produced when diploid sporophytic

cells within the anther (male) and ovule (female) undergo meiosis

[2]. Male spores divide asymmetrically to produce a vegetative

cell that engulfs a smaller generative cell. The generative cell

then divides to form two sperm cells within the cytoplasm of the

pollen grain, which constitutes the mature male gametophyte

[3,4].

Upon binding a compatible stigma, the pollen grain germinates

a tube that penetrates the stigma and grows rapidly through a

protein and carbohydrate-rich extracellular matrix secreted by

specialized cells of the pistil [5]. Pollen tubes extend by an actin-

myosin-based tip-growth mechanism that transports vesicles

loaded with new cell wall material to the extending apex [6–9].

In response to guidance cues from female cells, individual pollen

tubes target and enter an ovule micropyle [10], contact the female

gametophyte [11], arrest growth [12,13], and burst [14], releasing

two sperm for fertilization of female gametes [15].

Pollen is released from anthers at anthesis and has therefore

been amenable to global gene expression profiling. Transcriptome

analysis showed that pollen expresses a unique subset of the

Arabidopsis genome relative to sporophytic tissues [16–19] and

revealed changes in the patterns of gene expression as the male

gametophyte develops from a spore to a tricellular pollen grain

[18]. Determination of the transcriptome of purified sperm cells

showed that male gametes have a distinct gene expression

program that contributes to the transcriptome of the pollen grain

[20]. Recently, genome-wide expression profiling of pollen tubes

grown in vitro identified a set of genes that are expressed in the
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pollen tube but not in pollen [21]. This important study suggests

that there is de novo mRNA synthesis in the growing pollen tube

and raises the interesting possibility that a novel set of genes may

be expressed in response to growth through the pistil.

Studies in maize and petunia suggest that pistils induce gene

expression changes in pollen tubes. For example, exposure of

petunia pollen to kaempferol, a pollen germination-inducing

molecule produced by the stigma [22], resulted in significant gene

expression changes during the first 0.5 hours after pollen germina-

tion. Eight novel cDNAs whose expression increased in response to

kaempferol were identified in petunia pollen tubes [23].

It is also clear that pollen tube physiology changes as a

consequence of growth through pistil tissue, but the molecular

bases for these changes are largely unknown. Pollen tubes extend

at faster rates in a pistil and achieve substantially greater terminal

lengths compared to pollen tubes grown in vitro [24]. Furthermore,

pollen tubes germinated in vitro target the ovule micropyle at very

low efficiencies; however, if pollen tubes are first grown through

pistil tissues, guidance to ovules is significantly enhanced [25,26].

Therefore, it is likely that the transcriptome of pollen tubes grown

through the pistil differs considerably from that of in vitro-grown

pollen tubes. Defining these differences could lead to the discovery

of genes that are activated by potentiation of the pollen tube by the

pistil and are required for pollen tube guidance, and to the

identification of gene regulatory networks that mediate the pollen

tube response to the pistil environment.

In this study, we defined the transcriptome of pollen tubes that

have grown through pistil tissues using a semi-in vivo pollen tube

(SIV PT) growth system we developed for Arabidopsis [26].

Importantly, the SIV PT transcriptome was significantly different

from those of pollen grains or pollen tubes grown in vitro. In

addition, we showed that a significant number of genes are shared

between the SIV PT transcriptome and sporophytic tissues, which

are not expressed in pollen or pollen tubes grown in vitro. We also

defined a set of genes that are enriched in semi-in vivo grown pollen

tubes relative to pollen, pollen tubes grown in vitro, and a collection

of sporophytic tissues. The distribution of functional categories in

this set of genes compared to pollen grains revealed a significant

enrichment for the Toll/Interleukin-1 Receptor homology-Nucle-

otide Binding Site-Leucine Rich Repeat (TIR-NBS-LRR)-type

receptor family of proteins [27]. These genes have been implicated

in pathogen-derived-effector-protein recognition and could play a

direct signaling role during pollen tube potentiation by pistils. To

determine whether genes whose expression increases during pollen

tube growth in vitro and/or semi in vivo are required for pollen tube

function, we performed reverse-genetic analysis of selected genes.

We identified five mutants that disrupt pollen tube growth in vitro

and two mutants that specifically disrupt pollen tube growth in the

pistil. Our studies lay the foundation for functional genomic

analysis of pollen tube-pistil interactions.

Results

Microarray Analysis To Identify Genes Expressed in In

Vitro– and Semi In Vivo–Grown Pollen Tubes
To identify gene expression changes during pollen tube growth

in vitro or through a pistil, we performed comparative microarray

analysis with RNA isolated from dry, un-germinated pollen (dry

pollen, Figure 1A), pollen grown in vitro for 0.5 hours (0.5 h PT,

Figure 1B), or for 4 hours (4 h PT, Figure 1C) and pollen

germinated and grown through the stigma and style (SIV PT;

Figure 1D-1F). Pollen tubes grown by the semi-in vivo method exit

as a bundle from the cut end of a style and fan out on the solid

pollen growth medium (Figure 1E, 1F). Pollen tube bundles from

,800 cut pistils were excised and combined for RNA isolation

(Figure 1E, 1F).

Using RNA isolated from the four different pollen conditions

(dry pollen, 0.5 h PT, 4 h PT and SIV PT; also see Materials and

Methods), we synthesized probes and hybridized to Affymetrix

Arabidopsis ATH1 genome arrays. We generated probes from four

biological replicates of dry pollen, 0.5 h PT, 4 h PT and three

replicates of SIV PT. The raw expression data from these 15

experiments are provided (Table S1, Table S2, Table S3, Table

S4). To detect genes that are preferentially expressed in pollen

tubes compared to other cell types, we obtained publicly available

microarray data for seven sporophytic tissues: 7-day-old roots, 17-

day-old roots, 8-day-old seedlings, 21-day-old seedlings, 17-day-

old rosette leaves (three replicates of each, [28]), unpollinated

ovary and unpollinated stigma (four and three replicates

respectively, [29]). Data from a previously published pollen

microarray was also included as a reference (three replicates,

[28]). By analyzing these 25 publicly available data sets along with

our 15 arrays (Robust Microarray Analysis tools, RMA, see

Materials and Methods), we obtained normalized expression

values for each gene that allowed us to make comparisons among

these experiments (Table S5).

The ranges of Pearson coefficients of array-array intensity were

high for pairwise comparisons among the dry pollen, 0.5 h PT, 4 h

PT and SIV PT replicates, suggesting that there is high

reproducibility among the biological replicates and that one

pollen type could be distinguished from the other (Table S6).

Similar results were obtained with hierarchical clustering of pollen

arrays (Figure S1). Pairwise comparisons of Pearson correlation

coefficients showed that previously published pollen data [28] was

most similar to our dry pollen (0.935–0.944) and 0.5 h PT (0.935–

0.949) samples.

Characterization of the Arabidopsis Pollen Tube
Transcriptome
Using our RMA-normalized data set (Table S5), we identified

genes that are expressed during pollen tube growth. RMA analysis

does not provide a ‘present’ or ‘absent’ score, so we set an

Author Summary

For successful reproduction in flowering plants, a single-
celled pollen tube must rapidly extend through female
pistil tissue, locate female gametes, and deliver sperm.
Pollen tubes undergo a dramatic transformation while
growing in the pistil; they grow faster compared to tubes
grown in vitro and become competent to perceive and
respond to navigation cues secreted by the pistil. The
genes expressed by pollen tubes in response to growth in
the pistil have not been characterized. We used a surgical
procedure to obtain large quantities of uncontaminated
pollen tubes that grew through the pistil and defined their
transcriptome by microarray analysis. Importantly, we
identify a set of genes that are specifically expressed in
pollen tubes in response to their growth in the pistil and
are not expressed during other stages of pollen or plant
development. We analyzed mutants in 33 pollen tube–
expressed genes using a sensitive series of pollen function
assays and demonstrate that seven of these genes are
critical for pollen tube growth; two specifically disrupt
growth in the pistil. By identifying pollen tube genes
induced by the pistil and describing a mutant analysis
scheme to understand their function, we lay the founda-
tion for functional genomic analysis of pollen–pistil
interactions.

Functional Genomics of Pollen Tube Growth
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expression value of 100 or higher as a stringent threshold for

expression to obtain a conservative estimate of gene expression in

each cell or tissue analyzed. In reverse transcription followed by

real-time quantitative PCR (qRT-PCR) experiments, we could

consistently confirm expression for genes above this threshold

value (see below). Using these criteria, we found that 6,304, 6,308,

and 6,356 genes were present in dry pollen, 0.5 h PT, and 4 h PT,

respectively (Figure 2A, 2B). The number of genes expressed in

SIV PT was greater (7,044) than any other pollen tube growth

condition tested, suggesting a substantial change in the transcrip-

tome following interaction with female reproductive tissues

(Figure 2B).

