
LA-UR-13-23339
Approved for public release; distribution is unlimited.

Title: PENNANT: An Unstructured Mesh Mini-App for Advanced Architecture

Research

Author(s): Ferenbaugh, Charles R.

Intended for: Next Generation Platforms Working Group telecon with LLNL, 5/14/2013

Issued: 2013-05-08

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the
U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

UNCLASSIFIED

PENNANT: An Unstructured Mesh

Mini-App for Advanced Architecture

Research

Charles R. Ferenbaugh

Scientific Software Engineering, HPC-1

Next Generation Platforms Working Group

May 14, 2013

LA-UR-13-XXXXX
Slide 1

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Motivation

• HPC is undergoing a major transition

• New architectures: multi-core, GPU, Intel MIC, BlueGene, ...
• Designed for massively parallel processing
• “Memory access is expensive, flops are free”
• Application codes must be redesigned, reimplemented

• One tool for understanding new architectures: mini-apps

• Small, standalone apps that capture the algorithms, memory

patterns in a problem domain of interest
• Can be used to model performance, test optimization ideas for

larger apps
• Can be easily adapted to new hardware types, programming

models, ..., because of their small size

Slide 2

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Motivation (2)

• Unstructured mesh apps usually aren’t well represented in
studies of new architectures

• Roadrunner demonstration apps (2006-8) implemented five

typical apps
• All were structured mesh or particle apps; none used

unstructured meshes
• Similarly for Titan at Oak Ridge (2011-12)

• But unstructured mesh codes play an important role at LANL
and elsewhere

• FLAG at LANL, KULL and ALE3D at LLNL, ...

• So we need to study unstructured mesh codes earlier in the

design/deployment process for new architectures

• An unstructured mesh mini-app might help

Slide 3

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

PENNANT overview

• Implements a small subset of FLAG physics

• Includes simple input parser, mesh input, viz output

• Uses 2D cylindrical geometry

• Operates on general unstructured meshes (arbitrary polygons)

• Contains just over 2200 lines of C++ source code

• Has complete serial, multicore (OpenMP), and GPU (CUDA)

implementations

• Internal release at LANL: April 2012

• Open-source release to wider community: January 2013

Slide 4

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Mesh data structures

• Points, edges, zones are mesh elements in 0, 1, and 2

dimensions respectively

• Sides and corners are subregions within a zone

Slide 5

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Mesh data structures (2)

• Associations between points, zones, etc., are irregular; must

be given by explicit connectivity arrays

• Because of the irregular connectivity, unstructured mesh
physics can be hard to optimize

• Mesh is hard to divide into independent chunks for parallel

processing
• Memory systems are sometimes not optimized for

non-contiguous access
• Efficient array lookup instructions (e.g., vector gather/scatter)

are not always available in hardware

Slide 6

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Physics details

• PENNANT implements the following from FLAG:

• Compatible Lagrangian staggered grid hydrodynamics (SGH)
• Single material, gamma-law gas equation of state
• Temporary Triangular Subzoning (TTS) for subzonal pressures
• Campbell-Shashkov tensor artificial viscosity

• This is just enough to run a few interesting test problems

• To keep PENNANT small, I didn’t include:

• arbitrary Lagrangian-Eulerian (ALE) methods
• multiple material models, mixtures
• radiation diffusion

Slide 7

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Physics details (2)

• PENNANT physics algorithms are staggered-grid

• Mesh positions, velocities are stored on points
• Most state variables (density, pressure, ...) are stored on zones
• So we must frequently use values of zone-based variables to

compute point-based results, or vice versa

• This is done by computing some intermediate values on sides and

corners

• This means we will be using the connectivity arrays frequently

(irregular access!)

Slide 8

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Optimizations: SIMD vectorization

• On most modern architectures, need some form of SIMD

vectorization to achieve peak performance

• FLAG typically has inner loops over dimension:

real*8 pos(dim, numpts), pos0(dim, numpts),

vel(dim, numpts)

do p = 1, numpts

do d = 1, dim

pos(d, p) = pos0(d, p) + vel(d, p) * dt

end do

end do

• This keeps the outer p loop from vectorizing!

Slide 9

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Optimizations: SIMD vectorization (2)

• If dim is fixed, we can unroll the inner loop by hand

• For example, if dim is 2:

real*8 pos(dim, numpts), pos0(dim, numpts),

vel(dim, numpts)

do p = 1, numpts

pos(1, p) = pos0(1, p) + vel(1, p) * dt

pos(2, p) = pos0(2, p) + vel(2, p) * dt

end do

• This loop will vectorize

Slide 10

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Optimizations: SIMD vectorization (3)

• PENNANT handles this by defining a double2 structure

• double2 has inline operators for =, +, ×, ...

