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Comprehensive identification and cataloging of copy number variations (CNVs) is required to provide a complete

view of human genetic variation. The resolution of CNV detection in previous experimental designs has been limited

to tens or hundreds of kilobases. Here we present PennCNV, a hidden Markov model (HMM) based approach, for

kilobase-resolution detection of CNVs from Illumina high-density SNP genotyping data. This algorithm incorporates

multiple sources of information, including total signal intensity and allelic intensity ratio at each SNP marker, the

distance between neighboring SNPs, the allele frequency of SNPs, and the pedigree information where available. We

applied PennCNV to genotyping data generated for 112 HapMap individuals; on average, we detected ∼27 CNVs for

each individual with a median size of ∼12 kb. Excluding common rearrangements in lymphoblastoid cell lines, the

fraction of CNVs in offspring not detected in parents (CNV-NDPs) was 3.3%. Our results demonstrate the feasibility

of whole-genome fine-mapping of CNVs via high-density SNP genotyping.

[Supplemental material is available online at www.genome.org. The PennCNV software is available from http://www.

neurogenome.org/cnv/penncnv.]

Copy number variation (CNV) refers to duplication or deletion of

a segment of DNA sequence compared to a reference genome

assembly. Several large-scale studies have reported the presence

of copy number variation in humans, suggesting that CNVs may

account for a significant proportion of human phenotypic varia-

tion, including disease susceptibility (Feuk et al. 2006; Freeman et

al. 2006; Eichler et al. 2007; McCarroll and Altshuler 2007). The

comprehensive identification and cataloging of CNVs would

greatly benefit the genetic and functional analysis of human ge-

nome variation. Results from several in silico studies (Tuzun et al.

2005; Conrad et al. 2006; Khaja et al. 2006; McCarroll et al. 2006)

demonstrate that small-scale CNVs, including those <10 kb, are

common in the human genome. However, previous experimen-

tal studies, performed primarily by microarray Comparative Ge-

nomic Hybridization (array-CGH) techniques, are limited to de-

tection of CNVs of tens or hundreds of kilobases (Iafrate et al.

2004; Ishkanian et al. 2004; Sebat et al. 2004; Fiegler et al. 2006;

Mills et al. 2006; Redon et al. 2006; Carter 2007; Scherer et al.

2007; Wong et al. 2007). Owing to improved resolution and ge-

nome coverage, whole-genome SNP genotyping arrays offer an

alternative and more sensitive method for CNV detection. For

example, a widely used whole-genome SNP genotyping platform,

the Illumina HumanHap550 BeadChip (Gunderson et al. 2005;

Steemers and Gunderson 2007), assays more than half a million

SNPs in parallel (median SNP distance ∼3 kb), permitting kilo-

base-resolution detection of CNVs.

Several technical advantages in the Illumina Infinium plat-

form make it highly suitable for high-resolution CNV detection.

The assay combines specific hybridization of genomic DNA to

arrayed probes with allele-specific primer extension and signal

amplification, thus achieving a high signal-to-noise ratio in

genotype calling (Gunderson et al. 2005). The assay does not

require PCR-based amplification, thus detected signals are less

susceptible to biases caused by differential amplification of given

chromosomal regions. In addition to the total fluorescent inten-

sity signals from both sets of probes/alleles at each SNP (referred

to as the “log R Ratio”), the Illumina platform also allows infer-

ence of the relative ratio of the fluorescent signals between two

probes/alleles at each SNP (referred to as the “B Allele Fre-

quency”). Furthermore, data normalization at each SNP on the

Infinium platform is performed by comparison of signals from a

set of reference samples (e.g., HapMap samples), leading to less

signal variation between SNPs.

Conventional methods for CNV identification on the Illu-

mina platform involve examination of intensity signals (imple-

mented in the LOH-plus module of the BeadStudio software),

which identifies copy number changes by calculating the mode

of B Allele Frequency for SNPs in a sliding window along the

chromosome. While simple to implement, the sliding window

approach has limited and relatively coarse boundary resolution

for detected CNVs. A recently described algorithm, QuantiSNP,

incorporates the log R Ratio and B Allele Frequency simulta-

neously in a hidden Markov model (HMM) framework (Colella et

al. 2007). As demonstrated by simulations and by studies on in-

dividuals with known large aberrations, QuantiSNP significantly

improves the resolution of CNV detection. The development of
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algorithms that both accurately model the signal measures and

integrate more available data (e.g., genotype frequency, family

relationship) can potentially lead to further improvement of

CNV detection.

Here we present an integrated HMM algorithm, called

“PennCNV,” to detect CNVs with high resolution using the Illu-

mina Infinium assay. To better reflect the distribution of the

intensity data, we constructed accurate models for log R Ratio

and B Allele Frequency and developed more realistic models for

state transition between different copy number states. In addi-

tion, PennCNV incorporates the population allele frequency for

each SNP and the distance between adjacent SNPs. Several studies

have demonstrated the heritability of CNVs (Locke et al. 2006;

Redon et al. 2006), suggesting that using information from re-

lated family members can improve the sensitivity for CNV de-

tection and accuracy of boundary mapping. Therefore, we incor-

porated a Bayesian approach into PennCNV to use family infor-

mation for a posteriori CNV validation and CNV boundary

mapping. The accurate prediction of CNV boundaries permits

breakpoint mapping by PCR amplification and resequencing.

The application of PennCNV to a large group of individuals dem-

onstrates the feasibility of whole-genome fine-mapping of CNVs

through high-density SNP genotyping.

Results

The HMM modeling strategy

To develop a strategy for detection of CNVs using the Illumina

Infinium high-density SNP genotyping platform (Peiffer et al.

2006), we used the genotyping data generated on the Human-

Hap550 array for 112 HapMap individuals (16 CEU father–

mother–offspring trios from Utah [CEU], 12 Yoruba trios from

Ibadan, Nigeria [YRI], 28 unrelated Chinese and Japanese indi-

viduals from Beijing and Tokyo, respectively [CHB+JPT]), 300

disease-free children from the Children’s Hospital of Philadel-

phia (CHOP cohort), and 40 trios from an ongoing disease cohort

study (AGRE cohort) (Geschwind et al. 2001). Compared to many

algorithms that use “loss,” “normal,” and “gain” to model CNV

states, we adopted a six-state definition (Colella et al. 2007) for

more precise modeling of CNV events (Table 1). The BeadStudio

software from Illumina displays two summary measures for a

genotype signal at each SNP: the log R Ratio (LRR), a measure of

normalized total signal intensity, and the B Allele Frequency

(BAF), a measure of normalized allelic intensity ratio (Supple-

mental Table 1). To demonstrate the patterns of LRR and BAF in

regions with copy number changes, we plotted these values from

an individual with a 10-Mb four-copy duplication and an adja-

cent 2-Mb three-copy duplication on chromosome 15q (Fig. 1).

The combination of LRR and BAF can be used together to deter-

mine several different copy numbers and to differentiate copy-

neutral LOH (loss of heterozygosity) regions from normal state

regions, supporting the utility of six distinct copy number states

in the modeling strategy.

Table 1. Hidden states, copy numbers, and their descriptions

Copy
no.
state

Total
copy
no.

Description
(for autosome) CNV genotypes

1 0 Deletion of two copies Null
2 1 Deletion of one copy A, B
3 2 Normal state AA, AB, BB
4 2 Copy-neutral with LOH AA, BB
5 3 Single copy duplication AAA, AAB, ABB, BBB
6 4 Double copy duplication AAAA, AAAB, AABB, ABBB,

BBBB

Each state has a different distribution of CNV genotypes.

Figure 1. An illustration of log R Ratio (LRR) and B Allele Freq (BAF) values for the chromosome 15 q-arm of an individual. A normal chromosome
region has three BAF genotype clusters, as represented as AA, AB, and BB genotypes in boxes, and with LRR values centered around zero. The
copy-neutral LOH region has normal LRR values, but without the AB genotype cluster. The increased copy number for a CNV region can be detected
based on an increased number of peaks in the BAF distribution, as well as increased LRR values. The patterns of LRR and BAF for different CNV regions,
normal regions, and copy-neutral LOH regions are distinct from each other, thus the combination of LRR and BAF can be used to generate CNV calls.
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To exploit all available information for each SNP to its full

potential, PennCNV incorporates several components together

into a hidden Markov model (HMM), including the LRR, the BAF,

the distance between neighboring SNPs, and the population fre-

quency of the B allele (Fig. 2). Both the LRR and BAF values can

be displayed and exported from BeadStudio given that there is an

appropriate clustering file with canonical cluster positions for

each SNP. The distance between neighboring SNPs determines

the probability of having a copy number state change between

them. Each SNP has two alleles referred to as the A and B alleles,

thus we use the term “population frequency of B allele” to dif-

ferentiate it from the BAF term that measures allelic intensity

ratio. The values for population frequency of B allele for all SNPs

are compiled from a large set of individuals

with mixed ethnic backgrounds and of nor-

mal phenotypes; the likelihood of the copy

number genotypes for each copy number

state is then determined.

Since the majority of CNVs in off-

spring should be inherited from either par-

ent (Locke et al. 2006), genotype data from

family-based studies provide additional

means for validating and fine-mapping

CNV boundaries. For example, since there

are several possible configurations of CNV

calls in the same region in a father–mother–

offspring trio (Supplemental Fig. 1), inte-

grating the family information could help

identify the most likely configuration. In

our CNV detection procedure (Fig. 2), fam-

ily information is used to jointly update the CNV status of all

family members.

Comparative analysis of CNV detection on HapMap

individuals

We applied PennCNV to genotype data derived from 112 Hap-

Map individuals who had been genotyped by the Illumina Hu-

manHap550 SNP genotyping platform (Table 2). In our initial

analysis, the CNV calls were generated without the use of family

information. We detected slightly more CNVs per individuals in

YRI samples than the CEU and CHB + JPT samples (∼28 vs. ∼22),

whereas the CNV size distributions are similar between popula-

tions (Supplemental Fig. 2). Deletions are approximately twofold

more than duplications, but have smaller size than duplications

(Supplemental Fig. 3). The detected CNVs are dispersed across the

genome, with several regions showing especially high frequency

of CNVs (Supplemental Fig. 4). These include an intergenic re-

gion between HTR1B and IRAK1BP1 (6q14.1), an olfactory recep-

tor gene cluster (OR4C11-OR5L2; 11q11), and a leukocyte immu-

noglobulin-like receptor gene cluster (LILRB3-LILRB5; 19q13.42).

These prevalent CNVs were also reported by several other CNV

publications (Sebat et al. 2004; Tuzun et al. 2005; Conrad et al.

2006; McCarroll et al. 2006; Redon et al. 2006).

Multiple genome-wide studies using array-CGH have shown

that chromosome rearrangements tend to occur in genomic re-

gions exhibiting segmental duplication (Iafrate et al. 2004; Sebat

et al. 2004; Sharp et al. 2005; Locke et al. 2006). However, CNVs

with larger sizes are much more likely to be associated with seg-

mental duplications than shorter CNVs (Tuzun et al. 2005; Con-

rad et al. 2006), thus the role of segmental duplications in gen-

erating CNVs may be overestimated in previous studies (Conrad

and Hurles 2007). We retrieved segmental duplication regions

from the UCSC Genome Browser (Kuhn et al. 2007) and consoli-

dated them into a list of 8546 non-overlapping regions encom-

passing 154 Mb (Bailey et al. 2001). We found that 604/2633

CNVs (30 Mb/125 Mb) in HapMap individuals overlap with these

regions, suggesting that fine-scale CNVs detected by high-density

SNP genotyping arrays are also enriched in regions with segmen-

tal duplications.