We determined the extent of overlap among the transcriptomes

of the four pollen conditions we tested. There is significant overlap

between dry pollen and 0.5 h PT (Figure 2A; Table S6, Table S7,

and Figure S1). Because of this extensive similarity, we combined

dry pollen and 0.5 h PT into one group of 6,677 pollen genes [dry

pollen and 0.5 h PT] (sector S1, Figure 2B). This combined set,

Figure 1. Pollen samples used in microarray analysis. (A) A scanning electron micrograph of dry pollen grains collected by vacuum. (B) Bright
field micrograph of the 0.5 h PT sample. Hydrated pollen grains (a representative grain shown by arrowhead) and grains that are beginning to
germinate (arrow) are shown. (C) Pollen tube growth in a 4 h PT sample. Many grains exhibit elongated tubes (arrow); however, some pollen grains
have not germinated (arrowhead). (D) Light micrograph of a petri dish containing semi in vivo grown pollen tubes from cut pistil explants.
Approximately 800 pollen tube bundles were used for each microarray experiment. (E) Diagram of semi in vivo pollen tube growth. Bundles of pollen
tubes that have emerged from the style (within the dotted box) were excised for RNA isolation. (F) A higher magnification of one cut pistil explant is
shown. The dotted box indicates the SIV PT material collected for microarray analysis. Scale bars (A–C), 25 mm.
doi:10.1371/journal.pgen.1000621.g001

Functional Genomics of Pollen Tube Growth
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Figure 2. Differential gene expression in pollen and pollen tubes. Genes were considered expressed in a given cell type or tissue if their
mean, normalized expression value was greater than 100; the total number of genes expressed in each category is provided. (A) A two-way
comparison of dry pollen (dry) with 0.5 h PT. (B) The set of 6,677 genes expressed in dry and 0.5 h PT in a 3-way comparison with 4 h PT and SIV PT.
(C) Relative percentage of genes with selected GO terms that were significantly overrepresented in sectors 1–4 in Figure 2B. The number above each
column denotes the cumulative number of genes detected for a particular GO term in the four sectors (also see Materials and Methods). (D) The set of
7,025 genes expressed in dry, 0.5 h PT, and 4 h PT in a 3-way comparison with the set of genes expressed in any of the seven sporophytic tissues
analyzed (sporophyte) and SIV PT. (E) A 4-way comparison among the pollen samples of 2,040 pollen-enriched genes that were not expressed in any
of the seven sporophytic tissues analyzed. (F) Number of genes with selected GO terms that were significantly overrepresented in the genes that are
up or down regulated significantly in SIV PT compared to dry pollen or 4 h PT (Table S14 and Table S15).
doi:10.1371/journal.pgen.1000621.g002

Functional Genomics of Pollen Tube Growth
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when compared with 4 h PT (sector S2, Figure 2B) and SIV PT

(sector S3, Figure 2B) identified 5,312 genes (sector S4, Figure 2B)

shared by all pollen samples, representing a core set of pollen

genes. Previously characterized pollen and pollen tube-expressed

genes known to be critical for pollen tube growth such as the ROP1

GTPase (At3g51300, [30]), AtGEF12 (At1g79860, [31]), RabA4d

(At3g12160, [32]), ACA9 (At3g21180, [33]), CNGC18 (At5g14870,

[34]), the VANGUARD pectinesterase (At3g621790, [35]), and

AtMGD2 and AtMGD3 (At5g20410 and At2g11810, [36]) were

expressed in the SIV PT, 4 h PT, 0.5 h PT and dry pollen

transcriptomes (Table S5).

Gene Ontology (GO) term enrichment analysis of the three

sectors (S1–S3) also revealed that certain GO term categories are

overrepresented in all pollen conditions relative to the whole

genome (first 15 GO categories, Figure 2C). The two pollen tube

transcriptomes shared 273 genes not found in [dry pollen, 0.5 h PT]

(S1, Figure 2B). GO term category overrepresentation analysis also

highlighted the overlap between the 4 h PT and SIV PT

transcriptomes: genes encoding kinases, antiporters, nucleoside

triphosphatases, calcium ion binding proteins, and nucleic acid

binding proteins are overrepresented in 4 h PT and SIV PT but not

in dry pollen and 0.5 h PT (Figure 2C). Interestingly, the number of

genes detected only in SIV PT (1,254) was significantly higher than

the number of genes detected only in 4 h PT (75, Figure 2B). These

data suggest that growth through the pistil elicits a significant

change in the pollen tube transcriptome.

A Distinct Set of Genes Define Pollen Tube Growth In

Vitro and in a Pistil
We next explored the overlap in expression between sporo-

phytic tissues (expressed in any of seven sporophytic samples

analyzed), SIV PT, and all other pollen conditions (Figure 2D).

Notably, SIV PT and sporophytic tissues share a set of 871 genes

that are not expressed in the three other pollen samples analyzed.

This analysis also identified 2,040 genes that were expressed in

pollen but not sporophytic samples. Among these 2,040 genes,

1,097 are shared by all four pollen conditions (Figure 2E). Our

analysis also identified a set of 507 pollen tube-enriched genes,

including the 100 genes that are common to SIV PT and 4 h PT

(Figure 2E). Interestingly, SIV PT has the largest number of

unique genes (383) compared to any other pollen condition

(Figure 2E and Table S8; referred henceforth as SIV PT-enriched

genes), further confirming that the SIV PT transcriptome is

distinct from dry pollen or in vitro grown pollen tubes despite the

overlap it shares with these transcriptomes.

Genes with Potential Functions in Signal Transduction,
Pollen Tube Growth, and Transcription Are
Overrepresented Among SIV PT-Enriched Genes
We determined if any GO terms were significantly overrepre-

sented among the 383 SIV PT-enriched genes (Figure 2D, Table

S8) compared to pollen-expressed genes (ATGE_73A-C; [28]).

Twenty-one GO terms, including those related to signaling, cell

extension and transcription, were significantly overrepresented in

the SIV PT-enriched genes (P value cut off ,0.05, Table 1 and

Table S9). The most overrepresented terms in the three GO

categories were transmembrane receptor activity (molecular

function, n= 4, P= 0.001), defense response (biological process,

n = 7, P= 0.003), and intrinsic to membrane (cellular component,

n = 4, P= 0.003). There were four genes common to each of these

three GO categories and all of them belong to the TIR-NBS-LRR

receptor subfamily that is part of a ‘R’ gene superfamily implicated

in pathogen recognition [27]. In addition, a set of protein kinases

(molecular function, n= 4, P = 0.024) was enriched in SIV PT

(Table 1, Table S9). These signaling genes may facilitate pollen

tube perception and response to pistil guidance cues. A set of genes

annotated as polygalacturonases, sucrose transporters, and anti-

porters are overrepresented in SIV PT compared to pollen

(Table 1, Table S9). These categories have been implicated in

pollen tube extension [37–42]. Several GO terms related to

transcription were also overrepresented in SIV PT-enriched genes

(Table 1); they may respond to growth through the pistil and

function as key regulators of expression of other genes required for

pollen tube growth and guidance (Table 2).

A Modest Number of Gene Expression Changes Occur
During Pollen Hydration and Pollen Tube Growth In Vitro
We used a t-test (Materials and Methods) on the RMA-

normalized data (Table S5) to define statistically significant

changes in gene expression during pollen tube growth (Table 2).

To minimize false positives, we established two stringent cut-off

values: only those genes that had a B value (false discovery rate) of

3 or higher and a fold change of at least 3 were considered to have

undergone a significant change in expression (Table S5).

We analyzed changes that occurred between dry pollen and

0.5 h PT to assess the impact of pollen hydration on gene

expression. This analysis defined a very small number of genes that

increase (15) or decrease (8) during the hydration process (Table 2,

Table S10). To define the changes in transcript levels that occur

after hydration and during pollen tube growth in vitro, we

compared 0.5 h PT and 4 h PT; this time period accounts for

nearly all of pollen tube extension observed in vitro (Figure 1). One

hundred thirty-seven genes had significant increases in expression

value in this comparison, while no genes were observed to have a

significant decrease (Table 2, Table S11). We also compared dry

pollen with 4 h PT and identified 186 genes that increase and 11

genes that decrease during the entire process of hydration and

growth in vitro (Table 2, Table S12). These results are also

consistent with a recent report that identified modest, but

significant, changes in the transcriptome of in vitro-grown pollen

tubes [21].

A Large Number of Gene Expression Changes Occur
When Pollen Tubes Grow Through Pistil Tissues
The number of genes whose expression was significantly different

between SIV PT and dry pollen (1,578) or between SIV PT and 4 h

PT (1,135) was dramatically greater than any other comparison

among the pollen transcriptomes (Table 2, Table S13, Table S14).

We compared SIV PT with 4 h PT and identified a large number of

genes (900) with significantly higher expression values in SIV PT

compared with 4 h PT. There were also a significant number of

genes whose expression went down (235) in this comparison (Table 2,

Table S13, Table S14). The large number of genes (1,135) that are

altered when pollen tubes grow through pistil tissues are candidate

factors that underlie the physiological and molecular changes in

pollen tubes during a successful fertilization event [22–26]. Among

the altered genes, we identified a set of genes that can best distinguish

SIV PT from dry pollen and 4 h PT (Table S15) using the non-

hierarchical k-means clustering method ([43]; also see Materials and

Methods). These genes could be used as markers for pollen tubes that

have interacted with the pistil.

In SIV PT, the up-regulated genes (compared to both dry pollen

and 4 h PT) included the overrepresented molecular function GO

categories of transporter, antiporter, symporter activity and

calcium ion binding. These functions are known to be critical

for pollen tube growth [39–42]. Interestingly, a different set of

Functional Genomics of Pollen Tube Growth
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transporter genes is down-regulated in SIV PT compared to 4 h

PT; similarly, a separate set of antiporter genes is also down

regulated in SIV PT compared to pollen (Figure 2F). These results

suggest that transporter and antiporter gene expression is highly

dynamic during pollen tube growth in a pistil. There is a

significant down regulation of a distinct set of pectinesterases in

SIV PT compared to 4 h PT (Figure 2F). Pectinesterases alter the

mechanical strength and rigidity of the pollen tube wall during the

process of pollen tube elongation [35,44,45]; our data suggest the

possibility of functional specialization within this large gene family

and that, as with transporters, expression of pectinesterases is

dynamic in pollen tubes.

Validation of Pollen Tube Gene Expression Profiling
We used qRT-PCR to verify pollen tube gene expression data

obtained from microarray experiments (Materials and Methods).

Table 2. Significant changes in gene expression profiles among different pollen conditions.

Comparison Significant changesa UP Maximum fold UPb DOWN Maximum fold DOWNc

0.5 h PT v dry pollen 23 15 7.2 8 7.9

4 h PT v 0.5 h PT 137 137 45.2 0 0.0

4 h PT v dry pollen 197 186 61.0 11 12.0

SIV PT v dry pollen 1578 1222 382.4 356 28.7

SIV PT v 4 h PT 1135 900 128.2 235 19.0

aGenes that had a B value .3 and were at least three fold different between the two indicated conditions (from the list of genes in Table S5).
UP, the number of genes with significant changes that were greater in the first condition of the comparison relative to the second.
bThe highest fold increase in expression for a gene in each comparison.
DOWN, the number of the number of genes with significant changes that were lower in the first condition of the comparison relative to the second.
cThe highest fold decrease in expression for a gene in each comparison.
doi:10.1371/journal.pgen.1000621.t002

Table 1. Overrepresentation of functional categories in SIV PT-enriched genes.

GO terma

GO

categorya GO term counts in P valued
Number of genes

present in sperme

SIV PT-enriched genesb Pollen-expressed genesc

Transmembrane receptor activity MF 4 7 0.001 0

DNA binding MF 26 261 0.002 14

Polygalacturonase activity MF 4 14 0.010 0

Histone acetyltransferase activity MF 2 2 0.014 0

ATP binding MF 16 165 0.016 8

Sucrose:hydrogen symporter activity MF 2 3 0.022 0

Protein kinase activity MF 4 19 0.024 1

Transcription factor activity MF 20 237 0.028 9

Nucleoside-triphosphatase activity MF 3 11 0.029 1

Monovalent cation:proton antiporter activity MF 3 12 0.035 0

Sodium:hydrogen antiporter activity MF 3 14 0.048 0

Defense response BP 7 32 0.003 1

Chromosome segregation BP 2 2 0.014 2

Sucrose transport BP 2 2 0.014 0

Regulation of transcription BP 15 155 0.020 8

Regulation of cell cycle BP 4 20 0.028 3

DNA repair BP 4 21 0.032 3

Intrinsic to membrane CC 4 9 0.003 0

Transcription factor complex CC 2 2 0.014 2

Ubiquitin ligase complex CC 4 20 0.028 2

Nucleus CC 35 479 0.030 19

aGO category classifications: MF, Molecular Function; BP, Biological Process; CC, Cellular Component.
b349 SIV PT-enriched genes (subset of Table S8; Materials and Methods).
c6741 pollen-expressed genes (from Table S5).
dDetermined by Fisher exact test by comparing SIV PT-enriched and pollen-expressed genes; complete results are provided in Table S9.
eNumber of SIV PT-enriched genes scored ‘present’ in sperm [20].
doi:10.1371/journal.pgen.1000621.t001

Functional Genomics of Pollen Tube Growth
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We selected 15 pollen-enriched genes that had high levels of

expression in pollen compared to sporophytic tissues and were

expressed at significantly higher levels in 4 h PT compared to

either dry pollen, 0.5 h PT, or sporophytic tissues (Table S11,

Table S12). qRT-PCR corroborated the microarray analysis,

showing that all 15 of these genes were pollen-enriched and

expressed at significantly higher levels in 4 h PT compared to

either dry pollen or 0.5 h PT (Figure S2A, Figure 3, and Figure

S3A, first 15 genes). Based on these results, we conclude that our

microarray results accurately reflect gene expression patterns

during in vitro pollen tube growth.

We also tested a set of genes shown by microarray to be

expressed at varying levels in pollen, pollen tubes and sporophytic

tissues (n = 6) (Table S5). qRT-PCR confirmed the expression of

these genes in these cells and tissues (Figure S2A, Figure 3, and

Figure S3A, bottom six genes). The relative expression of

At3g60080, At2g01290, and At1g22410 were identical in qRT-

PCR and microarray experiments (Figure 3, Figure S3A).

Expression of the remaining three genes (At1g69840,

At1g09070, At3g23820) was confirmed in pollen and sporophytic

tissues by qRT-PCR; however, there were discrepancies in the

relative expression of these genes when qRT-PCR data were

compared with microarray experiments (Figure 3, Figure S3A).

These differences could be attributed to the variability in plant

growth and RNA preparation from 8-day- and 21-day- old

seedlings between different laboratories (our data and that of [28]).

We next determined whether the gene expression differences

between SIV PT and 4 h PT in microarray experiments (Table

S14) could be detected by qRT-PCR by testing 10 genes with

expression values that were significantly higher, and six genes that

were significantly lower, in SIV PT compared to 4 h PT (Figure

S2B, Table 3, Table S14). All 10 genes expressed at higher levels

in SIV PT compared to 4 h PT in microarray experiments were

also higher in SIV PT by qRT-PCR experiments (Table 3). The

reduction in gene expression detected by microarray for six genes

was also confirmed by qRT-PCR (Table 2). Based on these results,

we conclude that a high degree of confidence can be placed on the

changes in gene expression identified by the microarray

experiments reported in this study.

Confirmation of Pistil-Dependent Changes in Pollen Tube
Gene Expression In Vivo
To determine whether pollen tube growth in an intact pistil elicits

similar changes in gene expression as those observed in microarray

analysis of SIV PT, we used qRT-PCR, to monitor gene expression

changes between dry pollen, unpollinated pistils, pistils pollinated

Figure 3. qRT-PCR analysis of 21 pollen tube–enriched and
pollen tube–expressed genes. Total RNA from indicated tissues—
dry pollen (pollen), 0.5 h PT, 4 h PT, 8- and 21-day-old seedlings (DS)—
was analyzed by qRT-PCR. A heat map of the relative expression levels
of the indicated genes by qRT-PCR is provided. Expression levels used
for the heat map represent an average of gene expression values from
four independent qRT-PCR reactions (two technical replicates each for
two biological replicates). Relative expression is represented by a color
scale that ranges from black (100%) to light yellow (0.01–0.1%). White
represents relative expression levels that were below 0.01%. For each
gene, the tissue which showed maximum expression was considered
100% (black), and the relative expression in the other four tissues was
calculated based on this maximum level.
doi:10.1371/journal.pgen.1000621.g003

Table 3. qRT-PCR validation of significant gene expression
differences between SIV PT and 4 h PT.

Up-regulated genes in SIV PT

Gene ID FC microarraya (SIV PT/4 h PT) qRT-PCR (SIV PT/4 h PT)

FCb Standard

deviation

At1g09080 128.18 150.87 73.78

At1g63530 27.36 22.25 18.75

At2g17000 21.47 8.23 1.66

At1g72760 20.78 13.96 6.59

At1g18830 11.33 10.88 1.33

At4g35710 11.10 17.53 5.22

At1g66570 10.89 165.25 79.87

At2g04230 9.38 23.05 12.89

At1g80870 8.54 8.83 2.61

At3g18000 4.92 1.25 0.54

Down-regulated genes in SIV PT

Gene ID FC microarraya (4 h PT/SIV PT) qRT-PCR (4 h PT/SIV PT)

FCb Standard

deviationc

At5g28470 19.03 .10000d .10000d

At5g27870 12.64 500.75 169.85

At3g06830 8.39 79.34 23.06

At1g73630 8.09 21.01 9.94

At2g28080 5.55 1015.77 539.74

At3g01820 5.46 41.05 18.26

aAverage fold change in expression of indicated genes by microarray
experiments (from Table S14).
bAverage fold change in gene expression between SIV PT and 4 h PT conditions
calculated from four independent qRT-PCR reactions (two technical replicates
each of two biological replicates).

cStandard deviation of fold change in expression.
dThis gene was not expressed in SIV PT in all four replicates of qRT-PCR
experiments, and, as described in Materials and Methods, a CT value of 45 was
assigned resulting in extremely high fold change and standard deviation
values.
doi:10.1371/journal.pgen.1000621.t003
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for one minute, and pistils pollinated for two hours (an in planta tissue

type that most closely resembles SIV PT). We evaluated expression

of a set of genes that were found to be induced in SIV PT compared

to dry pollen by microarray experiments (Table S13). Pollen tubes

comprise only a small fraction of pollinated pistil tissue; therefore,

we undertook two strategies to allow detection of induction of gene

expression in in vivo-grown pollen tubes. First, among the genes

induced in SIV PT, we chose genes with relatively low expression in

the stigma and ovary [29] (Table S5), as high expression in these

tissues would preclude detection of induction in pollen tubes.

Second, we isolated RNA from the stigma and style portion of the

pollinated pistil because pollen tubes are concentrated here during

the first two hours of growth (Figure 4A). qRT-PCR shows that the

mRNA abundance of all 10 genes was higher in pistils that had been

pollinated for two hours compared to pistils that had been pollinated

for one minute, unpollinated pistils, or dry pollen (Figure 4B). These

results suggest that increases in mRNA abundance detected in SIV

PT also occur during pollen tube growth in a pistil.

Reverse Genetic Analysis of Genes Induced During Pollen
Tube Growth
We used reverse genetic analysis of 33 genes that were

significantly higher in SIV PT versus 4 h PT (n = 10, range= 5

to 22 fold change, Table S14) or 4 h PT versus dry pollen (n = 23,

range = 3 to 41 fold change, Table S10) to determine whether

candidate genes identified by microarray analysis were critical for

pollen tube growth and guidance. T-DNA insertion mutants from

the Syngenta Arabidopsis Insertion Lines (SAIL, [46]; Table S16)

were analyzed using a series of sensitive pollen function assays.

A subset of the SAIL collection [46] was generated in the quartet

(qrt) mutant background with a T-DNA carrying a b-glucuronidase

(GUS) reporter gene expressed from the pollen-specific LAT52

promoter [46–48] and a Basta (herbicide) resistance gene. The qrt

mutation causes the four products of male meiosis to be released as a

tetrad of pollen grains but does not interfere with pollen tube growth

[48]. These unique features of the SAIL collection offer significant

advantages for analysis of pollen mutant phenotypes over other

mutant collections. First, mutant pollen grains can be easily

identified within tetrads produced by a heterozygous mutant plant

(2 GUS+ mutant: 2 GUS- wild type). Second, GUS expression in

mutant pollen tubes allows direct comparison between mutant and

wild-type pollen tube growth in vitro or in a pistil. These attributes

have been exploited previously in forward genetic analysis of pollen

tube growth and guidance [5,49].

The pollen function assays we employed require cosegregation

between Basta resistant (Basta) in seedlings, GUS expression in

pollen, and a single locus T-DNA insertion in the gene of interest.

We identified 50 SAIL lines with potential insertions in 33 genes

chosen for analysis (Table S16). Using PCR, we verified T-DNA

insertion sites in Basta progeny from 39 of the 50 lines (Table S16).

Twenty-seven of these 39 insertion lines showed 2 GUS+ (mutant):

2 GUS- (wild type) segregation in pollen tetrads and were

heterozygous for the insertion by a PCR assay (Table S16 and

Materials and Methods), indicating cosegregation between the

gene of interest and the T-DNA insertion. We discarded the other

12 lines because GUS expression in pollen tetrads was consistent

with multiple T-DNA insertion sites (Table S16). To further

confirm that the remaining 27 lines had a single-locus insertion of

Figure 4. In vivo confirmation of pistil-dependent changes in pollen tube gene expression. (A–D) Aniline blue staining of pollen tube
growth in pistils. (A and C) are bright field images; (B and D) are epifluorescent images. (A and B) Pollinated pistils stained with aniline blue soon after
pollen deposition. Tubes have not emerged from the grains but adhesion to stigmatic cells can be seen (black arrow). (C and D) Pollinated pistils
stained with aniline blue 2 hours after pollen deposition; the pollen tube front in the style is indicated by white arrows. (E) A heat map of the relative
expression levels (as described in Figure 3) measured by qRT-PCR of the indicated genes in dry pollen, emasculated ms1 pistils, pollinated pistils 1
minute (1 m pollinated pistil) or 2 hours (2 h pollinated pistil) after pollen deposition. Pistils were cut at the junction of the style and ovary (white
dotted line); the portion with the stigma and style (B), or stigma, style, and pollen tubes (D), were used in qRT-PCR experiments (E). Scale bars,
100 mm.
doi:10.1371/journal.pgen.1000621.g004
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the T-DNA, we analyzed the segregation of Basta among the

progeny of a self-fertilized heterozygous plant (2:2 GUS+: GUS-

tetrads, heterozygous by PCR assay). Plants heterozygous for a

single insertion site are expected to generate 75% Basta progeny

(3:1 segregation of dominant marker). However, if the insertion

disrupts a gene required for male/female gametophyte function, or

seed development, the fraction of Basta progeny will be

significantly reduced [50]. We found that the percentage of Basta

progeny was ,75% or significantly lower in all 27 lines,

confirming that they had a single T-DNA insertion site and

indicating that several (16/27) may disrupt the male and/or

female gametophyte or seed development (Table 4).

At1g60420-1 and At3g18000-1 Reduce Transmission
Through Pollen
Mutations that completely disrupt pollen function are not

transmitted to progeny through pollen, while milder defects

reduce, but do not eliminate transmission [49]. To focus on

transmission of the T-DNA through pollen, we pollinated male

sterile 1 (ms1) pistils with heterozygous pollen from 27 single-locus

T-DNA insertion lines and determined the percentage of Basta

plants in the progeny (Table 4). Any significant deviation from

50% in this assay indicates that mutant pollen is less likely to

fertilize ovules than wild-type pollen. We found that progeny from

two of the insertion lines, one in a 4 h PT-induced gene

(At1g60420) and another in a SIV PT-induced gene

(At3g18000) yielded significantly fewer than the expected 50%

Basta plants (Table 4) indicating that these genes are critical for

pollen function in the pistil.

At1g60420 encodes an uncharacterized protein with thiore-

doxin and C1-like domains. C1 domains have been shown to bind

diacylglycerol and phorbol esters and are implicated in lipid

signaling in mammals [51]. At3g18000 (XIPOTL) encodes one of

three Arabidopsis S-adenosyl-L-methionine: phosphoethanolamine

N-methyltransferase (PEAMT) required for synthesis of phospha-

tidylcholine, a major membrane lipid and the precursor of

phosphatidic acid, an important lipid signaling molecule [52].

Since the proteins encoded by these two genes may be involved in

generation of lipid signaling molecules, the in vivo transmission

defects of insertions in these genes point to a potential role for lipid

signaling in pollen tube growth through the pistil.

At1g60420-1 and At3g18000-1 Cause Defective Pollen
Tube Growth in the Pistil
To analyze the growth behavior of At1g60420-1 and At3g18000-

1 pollen tubes in vivo and determine the specific stage of pollen tube

growth disrupted by these insertions, we pollinated ms1 pistils with

heterozygous pollen and stained for GUS activity 24 hours later

[5,49]. When ms1 pistils were pollinated with heterozygous control

pollen, GUS+ pollen tubes germinated, penetrated the stigmatic

papillae, grew through the style, entered the ovary through the

transmitting tract, and migrated toward an ovule. After entering the

micropyle, GUS+ pollen tubes burst, releasing an aggregate of GUS

activity in the micropylar end of the ovule serving as a convenient

marker for successful ovule targeting by a pollen tube (Figure 5A–

5C). In this assay, ,50% of ovules were targeted by GUS+ pollen

tubes from the heterozygous control line (Figure 5J; [5]). When ms1

pistils were pollinated with heterozygous At2g31550-1 or

At5g22910-1 pollen (insertions that did not affect mutant allele

transmission through pollen, Table 4) the germination and growth

of the GUS+ tubes in stigma, style and transmitting tract was

normal (data not shown) and nearly 50% of the ovules were targeted

by GUS+ pollen tubes (Figure 5J). However, when ms1 pistils were

pollinated with heterozygous At1g60420-1 or At3g18000-1 pollen,

GUS+ pollen tubes were only half as efficient in targeting ovules as

the GUS- tubes (Figure 5D, 5G, 5J). These results are consistent

with the reduction in mutant allele transmission in At1g60420-1 and

At3g18000-1 insertion lines (Table 4).

In addition to a significant reduction in the ability to target

ovules, At1g60420-1 and At3g18000-1 GUS+ pollen tubes

exhibited an increased frequency of abnormal pollen tube

behaviors. Unlike in control crosses (ms1 ovules with GUS+ pollen

tubes from control heterozygotes, 0%, n= 182), a noticeable

fraction of ms1 ovules had At1g60420-1 or At3g18000-1 GUS+

pollen tubes that approached, but did not enter, the ovule micropyle

(Figure 5F, 5I; At1g60420-1, 8.33%, n= 204; At3g18000-1, 5.49%,

n= 164). For a small number of ovules, pollen tubes grew towards

the chalazal end, instead of the micropylar end, of the ovule (not

shown; At1g60420-1, 1.22%, n= 204; At3g18000-1, 1.96%,

n= 164; control, 0%, n= 182). Finally, ovules that attracted

multiple GUS+ At1g60420-1 or At3g18000-1 pollen tubes were

observed (Figure 5E, 5H; At1g60420-1, 1.83%, n= 204;

At3g18000-1, 3.43%, n= 164; control, 0%, n= 182).

Five Insertions Disrupt Pollen Tube Growth In Vitro
We wanted to determine whether At1g60420-1 or At3g18000-

1, insertions that disrupt pollen tube growth in the pistil, had

inherent defects in pollen tube extension. We also wanted to

examine if other single-locus insertion lines had subtle defects in

the ability of pollen grains to form and extend a polar tube that

may have been masked by growth in the pistil. In vitro pollen

germination and tube growth provides a sensitive and direct assay

for pollen function that is independent of pistil tissue. We assayed

in vitro pollen tube germination and growth for the 27 single-locus

insertion lines. We used heterozygous pollen so that we could

analyze mutant pollen (GUS+, blue) alongside wild-type pollen

(GUS-, white) after staining for GUS activity. This side-by-side

comparison between mutant and wild type is critical because it

provides an internal control for the inter-experiment variability of

pollen tube growth in vitro [53]. GUS staining in pollen tubes was

dark enough to clearly distinguish mutant from wild type in 12

lines (Table 5, Figure S4).

We analyzed at least three replicates of all in vitro pollen

germination and tube length experiments using statistical methods

that account for variation between and within experiments and set

a stringent criterion for statistical significance at P,0.001. In vitro

pollen germination rates and tube lengths were similar for GUS+

and GUS- pollen from heterozygous control plants (Table 5,

Figure S4). Although At1g60420-1 and At3g18000-1 were

transmitted through the pollen with significantly reduced frequen-

cies (Table 4) and were less likely to target ovules (Figure 5), these

insertions did not affect tube growth in vitro (Table 5, Figure S4).

These results indicate that the in vivo transmission defect in these

insertion lines cannot be due to an inherent defect in pollen tube

extension and is likely caused by loss of functions specifically

required to navigate the pistil environment.

The lengths of GUS+ pollen tubes were significantly shorter

(P,0.001) than GUS- pollen tubes for insertions in At2g31550

(GDSL-motif lipase/hydrolase family protein), At5g23530 (car-

boxyesterase 18), At4g08670 (similar to lipid transfer proteins),

At5g67250 (an SCF-type F-box and leucine rich repeat-containing

E3 ubiquitin ligase), and At5g55020 (MYB120, Table 5, Figure

S4). Of the 12 lines we analyzed, only the insertion in MYB120

(At5g55020-1) also caused a significant defect (P,0.001) in pollen

tube germination (Table 5, Figure S4). These results indicate that

insertions in five genes resulted in pollen tube growth defects that

were only detectable in vitro.
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Discussion

The Pollen Tube Transcriptome Changes Significantly
Following Growth Through Pistil Tissue
We characterized the global gene expression profiles of in vitro- and

semi in vivo-grown Arabidopsis pollen tubes and present the first

molecular and genetic analysis of a set of genes expressed by the

pollen tube as it grows through pistil tissue. One approach to identify

pollen tube genes that respond to the pistil would be to isolate intact,

in vivo-grown pollen tubes. This is possible in species like lily that have

a hollow style [54,55]; however, genomic resources are not currently

available for these plants. In Arabidopsis, pollen tubes grow deep

within a solid style, making it extremely difficult to obtain sufficient

quantities of pure in vivo-grown pollen tubes for microarray analysis.

We overcame this challenge by collecting a large number of pollen

tubes that had grown through pistil tissue using the semi-in vivo

method [26]. This procedure offered several advantages over

alternative methods. First, harvested pollen tubes were directly used

for RNA isolation without any further manipulations (such as cell

sorting or protoplast preparation). Second, it allowed the wild-type

pollen tube transcriptome to be assessed directly and eliminated the

need for using mutant or transgenic marker lines that could have

inappropriately altered the dynamics of wild-type pollen tube gene

expression. Third, our method enriches for the actively extending

pollen tube tip, which includes the vegetative nucleus, two sperm cells,

and majority of the pollen tube cytoplasm. Finally, because SIV PT is

comprised solely of pollen tubes, we were able to detect even those

genes that i) are expressed at low levels in pollen tubes, ii) exhibited

pollen tube-specific expression, and iii) undergo only modest changes

in expression during pollen tube growth through the pistil.

Characterization of the SIV PT transcriptome provides the first

global view of pistil-dependent gene expression changes in pollen

tubes. The SIV PT transcriptome is about 10% (,700 genes)

larger than the pollen or in vitro-grown pollen tube transcriptome

(Figure 2). The pollen tube gene expression profile undergoes a

dramatic change upon interaction with the pistil; expression levels

Table 4. Transmission of insertion in self-fertilization and male crosses.

Insertion FCa % Basta (self) n (self) % Basta (= cross) n (= cross)

Control heterozygote - 75.12 414 51.40 358

Genes significantly up regulated in 4 h PT vs dry pollen

At2g31550-1 41.17 68.92* 1036 50.53 283

At2g25630-1 18.13 62.63* 643 55.19 270

At5g22910-1 17.81 73.41 361 49.41 506

At5g23530-1 15.92 72.12 624 48.40 219

At4g18050-1 13.87 41.19* 437 57.64 203

At4g18050-2 13.87 73.67 338 52.53 198

At4g18050-3 13.87 76.50 200 49.13 230

At4g18050-4 13.87 69.89 269 48.43 159

At4g21323-1 13.77 63.26* 596 53.96 194

At5g12030-1 11.43 80.75 265 50.61 326

At1g74450-1 10.55 61.07* 763 58.85 209

At1g60420-1 10.16 69.06* 934 37.58* 753

At4g08670-1 7.05 42.80* 236 53.96 278

At2g05160-1 5.15 66.39* 598 42.54 268

At2g05160-2 5.15 61.74* 345 51.34 187

At5g55020-1 3.77 59.24* 920 54.78 115

At5g59720-1 3.63 70.98 224 46.13 388

At2g01920-1 3.38 79.45 253 45.87 508

At1g79360-1 3.06 75.57 221 45.92 331

Genes significantly up regulated in SIV PT vs 4 h PT

At2g23970-1 22.10 53.50* 286 40.78 206

At1g55910-1 16.78 62.01* 437 50.08 645

At1g72150-1 16.75 70.90 354 50.39 381

At5g28540-1 11.93 66.67* 372 49.15 413

At5g66890-1 11.02 73.71 350 55.71 219

At2g34920-1 8.45 64.86* 370 52.40 250

At5g67250-1 7.67 68.89* 389 48.06 283

At3g18000-1 4.93 28.94* 622 36.21* 649

aFC, fold change in gene expression levels in microarray experiments (from Table S12 and Table S14).
% Basta, the percentage of Basta resistant F1 progeny from either self-fertilization (self) or ms1 female X heterozygous insertion male (= cross).
n, number of progeny plants scored on Basta plates.
*Significantly different from expected (75% in self or 50% in male crosses), (x2, P ,0.01).
doi:10.1371/journal.pgen.1000621.t004
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of nearly 1,500 and 1,100 genes are significantly altered in SIV

PT compared to dry pollen and 4 h PT, respectively (Table 2).

Finally, a distinct set of transcripts accumulate preferentially in

SIV PT relative to pollen, 4 h PT and sporophytic tissues (Table

S13); defining these genes offers an opportunity to further

investigate the molecular basis of the pollen tube response to

the pistil environment. Additional analysis will be necessary to

examine changes in the pollen tube transcriptome elicited by

other pistil tissues such as the transmitting tract and ovules.

Overrepresentation of Genes Involved in Signaling,
Pollen Tube Growth, and Transcription in SIV PT-Enriched
Genes
All of the genes that were annotated as transmembrane

receptors and overrepresented in the SIV PT-enriched gene list

were TIR-NBS-LRR-type receptor proteins (Table 1), a subgroup

of the resistance (R) gene family that mediate molecular

recognition of pathogen-derived effector proteins [27,56]. The

precise biological functions of many members of this large gene

Figure 5. At1g60420-1 and At3g18000-1 cause defective pollen tube growth in the pistil. (A–I) ms1 pistils were hand-pollinated with
pollen heterozygous for At1g60420-1, At3g18000-1, or a control insertion (does not affect pollen function), and were stained for GUS activity
24 hours after pollination. GUS is released into synergids from pollen tubes that successfully enter the micropyle and burst (arrows). (A–C) Ovules that
have received GUS+ control pollen tubes. (D,F,G,I) Ovules that have received GUS activity from pollen tubes carrying the indicated insertion. (E,H)
Some ovules attracted pollen tubes that failed to target the micropyle and burst. (F,I) Some ovules received GUS activity and have multiple additional
tubes targeting the micropyle. Scale bars = 50 mm. (J) Quantitative analysis of ovule targeting. The number of ovules that received GUS activity
following pollen tube burst was quantified for the control and indicated insertion lines and is plotted as a percentage (6s.d.) of the total number of
ovules. *P value.0.01 (x2, expected= 50%).
doi:10.1371/journal.pgen.1000621.g005
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family, including the four in the SIV PT-enriched gene list, have

not been determined. However, it is clear that some TIR-NBS-

LRR-type genes have functions unrelated to plant defense. For

example, an Arabidopsis TIR-NBS-LRR-type receptor mutant

(At5g17880) has a constitutive shade-avoidance response [57].

TIR-NBS-LRR receptors are highly variable and show signatures

of rapid evolution [27], features common in reproductive proteins

that contribute to species-specific interactions between mating

partners [58,59]. Intriguingly, another family of variable proteins,

initially identified as defensins, were recently shown to function as

pollen tube attractants in Torenia [10]. It will be interesting to

explore the function of TIR-NBS-LRR receptors in pollen tube

growth and guidance using the genetic approaches described here.

Our microarray analysis identified a large number of mRNAs

that increase in abundance as pollen tubes grow in vitro or through

the pistil (Figure 2B and 2C, Table 2), adding support to the view

that pollen tubes transcribe mRNA during pollen tube growth

[21]. Several categories of genes involved in transcription were

enriched in SIV PT compared to pollen (Table 1). A variety of

transcription factors including MYB65 (see below), other MYB-

family proteins (At5g38620, At2g13960, At2g20400), MADS box-

containing proteins (At5g38620, PHERES 2/AGL38, AGL73), and

homeobox-containing proteins (At3g19510, At2g32370) were

among the overrepresented genes, suggesting the existence of a

network of gene regulatory mechanisms to mediate pollen tube

growth in the pistil. Genetic analysis of pollen tube-expressed

transcription factors (see below) offers the potential to identify key

regulators of pollen tube gene expression.

The SIV PT sample includes the two sperm cells; so, some SIV

PT-expressed genes may be transcribed in the sperm nucleus. The

transcriptome of sperm cells purified from pollen grains,

comprising 5,829 Arabidopsis genes, was recently characterized

Table 5. Reverse genetic analysis identifies insertional mutants that disrupt pollen tube growth in vitro.

Insertion GUS Germa (%) n P value Lengtha (mm) n P value

Control + 23.14 1432 NS 202.07 282 NS

2 22.80 1432 197.13 381

4 h PT

At2g31550-1 + 5.25 1110 0.0107 65.23 152 ,0.001*

2 32.29 1110 216.66 331

At5g22910-1 + 46.07 680 NS 228.16 228 0.0393

2 53.92 680 257.22 213

At5g23530-1 + 26.43 914 0.0124 119.28 145 ,0.001*

2 58.48 914 298.42 167

At4g18050-4 + 58.26 526 0.0052 217.04 212 NS

2 62.17 526 233.11 222

At4g21323-1 + 23.01 580 0.0352 181.79 177 NS

2 20.42 580 194.19 180

At1g60420-1 + 17.40 686 NS 206.98 133 NS

2 20.23 686 188.57 177

At4g08670-1 + 10.25 568 0.0300 110.04 140 ,0.001*

2 30.66 568 220.72 261

At5g55020-1 + 5.06 718 ,0.001* 62.46 100 ,0.001*

2 36.13 718 174.63 273

At5g59720-1 + 44.44 766 0.0772 270.83 215 0.0169

2 54.96 766 316.97 240

SIV PT

At1g72150-1 + 58.86 610 0.0175 176.04 302 NS

2 63.00 610 175.09 322

At5g67250-1 + 9.95 1144 0.0271 159.85 227 ,0.001*

2 29.45 1144 215.60 345

At3g18000-1 + 26.41 720 NS 199.15 153 0.007

2 27.54 720 234.49 152

GUS, b-glucuronidase staining present (+) or absent (2) in pollen grains or tubes.
% germ, percentage of pollen grains that germinated.
aLeast squares means are reported for % germination (germ) and pollen tube length (length).
n, number of pollen grains or pollen tubes analyzed.
P value, statistical analysis of separation between least squares means.
*P values ,0.001 were considered to be statistically significant.
NS, P value .0.05.
4 h PT, genes significantly higher in 4 h PT compared to dry pollen in microarray experiments.
SIV PT, genes significantly higher in SIV compared to 4 h PT in microarray experiments.
doi:10.1371/journal.pgen.1000621.t005
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[20]. We examined the overlap between SIV PT-enriched genes

and genes called ‘present’ in sperm and found that 161 of the 383

SIV PT-enriched genes (43%) are expressed in sperm (Table 1,

Table S7). Genes overrepresented in SIV PT, but not detected in

sperm, include those potentially important for signaling (trans-

membrane receptor activity, Table 1), transcription (histone

acetyltransferase activity, Table 1) and pollen tube growth

(polygalacturonase, sucrose transport and antiporter activity,

Table 1). Genes proposed to be involved in DNA repair,

chromosome segregation, and cell cycle regulation (Table 1) were

overrepresented in SIV PT-enriched genes; all of these genes are

present in sperm (Table 1, Table S8) [20]. The pollen tube nuclear

DNA (vegetative nucleus) does not replicate during pollen tube

growth; however, sperm complete a round of DNA synthesis

during pollen tube growth in the pistil [60]. This group of genes,

identified in the SIV PT transcriptome, is therefore likely

expressed in sperm as the pollen tube is growing through the

pistil and function in sperm DNA synthesis.

Microarray-Directed Reverse Genetic Analysis of Pollen
Tube Growth
One of the goals of this study was to assess the extent to which

microarray analysis identifies genes that are critical for pollen

function. We identified single-insertion-locus T-DNA lines and

employed four highly sensitive assays to determine loss-of-function

phenotypes in pollen. Insertions in two genes (At3g18000,

At1g60420) affected mutant allele transmission through pollen

and disrupted pollen tube growth and guidance in vivo. Insertions

in five additional genes (At2g31550, At4g08670, At5g23530,

At5g55020, At5g67250) caused pollen tube growth defects in vitro.

A previous forward genetic screen yielded ,30 mutants that

disrupt pollen function from a population of ,10,000 T-DNA

insertion lines (0.3%, [49]). In this study, by starting with a

population of 50 T-DNA insertions in genes induced during pollen

tube growth, we identified seven mutations that disrupt pollen tube

growth in vitro or in the pistil (14%); this amounts to a ,45 fold

enrichment in identification of functionally significant genes over

the forward genetic screen.

We ascribed loss-of-function mutant phenotypes to seven

Arabidopsis genes not previously implicated in pollen tube growth

(Figure S3B). Five of these genes (At2g31550, At4g08670,

At5g23530, At5g55020, At1g60420) were not characterized

genetically before this study. In these mutants, we confirmed that

the T-DNA disrupted the gene of interest using gene-specific PCR

and showed that this PCR product cosegregated with two reporter

genes (Basta and GUS expression) carried on the T-DNA. All

pollen assays directly compare the function of pollen with the T-

DNA insert (GUS+ and carrying Basta gene) with wild-type pollen

(GUS- and not carrying Basta gene) as they were performed in

pollen tetrads from heterozygous plants. The mutant phenotypes

we identified are linked to the T-DNA insertion. Therefore, we

can rule out the possibility that unlinked mutations, not tagged by

the T-DNA in the gene of interest, are responsible for the observed

phenotypes. Our data suggest that loss-of-function of the indicated

genes caused the pollen phenotypes recorded here.

In this study, we systematically addressed whether mutations

that affect pollen tube growth in vitro also disrupt pollen tube

growth in vivo. It is reasonable to predict that a mutation affecting a

pollen tube structural component or a factor required for tip

growth would disrupt growth in either the pistil or in a defined

growth medium [34,35,61]. However, a mutation that specifically

disrupts the ability of the pollen tube to re-orient growth in

response to pollen tube guidance cues would not be expected to

cause a defect in the ability of pollen tubes to extend in vitro. We

found two insertions (At3g18000-1 [XIPOTL]; At1g60420-1

[thioredoxin and C1-domain containing]) that caused significant

reductions in ovule targeting (Table 4, Figure 5), but did not affect

pollen tube growth in vitro (Table 5, Figure S4). A third type of

mutation would cause mutant phenotypes in vitro, but would not

result in defective growth in the pistil environment. These

mutations may define genes that play a role in the growth process,

but whose mutant phenotypes in the pistil are masked by factors in

the pistil environment that enhance growth [24]. For these

mutations, in vitro pollen tube growth may be viewed as a sensitized

environment capable of revealing subtle mutant phenotypes. We

identified five insertions that disrupted pollen tube growth in vitro

that did not obviously affect the ability of pollen to sire progeny in

vivo. For example, At5g55020-1 (MYB120, discussed below)

significantly reduced pollen germination and tube length in vitro

(Table 5, Figure S4), but did not affect transmission of the mutant

allele through pollen (Table 4). Our microarray data show that the

transcriptome of pollen tubes grown in vitro is dramatically

different from that of pollen tubes grown through pistil tissue.

Our genetic experiments also confirm this difference by showing

that the consequences of loss-of-function in a pollen tube gene are

different in these distinct environments and that the combination

of assays probing growth in vitro and in vivo is essential to

comprehensively understand pollen tube growth.

An insertion in MYB120 (At5g55020-1) caused defective pollen

germination and tube growth in vitro (Table 5, Figure S4).

Phylogentic analysis of 125 MYB-related transcription factors

place MYB120 in subgroup 18, which comprises seven closely

related genes [62,63]. Analysis of 125 Arabidopsis MYBs in our data

set showed that three of the four most abundant MYBs in the SIV

PT are from subgroup 18 (including MYB120). Furthermore, four

members of subgroup 18 are expressed at much higher levels in

pollen than in other tissues we analyzed and three members

(including MYB120 and MYB65) of the subgroup have their peak

expression in SIV PT (Figure S5). MYB65 is a SIV PT-enriched

gene (Table S8) and was identified among the transcription factors

overrepresented in SIV PT-enriched genes compared to pollen-

expressed genes (Table S9). Perhaps functional redundancy within

this MYB subgroup explains why an insertion in MYB120

(At5g55020-1) affected pollen tube growth in vitro did not cause

a defect in the pistil (Table 4). Analyzing single and multiple

mutations in members of this subgroup, using the assays described

here, can be used to test this hypothesis and to determine whether

this group of transcription factors is an important regulator of gene

expression in actively extending pollen tubes.

We uncovered a role in pollen tube growth for two genes

(At5g67250, At3g18000) already shown to be critical for

sporophytic growth and development. Our microarray analysis

shows that both of these genes have broad expression patterns in

sporophytic tissues and are significantly higher in SIV PT than 4 h

PT (Figure S3B). These expression patterns underscore an

important aspect of the SIV PT transcriptome; 871 genes

(Figure 2D) are shared between SIV PT and the sporophytic

tissues we analyzed that are not expressed in pollen or pollen tubes

grown in vitro. At5g67250 and At3g18000 illustrate how functional

analysis using pollen can provide new insights into the function of

this part of the Arabidopsis genome.

Previous RNAi analysis of At5g67250 (an SCF-type F-box and

leucine rich repeat-containing E3 ubiquitin ligase, VFB-4) showed

that reduction of expression was associated with defects in lateral

root formation and rosette leaf expansion [64]. SCF-type E3

ubiquitin ligases determine substrate specificity for ubiquitination

and proteolysis, thereby regulating an array of biological processes

including cell cycle progression [65,66] and auxin signaling
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[67,68]. Here we have shown that VFB-4 is required for pollen

tube growth in vitro (Table 5, Figure S4), suggesting that regulated

proteolysis is important for pollen tube extension. A limitation of

microarray analysis is that it only documents changes in mRNA

abundance and does not identify genes whose mRNA levels

remain unaltered, but encode proteins that undergo post-

translational modification in response to growth in the pistil.

Post-translational regulation of protein function is likely an

important mediator of pollen-pistil interactions. For example,

LePRK2, a pollen-specific receptor kinase required for pollen tube

growth in tomato [69] has been shown to be dephosphorylated by

a stigma extract [70]. Methods developed for large-scale SIV PT

isolation (this study) and pollen proteomic analysis [71–73], could

be combined to identify the set of pollen tube proteins that are

modified in response to growth in the pistil.

At3g18000 (XIPOTL) was identified in a genetic screen for root

architecture defects [52], and encodes a PEAMT required for

production of phosphatidylcholine (see Results). At3g18000-1

disrupted ovule targeting in the pistil (Table 4, Figure 5), suggesting

that XIPOTLmay be required for navigating the pistil environment

and that lipid signaling and/or a particular plasma membrane

composition is required for pollen tube growth and guidance.

Materials and Methods

Plant Materials and Growth Conditions
Arabidopsis plants were grown in chambers at 21uC under

illumination (100 mmol m22 s21 with a 16-hour photoperiod).

Wild-type pollen and pollen tubes (Col-0 accession) were used for

microarray experiments. The SAIL lines (Col-0 accession) and

male sterile 1 mutant, ms1 (CS75, Landsberg ecotype) were obtained

from the Arabidopsis Biological Resource Center (Columbus, OH).

ms1 does not produce pollen, but has a normal pistil; this mutant

therefore yields pistils that do not require emasculation.

Collection of Dry Pollen and In Vitro–Grown Pollen Tubes
Dry pollen grains were collected by the vacuum method [74]

into microfuge tubes containing 250 ml liquid pollen growth

medium [75] and incubated for 0.5 or 4 hours in a 24uC growth

chamber. Pollen tubes were centrifuged at 4,000 rpm for 5

minutes, the supernatant was removed and the microfuge tubes

were frozen in liquid nitrogen and stored in 280uC until RNA

isolation. Aliquots of pollen tube suspensions were observed under

an Axiovert 100 microscope (Carl Zeiss, Oberkochen, Germany)

to determine % pollen germination and pollen tube length using

Metamorph software version 7.1.4.0 (Molecular Devices Inc.,

Downingtown, PA). Pollen grains with emerging tubes equal to or

longer than their diameters were considered germinated. After

4 hours of growth, 58.366.0% of the pollen grains germinated

and formed tubes (average length of 383.8632.1 mm; Figure 1C).

Under our growth conditions, the remainder of the grains in the

4 hour sample did not germinate and the germination rates did

not increase even with longer incubation times (Figure 1C).

Collection of Semi In Vivo–Grown Pollen Tubes (SIV PT)
Pollen tubes grown through the stigma and style were collected

by the semi in vivo procedure essentially as described [26].

Pollinated ms1 pistils were placed vertically on solid pollen growth

medium for one hour (establish growth into the pistil) before they

were laid horizontally; tubes emerged from cut pistils after three

hours of growth and were harvested as bundles after three hours of

growth on the media surface. Bundles were excised at the point of

emergence from the cut pistil and collected into liquid nitrogen-

frozen microfuge tubes. Eight hundred pollen tube bundles

(obtained from 800 cut pistil explants) were used for each of the

three replicate RNA isolations. Pollen tube bundles were

confirmed to be free of pistil tissue contamination by microscopy.