• So PENNANT code would look like this:

double2 *pos, *pos0, *vel;

for (int p = 0; p < numpts; ++p) {

pos[p] = pos0[p] + vel[p] * dt

}

• To the compiler, this looks about the same as the code on the

previous page, so it vectorizes too

• As a bonus, the code is shorter and easier to read

Slide 11

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Optimizations: High-level parallelism

• Divide point, side, and zone lists into (nearly) independent

chunks

• For each stage of the main hydro algorithm, process chunks
(point, side, or zone) in parallel

• OpenMP uses a parallel for loop
• CUDA uses a grid with one grid block per chunk

• Add special handling for places where chunks aren’t quite
independent

• Summing corners to points (force calculation)
• Taking a global minimum over sides (timestep)

Slide 12

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Optimizations: Memory locality

• For best performance, we’d like to have most data accesses

from a fast local memory, rather than slower global memory

• On CPU, L1 or L2 cache will do this for us

• Newer NVIDIA GPUs have similar caches

• PENNANT relies on cache to improve memory performance

• Each processor operates on a separate chunk, so cache data is

(mostly) independent
• Cache use helps minimize the penalty for irregular access

Slide 13

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

PENNANT test problems

test name # zones # cycles mesh type

nohsquare 32400 4055 structured, all square zones

nohpoly 22801 6817 unstructured, hexagon zones

sedov 72900 1909 structured, all square zones

leblanc 57600 1937 structured, all square zones

• Problem sizes are chosen such that (# zones × # cycles) is

similar across all problems

• PENNANT distribution includes all of these tests, plus some

smaller versions for debugging

Slide 14

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

PENNANT test problems: Noh

Slide 15

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

PENNANT test problems: Sedov, Leblanc

Slide 16

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Test platforms

Moonlight: • Two 8-core Intel Xeon E5-2670s (Sandy Bridge)

per node
• 16 cores/threads per node total
• Each core runs at 2.60 GHz
• Two NVidia M2090 GPUs per node (for these

tests only one GPU was used)

Darwin: • Four 8-core Intel X6550s (Nehalem) per node
• 32 cores per node total
• Each core runs at 2.00 GHz
• Cores have hyperthreading enabled, allowing for a

total of 64 OpenMP threads

All CPU timings use all available threads, except as noted

Slide 17

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Basic results - timing and energy

• Darwin CPU gives shortest time to solution (though not by too

much)
• But Darwin uses the most energy by far; Moonlight GPU or

CPU is more energy-efficient

Slide 18

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Optimal chunk size

• If chunks are too large, performance will be bad...

• won’t fit in cache
• load imbalance

• But if chunks are too small, performance will be bad...

• more dependencies, synchronization between chunks
• on the CPU, more time spent in loop startup, shutdown

• There should be a “sweet spot” between the minimum and

maximum possible chunk size – can we find it empirically?

Slide 19

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Optimal chunk size (2)

Based on these results, all other tests use 512 for CPU, 64 for GPU

Slide 20

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Scaling studies - OpenMP

Slide 21

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Scaling studies - OpenMP (2)

• Good scaling on 16 threads of Moonlight (12-14x speedup)

• Good scaling on 32 threads of Darwin (22-23x)

• Starts to level off at 64 threads of Darwin (27-33x)

This suggests that we’ve (mostly) succeeded in making the chunks

independent

Slide 22

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Mesh renumbering for memory locality

• On GPUs, memory access is optimized for the case when

threads access memory locations that are contiguous (or

nearly so)

• CPUs are similar (cache line access)

• So can we improve memory performance by renumbering?

row-column block z-curve Hilbert curve

Slide 23

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Mesh renumbering for memory locality (2)

Slide 24

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Mesh renumbering for memory locality (3)

• Random numbering gives awful performance – no surprise

• Other schemes are very close together (3-4%)

• Apparently any numbering scheme with some locality gives

about the same performance

Slide 25

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Conclusions

PENNANT is:

• able to reproduce the basic functionality of the much larger

FLAG code

• usable as a testbed for new architectures, programming

models, optimization ideas

• able to do high-level parallelization of unstructured mesh

problems effectively

Slide 26

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Future work

• Implement MPI version of PENNANT

• Test PENNANT in a FLAG-like mode (MPI-only, no chunking)

and compare against other PENNANT versions

• Test more rigorously how well PENNANT can predict FLAG

performance

• Implement MPI+OpenMP, MPI+CUDA versions

• Implement other GPU versions (OpenCL and/or OpenACC)

• Test on Intel MIC (using OpenMP version)

• Test alternate strategies for corner-to-point gathers

(edge-coloring)

• Make PENNANT more widely available for other co-design

efforts

Slide 27

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

UNCLASSIFIED

Acknowledgements

Thanks to:

• Mikhail Shashkov and the ASCR “Mimetic Methods for PDEs”

project, and the ASC Hydrodynamics project, for providing

support for this work

• the many Lagrangian Applications Project members who have

contributed to the FLAG code; parts of the PENNANT code

and documentation are adapted from their work

• the Intel EPOCH workshop, June 2012, for optimization ideas

Slide 28

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED

