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Motivation

• HPC is undergoing a major transition

• New architectures: multi-core, GPU, Intel MIC, BlueGene, ...
• Designed for massively parallel processing
• “Memory access is expensive, flops are free”
• Application codes must be redesigned, reimplemented

• One tool for understanding new architectures: mini-apps

• Small, standalone apps that capture the algorithms, memory

patterns in a problem domain of interest
• Can be used to model performance, test optimization ideas for

larger apps
• Can be easily adapted to new hardware types, programming

models, ..., because of their small size
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Motivation (2)

• Unstructured mesh apps usually aren’t well represented in
studies of new architectures

• Roadrunner demonstration apps (2006-8) implemented five

typical apps
• All were structured mesh or particle apps; none used

unstructured meshes
• Similarly for Titan at Oak Ridge (2011-12)

• But unstructured mesh codes play an important role at LANL
and elsewhere

• FLAG at LANL, KULL and ALE3D at LLNL, ...

• So we need to study unstructured mesh codes earlier in the

design/deployment process for new architectures

• An unstructured mesh mini-app might help
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PENNANT overview

• Implements a small subset of FLAG physics

• Includes simple input parser, mesh input, viz output

• Uses 2D cylindrical geometry

• Operates on general unstructured meshes (arbitrary polygons)

• Contains just over 2200 lines of C++ source code

• Has complete serial, multicore (OpenMP), and GPU (CUDA)

implementations

• Internal release at LANL: April 2012

• Open-source release to wider community: January 2013
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Mesh data structures

• Points, edges, zones are mesh elements in 0, 1, and 2

dimensions respectively

• Sides and corners are subregions within a zone
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Mesh data structures (2)

• Associations between points, zones, etc., are irregular; must

be given by explicit connectivity arrays

• Because of the irregular connectivity, unstructured mesh
physics can be hard to optimize

• Mesh is hard to divide into independent chunks for parallel

processing
• Memory systems are sometimes not optimized for

non-contiguous access
• Efficient array lookup instructions (e.g., vector gather/scatter)

are not always available in hardware
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Physics details

• PENNANT implements the following from FLAG:

• Compatible Lagrangian staggered grid hydrodynamics (SGH)
• Single material, gamma-law gas equation of state
• Temporary Triangular Subzoning (TTS) for subzonal pressures
• Campbell-Shashkov tensor artificial viscosity

• This is just enough to run a few interesting test problems

• To keep PENNANT small, I didn’t include:

• arbitrary Lagrangian-Eulerian (ALE) methods
• multiple material models, mixtures
• radiation diffusion
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Physics details (2)

• PENNANT physics algorithms are staggered-grid

• Mesh positions, velocities are stored on points
• Most state variables (density, pressure, ...) are stored on zones
• So we must frequently use values of zone-based variables to

compute point-based results, or vice versa

• This is done by computing some intermediate values on sides and

corners

• This means we will be using the connectivity arrays frequently

(irregular access!)
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Optimizations: SIMD vectorization

• On most modern architectures, need some form of SIMD

vectorization to achieve peak performance

• FLAG typically has inner loops over dimension:

real*8 pos(dim, numpts), pos0(dim, numpts),

vel(dim, numpts)

do p = 1, numpts

do d = 1, dim

pos(d, p) = pos0(d, p) + vel(d, p) * dt

end do

end do

• This keeps the outer p loop from vectorizing!
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Optimizations: SIMD vectorization (2)

• If dim is fixed, we can unroll the inner loop by hand

• For example, if dim is 2:

real*8 pos(dim, numpts), pos0(dim, numpts),

vel(dim, numpts)

do p = 1, numpts

pos(1, p) = pos0(1, p) + vel(1, p) * dt

pos(2, p) = pos0(2, p) + vel(2, p) * dt

end do

• This loop will vectorize
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Optimizations: SIMD vectorization (3)

• PENNANT handles this by defining a double2 structure

• double2 has inline operators for =, +, ×, ...

• So PENNANT code would look like this:

double2 *pos, *pos0, *vel;

for (int p = 0; p < numpts; ++p) {

pos[p] = pos0[p] + vel[p] * dt

}

• To the compiler, this looks about the same as the code on the

previous page, so it vectorizes too

• As a bonus, the code is shorter and easier to read
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Optimizations: High-level parallelism

• Divide point, side, and zone lists into (nearly) independent

chunks

• For each stage of the main hydro algorithm, process chunks
(point, side, or zone) in parallel

• OpenMP uses a parallel for loop
• CUDA uses a grid with one grid block per chunk

• Add special handling for places where chunks aren’t quite
independent

• Summing corners to points (force calculation)
• Taking a global minimum over sides (timestep)
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Optimizations: Memory locality

• For best performance, we’d like to have most data accesses

from a fast local memory, rather than slower global memory

• On CPU, L1 or L2 cache will do this for us

• Newer NVIDIA GPUs have similar caches

• PENNANT relies on cache to improve memory performance

• Each processor operates on a separate chunk, so cache data is

(mostly) independent
• Cache use helps minimize the penalty for irregular access
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PENNANT test problems

test name # zones # cycles mesh type

nohsquare 32400 4055 structured, all square zones

nohpoly 22801 6817 unstructured, hexagon zones

sedov 72900 1909 structured, all square zones

leblanc 57600 1937 structured, all square zones

• Problem sizes are chosen such that (# zones × # cycles) is

similar across all problems

• PENNANT distribution includes all of these tests, plus some

smaller versions for debugging
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PENNANT test problems: Noh

Slide 15

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED



UNCLASSIFIED

PENNANT test problems: Sedov, Leblanc
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Test platforms

Moonlight: • Two 8-core Intel Xeon E5-2670s (Sandy Bridge)

per node
• 16 cores/threads per node total
• Each core runs at 2.60 GHz
• Two NVidia M2090 GPUs per node (for these

tests only one GPU was used)

Darwin: • Four 8-core Intel X6550s (Nehalem) per node
• 32 cores per node total
• Each core runs at 2.00 GHz
• Cores have hyperthreading enabled, allowing for a

total of 64 OpenMP threads

All CPU timings use all available threads, except as noted
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Basic results - timing and energy

• Darwin CPU gives shortest time to solution (though not by too

much)
• But Darwin uses the most energy by far; Moonlight GPU or

CPU is more energy-efficient
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Optimal chunk size

• If chunks are too large, performance will be bad...

• won’t fit in cache
• load imbalance

• But if chunks are too small, performance will be bad...

• more dependencies, synchronization between chunks
• on the CPU, more time spent in loop startup, shutdown

• There should be a “sweet spot” between the minimum and

maximum possible chunk size – can we find it empirically?
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Optimal chunk size (2)

Based on these results, all other tests use 512 for CPU, 64 for GPU
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Scaling studies - OpenMP
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Scaling studies - OpenMP (2)

• Good scaling on 16 threads of Moonlight (12-14x speedup)

• Good scaling on 32 threads of Darwin (22-23x)

• Starts to level off at 64 threads of Darwin (27-33x)

This suggests that we’ve (mostly) succeeded in making the chunks

independent
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Mesh renumbering for memory locality

• On GPUs, memory access is optimized for the case when

threads access memory locations that are contiguous (or

nearly so)

• CPUs are similar (cache line access)

• So can we improve memory performance by renumbering?

row-column block z-curve Hilbert curve
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Mesh renumbering for memory locality (2)
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Mesh renumbering for memory locality (3)

• Random numbering gives awful performance – no surprise

• Other schemes are very close together (3-4%)

• Apparently any numbering scheme with some locality gives

about the same performance
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Conclusions

PENNANT is:

• able to reproduce the basic functionality of the much larger

FLAG code

• usable as a testbed for new architectures, programming

models, optimization ideas

• able to do high-level parallelization of unstructured mesh

problems effectively
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Future work

• Implement MPI version of PENNANT

• Test PENNANT in a FLAG-like mode (MPI-only, no chunking)

and compare against other PENNANT versions

• Test more rigorously how well PENNANT can predict FLAG

performance

• Implement MPI+OpenMP, MPI+CUDA versions

• Implement other GPU versions (OpenCL and/or OpenACC)

• Test on Intel MIC (using OpenMP version)

• Test alternate strategies for corner-to-point gathers

(edge-coloring)

• Make PENNANT more widely available for other co-design

efforts
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