Collection of Other Tissues and Pollinated Pistils
For 8-day-old seedling samples, both shoots and roots of

seedlings grown on 0.5X Murashige and Skoog (MS) media [MS

salts (Carolina Biological Supply Company, Burlington, North

Carolina), 10% sucrose, pH 5.7, 7% Bacto Agar] were included.

However, for 21-day-old seedling samples, only aerial parts of the

plants grown on soil were included. For in vivo confirmation of

gene expression experiments, flower stage 14 [76] ms1 pistils were

hand pollinated with wild-type (Col-0) pollen. Pollinated pistils,

either 1 minute or 2 hours after pollination, were cut at the

junction of the style and ovary and the stigma and style portion

(cut pistils) were used for RNA isolation. For unpollinated pistils,

flower stage 14 [76] ms1 cut pistils devoid of any pollen were used.

Fifteen cut pistils of each kind were used for each replicate (2)

RNA isolation.

RNA Extraction, Probe Preparation, and Gene Chip
Hybridization
Total RNA was extracted from dry pollen, 0.5 h PT, 4 h PT

and SIV PT using the Qiagen RNeasy kit (http://www.qiagen.

com). The yield and RNA purity were determined by Nano-Drop

(Thermo Scientific, Wilmington, DE, USA) and gel electropho-

resis. RNA integrity was checked using an Agilent 2100

Bioanalyzer (Agilent Technologies, Boblingen, Germany). Hy-

bridization and post hybridization processing were performed as

per the manufacturer’s instructions by the Arizona Cancer Center

Microarray facility (http://www.azcc.arizona.edu/laboratory/

l_microarray.htm). Total RNA (5 mg, dry pollen, 0.5 h PT and

4 h PT) and 2 mg (SIV PT) was processed as per the Affymetrix

GeneChip Expression Analysis protocol (Part#701071, Rev 5,

Affymetrix, Santa Clara, CA). Briefly, after first and second strand

cDNA synthesis with total RNA, the cDNAs were used to generate

cRNA labeled with biotin in an in vitro transcription reaction. For

each pollen condition, labeled cRNA was fragmented and 15 mg

of fragmented cRNA (25–200 nt as per Agilent 2100 Bioanalyzer

RNA 6000 Nano Chip Series II Assay, Agilent Technologies,

Waldbronn, Germany) was hybridized to the GeneChip Arabidopsis

ATH1 genome arrays (http://www.affymetrix.com) for 20 hours

at 45uC. Standard washing and staining procedures were

performed using the GeneChip Fluidics Station 450 (Affymetrix,

Santa Clara, CA). The arrays were then scanned using the

GeneChip Scanner 3000 with 7 G upgrade (Affymetrix, Santa

Clara, CA). Signal intensities from each of the 15 arrays were

converted to raw expression data (with Present, ‘‘P’’, Absent, ‘‘A’’

and Marginal, ‘‘M’’ scores) using GeneChip Operating Software

(GCOS) (Affymetrix, Santa Clara, CA) and are provided as

supplementary files (Table S1, Table S2, Table S3, Table S4).

Accessing Microarray Data
Raw data (.CEL and CHP files) from all 15 microarrays

reported in this study have been deposited in Gene Expression

Omnibus [77] public repository and can be accessed from (http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc =GSE17343) us-

ing the Series accession number GSE17343.

Bioinformatic and Statistical Analysis of Affymetrix ATH1
Genome Array Data
In addition to the 15 arrays from this study, we obtained 25

publicly available array data (AtGenExpress, http://www.ebi.ac.
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uk [28] and stigma and ovary microarray data from Gene

Expression Omnibus at http://www.ncbi.nlm.nih.gov/geo/[29]).

The following cel files were downloaded: 7 day old roots–

ATGE_3A-C, 17 day old roots–ATGE_9A-C, rosette leaves–

ATGE_17A-C, pollen–ATGE_73A-C, 8 day old seedlings–

ATGE_96A-C, 21 day old seedlings–ATGE_100A-C. Probe data

for ovary–GSM67078.cel, GSM67079.cel, GSM67080.cel,

SM67081.cel and stigma–GSM67084.cel, GSM67086.cel,

GSM67087.cel.

Using RMA (Robust Microarray Analysis tool in the affy

library) [78], we normalized the data from all of these 40 arrays

(Table S5). Using the affy and limma BioConductor libraries

(http://www.bioconductor.org) and the R programming project

(http://www.R-project.org), we calculated the statistical signifi-

cance in expression level changes of the following comparisons:

0.5 h PT vs. dry pollen; 4 h PT vs. dry pollen; 4 h PT vs. 0.5 h

PT; SIV PT vs. dry pollen; SIV PT vs. 4 h PT. After estimating

the variance of mean signal intensities for each probe set, the

significance of this value in the two conditions was evaluated by

performing a t-test [79]. The probabilities obtained were corrected

for multiple hypothesis testing by reshuffling the data to obtain an

estimate of the false discovery rate (B values) and applying this

estimate to lower the probability of the t-value (adjusted P values).

The complete results from the statistical analysis for each of the

five comparisons and for every probe set in an array are also

reported in Table S5.

Hierarchical and Non-Hierarchical k-Means Clustering
To investigate the relationships among pollen samples, agglom-

erative hierarchical clustering of the fifteen microarrays represent-

ing four pollen conditions, was performed as described [43,80]. To

find genes that had the best discriminative ability, based on its

expression profile, we employed non-hierarchical k-means cluster-

ing method [43]. For this, we compared dry pollen and 4 h PT

hierarchical clusters to the SIV PT hierarchical cluster and in each

comparison, for every gene, we calculated discriminative weight, a

parameter that measures the ability of a gene’s expression values to

distinguish two clusters. The discriminative weight of the gene for a

pair of clusters is defined by,

w~dB=k1dw1zk2dw2za

where dB is the distance between centers of the clusters, dwi is the

average Euclidean distance among all sample pairs within cluster i,

ki~
ti= t1zt2ð Þ where ti is the total number of sample pairs in the

cluster i.

GO Analysis for SIV PT-Enriched Genes
GO term enrichment analysis reported in Figure 2 was

performed essentially as described in [81,82]. Briefly, the

hypergeometric distribution test was applied on the gene sets in

sectors 1–4 (Figure 2B) using the GOHyperGAll function [81]

which yielded raw and Bonferroni corrected p-values (adjusted p

value). GO terms from the ‘‘Molecular Function’’ category that

had an adjusted P value of ,0.05 were considered highly enriched

and are shown in Figures 2C and 2E. Arabidopsis gene-to-GO

mappings were downloaded from the GO site (10/12/2007

release; http://geneontology.org). A complete list of GO-terms

(for all three broad GO categories) associated with sectors 1–4 are

provided in Table S7. Within each sector, only unique genes

belonging to each GO term category were considered. For the

total number of genes for each GO term category reported in

Figure 2C, unique numbers of genes from each sector were added,

without eliminating gene overlap between sectors. The Fisher

exact test was performed to determine if any GO term was

significantly overrepresented in SIV PT-enriched genes (Table 1),

given that this gene list was smaller compared to those used in

Figure 2C [83]. From the SIV PT-enriched gene list (383, Table

S8), we excluded genes that were also expressed in pollen samples

(ATGE_73A-C); the remaining 357 probes were mapped to genes.

Only single probes were chosen if multiple probes mapped to the

same gene or a gene family. This criteria resulted in a final list of

349 SIV-enriched genes that was then compared to pollen-

expressed genes (ATGE_73A-C, [28] to obtain P-values for

overrepresented GO terms in SIV PT-enriched genes. The GO

terms with P,0.05 were considered significantly overrepresented

in SIV PT-enriched genes and reported in Table 1. Complete

results of this analysis and the genes associated with GO-terms

listed in Table 1 are provided in Table S9.

RT-PCR and qRT-PCR
For each of the RT-PCR experiments, new RNA samples were

isolated from the indicated cells/tissues, cDNA was synthesized and

used as template for PCR (Figure S2) and quantitative real-time PCR

(Figure 3 and Table 3). Total RNA was isolated using the Qiagen

RNeasy kit followed by treatment with Fermentas DNase I (http://

www.fermentas.com) prior to first-strand cDNA synthesis using

Invitrogen ThermoScript RT-PCR kit (http://www.invitrogen.com).

PCR (with PowerTaq DNA Polymerase PCR system, Altila

Biosystems, Palo Alto, CA) was performed as follows: 3 minutes

(min) at 94uC, 38 cycles of 30 seconds (sec) at 94uC, 1 min at 60uC

and 1 min at 72uC, followed by 5 min at 72uC. Real-time RT-PCR

was performed using the Roche FastStart DNAMaster SYBRGreen

I master mix (http://www.roche.com) in a LightCycler system

(Roche, http://www.roche.com). The PCR primers used in RT-

PCR and qRT-PCR experiments are listed in Table S17. The PCR

cycle conditions used for real time PCR were as follows: a 95uC for

5 min followed by 45 cycles of 95uC for 10 sec, 60uC for 15 sec, and

72uC for 15 sec. For each gene analyzed by RT-PCR and qRT-

PCR, four reactions were carried out, including two technical

replicates and two biological replicates (using RNA from indepen-

dently harvested tissues). In each qRT-PCR run, ACTIN2

(Threshold Cycle (CT) value of 18–19), was used to normalize for

mRNA levels. We considered a gene to be expressed only if it had a

CT value ,36. When expression was not detected in a qRT-PCR

reaction, a CT value of 45 (since 45 cycles were used in a real time

PCR reaction) was used to calculate the fold change.

In Vivo Pollen Tube Staining
Manually self-pollinated ms1 pistils were harvested either one

minute or 2 hours after pollination. The pollinated pistils were

stained with aniline blue to visualize in vivo pollen tube growth as

described previously [84]. Stained pistils were observed on a Zeiss

Axiovert 100 microscope with a Zeiss 365 G filter (Carl Zeiss,

Oberkochen, Germany). By this staining procedure, the majority

of the pollen tubes reached the style tissue in 2 hours (Figure 4A).

Reverse Genetic Analysis
SAIL lines were chosen (http://signal.salk.edu/[85]) with

insertions between 300 bp upstream of the 59 UTR and 300

bp downstream of the 39UTR (exons were prioritized over

introns); and for which there was a TAIL PCR sequence that

corroborated the T-DNA insert site to a single locus in the

Arabidopsis genome. Determination of Basta was performed as

reported [49]. Basta plants were transferred to soil and T-DNA

insertion sites were confirmed using left border (LB3, LB2, and/or

LB1 [86]) and gene-specific ‘right’ primers (Table S16, designed
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using http://signal.salk.edu/tdnaprimers.2.html) in a PCR reac-

tion. The PCR program used for this reaction was: 94uC for 5 min

followed by 36 cycles of 94uC for 15 sec, 60uC for 30 sec, 72uC for

2 min, and a final elongation step of 72uC for 4 min. Pollen

tetrads from one stage 14 flower [76] from each Basta plant were

stained and assayed for segregation of the LAT52:GUS transgene

as described [49]. Transmission of the T-DNA following self-

fertilization or through crosses to ms1 were tested as described

[49].

In Vitro Pollen Phenotypic Analysis
Pollen grains were incubated in liquid pollen growth medium

[53] on upside-down slides [87] for 6 hours and stained for GUS

activity as described [49]. Images were captured (Zeiss Axiovert

200 M, Carl Zeiss, Oberkochen, Germany) and used to determine

pollen tube germination rates and pollen tube length for GUS-

and GUS+ pollen using ImageJ software (http://rsbweb.nih.gov/

ij/docs/faqs.html). These experiments were analyzed as a

randomized complete block design with dates of observation as

blocks and genotype of pollen (GUS+, insertion; GUS-, wild type)

as treatments. Pollen germination and pollen tube length values

were subjected to mixed-model analysis of variance with block

considered a random effect and treatment a fixed effect.

Untransformed least-squares means and P values [88] from this

analysis are reported (Table 5). Analysis was done using PROC

MIXED in SAS/STAT Version 9.1 of the SAS System for

Windows. (Copyright ! 2002-2003 SAS Institute Inc).

In Vivo Pollen Phenotypic Analysis
Pollen tube growth in the pistil was examined after crossing

pollen from heterozygous insertion plants to three or more ms1

pistils. Pollinated pistils were harvested 24 hours after pollination,

prepared for GUS staining and microscopy observations as

described previously [49]. Stained pistils were imaged (differential

interference contrast) using a Zeiss Axiovert 200 M microscope

(Carl Zeiss, Oberkochen, Germany).

Supporting Information

Figure S1 Hierarchical clustering of pollen arrays. Agglomera-

tive hierarchical clustering of the fifteen microarrays representing

four pollen conditions was performed to generate the dendrogram.

Found at: doi:10.1371/journal.pgen.1000621.s001 (0.09 MB TIF)

Figures S2 RT-PCR analysis of gene expression. Total RNA

from indicated tissues—dry pollen, 0.5 h PT, 4 h PT, 8- and 21-

day-old seedlings (DS) —was used as templates to perform oligo-

dT primed reverse transcription reactions followed by cDNA

synthesis. RT-PCR was performed with cDNAs from indicated

tissues and gel images of PCR products amplified are shown. (A)

RT-PCR analysis of pollen-enriched and pollen-expressed genes.

(B) RT-PCR analysis of genes that are significantly altered in SIV

PT compared to 4 h PT. (C) RT-PCR analysis of pistil-dependent

gene expression changes in vivo. Samples analyzed were dry

pollen, unpollinated ms1 pistils (virgin pistil), ms1 pistils pollinated

for one minute (1 m pollinated pistil) and ms1 pistils pollinated for

two hours (2 h pollinated pistil).

Found at: doi:10.1371/journal.pgen.1000621.s002 (1.89 MB TIF)

Figure S3 Heat maps representing microarray data. (A) Genes

analyzed by qRT-PCR (Figure 3, Figure 4, and Table 3). Relative

expression values obtained from microarray analysis (Table S5)

are shown as a heat map. For each gene, the highest value is set at

100% and the relative value is calculated for other samples. (B)

Genes chosen for reverse genetic analysis. The top set of genes

were chosen because they were significantly higher in 4 h PT

compared to dry pollen. The bottom set of genes were chosen

because they were significantly higher in SIV PT than in 4 h PT.

The heat map displays normalized expression values for all

publicly available datasets we analyzed along with our pollen

microarray data. The right panel shows a phenotypic summary of

our reverse genetic analysis. Male transmission defects were

determined by crossing heterozygous insertion pollen to ms1 pistils

(Table 4). Germination % and tube length were determined in

vitro (Table 5, Figure S4). Ovule targeting was determined by

crossing heterozygous insertion pollen to ms1 pistils and counting

the number of ovules targeted by insertion pollen tubes (Figure 5).

Found at: doi:10.1371/journal.pgen.1000621.s003 (0.88 MB TIF)

Figure S4 Five insertions cause defects in pollen tube growth in

vitro. Pollen heterozygous for the indicated insertion was grown in

vitro for 6 hours and then stained for GUS expression. GUS+

(blue) pollen tubes carry insertions; GUS- (white) pollen tubes are

wild type. In control pollen (A), the GUS+ (blue) pollen tubes are

as long and as numerous as GUS- (white) pollen tubes (see Table 5

for quantification). Insertions that did not cause severe growth

defects are also shown (B–H). Insertions caused severe defects in

pollen tube germination (L,N) and/or in tube length (I–P). Higher

magnification images of indicated insertions are shown (N–P).

Arrowheads point to representative GUS+ (black arrowhead) and

GUS- (white arrowhead) in (A); all GUS+ pollen tubes are

highlighted with black arrowheads in (O) and (P). Scale

bars = 100 mm.

Found at: doi:10.1371/journal.pgen.1000621.s004 (1.54 MB TIF)

Figure S5 Members of subgroup 18 are expressed in growing

pollen tubes. Mean microarray expression data (log2, Table S5)

are plotted for each of the cell or tissue types analyzed in this study

for seven genes that comprise MYB subgroup 18 [60,61].

Found at: doi:10.1371/journal.pgen.1000621.s005 (0.25 MB TIF)

Table S1 Raw gene expression data for dry pollen

Found at: doi:10.1371/journal.pgen.1000621.s006 (6.27 MB

XLS)

Table S2 Raw gene expression data for 0.5 h PT

Found at: doi:10.1371/journal.pgen.1000621.s007 (6.27 MB

XLS)

Table S3 Raw gene expression data for 4 h PT

Found at: doi:10.1371/journal.pgen.1000621.s008 (6.27 MB

XLS)

Table S4 Raw gene expression data for SIV PT. Normalized

expression data (log2) for each replicate of dry pollen, 0.5 h PT,

4 h PT, SIV PT, and 25 selected experiments from publicly

available sources; and statistical analyses for selected comparisons.

Found at: doi:10.1371/journal.pgen.1000621.s009 (5.95 MB

XLS)

Table S5 Normalized expression data (log2) for each replicate of

dry pollen, 0.5 h PT, 4 h PT, SIV PT, and 25 selected experiments

from publicly available sources; and statistical analyses for selected

comparisons. Statistical analyses of significant differences between

two indicated conditions are described in Materials and Methods.

The table has been sorted by Affymetrix ID (ascending). FC=Fold

Change; B value=False discovery rate. Affymetrix probe sets (ID,

Column A) associated with a single nuclear gene are identified by a

Genbank number (column D) that begins At1G, At2G, At3G,

At4G, or At5G; mitochondrial genes begin AtMG, chloroplast

genes begin AtCG. Affymetrix probe sets associated with multiple

genes are identified as ‘multiple’ in column D. Affymetrix probe sets

that are not associated with genes are blank in column D. Genes
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associated with multiple Affymetrix probe sets are flagged (*) in

column E. Affymetrix control probe sets begin ‘AFFX-’ (Column A),

these were not counted in analyses.

Found at: doi:10.1371/journal.pgen.1000621.s010 (6.81 MB ZIP)

Table S6 Pearson correlation coefficients between microarray

experiments. The Pearson correlation coefficients between quan-

tile normalized 40 microarray data sets used in this study are

shown.

Found at: doi:10.1371/journal.pgen.1000621.s011 (0.04 MB

XLS)

Table S7 Complete list of overrepresented GO terms shown in

Figure 2C and Figure 2E

Found at: doi:10.1371/journal.pgen.1000621.s012 (2.25 MB

XLS)

Table S8 SIV PT-enriched genes

Found at: doi:10.1371/journal.pgen.1000621.s013 (0.51 MB

XLS)

Table S9 Complete list of overrepresented GO terms and the

associated genes from the Fisher exact test shown in Table 1

Found at: doi:10.1371/journal.pgen.1000621.s014 (0.17 MB

XLS)

Table S10 Statistical analysis of significant gene expression

changes between 0.5 h PT and dry pollen

Found at: doi:10.1371/journal.pgen.1000621.s015 (0.05 MB

XLS)

Table S11 Statistical analysis of gene expression changes

between 4 h PT and 0.5 h PT

Found at: doi:10.1371/journal.pgen.1000621.s016 (0.15 MB

XLS)

Table S12 Statistical analysis of gene expression changes

between 4 h PT and dry pollen

Found at: doi:10.1371/journal.pgen.1000621.s017 (0.21 MB

XLS)

Table S13 Statistical analysis of gene expression changes

between SIV PT and dry pollen

Found at: doi:10.1371/journal.pgen.1000621.s018 (1.36 MB

XLS)

Table S14 Statistical analysis of gene expression changes

between SIV PT v 4 h PT

Found at: doi:10.1371/journal.pgen.1000621.s019 (0.99 MB

XLS)

Table S15 Genes that best discriminate the SIV PT cluster from

other pollen clusters

Found at: doi:10.1371/journal.pgen.1000621.s020 (0.06 MB

DOC)

Table S16 Syngenta Arabidopsis Insertion Lines (SAIL) ana-

lyzed

Found at: doi:10.1371/journal.pgen.1000621.s021 (0.04 MB

XLS)

Table S17 List of primers used in RT-PCR and qRT-PCR

experiments

Found at: doi:10.1371/journal.pgen.1000621.s022 (0.02 MB

XLS)
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