To assess the performance of PennCNV, we next compared

the CNV calls in the Illumina HumanHap550 data with those

published in a recent study that examined the global variations

of CNVs using HapMap individuals on two different platforms:

the Whole Genome TilePath array (WGTP) and the Affymetrix

Figure 2. A flowchart outlining the procedure for CNV calling from
genotyping data. The first step for LRR and BAF calculation can be alter-
natively performed by the BeadStudio software, given a clustering file
containing canonical genotype cluster positions. The HMM integrates
several sources of information to give CNV calls. When genotype data are
available for family members, the pedigree information can be incorpo-
rated to model CNV events more accurately.

Table 2. The CNV calling results for 112 HapMap individuals

Mean no.
of CNVs

per sample

Median no.
of CNVs

per sample

Mean
size of

CNVs (kb)

Median
size of

CNVs (kb)

A. CNVs detected on each individual separately

CEU (European population) 21 20 61.2 13.8
YRI (African population) 28 26 31.5 12.6
CHB + JPT (Asian population) 22 20 51.1 14.1

B. CNVs detected on each family jointly

CEU (European population) 25 25 55.8 11.9
YRI (African population) 32 30 30.6 11.5

After using family information, more CNVs with smaller sizes are detected in the CEU and YRI
populations.

High-resolution copy number variation detection
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500K Early Access array (500K_EA) (Redon et al. 2006). The

WGTP platform is an array-CGH technique with 26,574 large-

insert clones covering 93.7% of the euchromatic regions of the

human genome. The Affymetrix 500K_EA platform is another

line of high-density SNP genotyping technology. Comparison of

the average number of CNVs per individual and the mean length

of CNVs indicates that the application of PennCNV on Human-

Hap550 genotyping data detects substantially smaller CNVs than

the other two platforms (Table 3). The improved resolution could

be due to the combination of higher data quality from the Illu-

mina platform and the unique use of integrated information em-

ployed by our PennCNV algorithm. In addition, despite the

larger size of detected CNV regions by the WGTP than the Hu-

manHap550 platform (∼18-fold difference in base counts, 3.6-

fold difference in CNV counts), the overlap of detected CNVs

between the 500K_EA and HumanHap550 platforms is more

than that between the 500K_EA and WGTP platforms (877 vs.

806), indicating that WGTP can only detect larger CNV regions

(Redon et al. 2006).

The use of family information in CNV calling and validation

We believe that the vast majority of CNVs in offspring are inher-

ited from parents (Locke et al. 2006), thus the fraction of CNVs

inferred in offspring but Not Detected in Parents (CNV-NDPs)

can be used as a composite measure of false-positive and false-

negative rates. We therefore examined the fraction of CNV-NDPs

in the HapMap CEU + YRI offspring among CNV calls generated

by the three different platforms.

Firstly, with a strict criterion, we examined whether given

CNVs in offspring could be detected in their parents with iden-

tical boundaries and found that 41.0% (for WGTP), 88.0% (for

Affymetrix 500K_EA), and 47.4% (for Illumina HumanHap550)

of the CNV calls are not inherited from parents, that is, CNV-

NDPs. This criterion favors the WGTP platform because of sub-

stantially fewer probes. We next applied a relaxed evaluation

criterion, by requiring that more than half of the base pairs in the

offspring CNV must overlap with a parental CNV or vice versa.

With this criterion, 27.1%, 20.4%, and 25.2% of offspring CNVs

from the WGTP, 500K_EA, and HumanHap550 platforms are

CNV-NDPs, respectively. Our comparative

analysis indicates that false-positive or false-

negative calls are highly prevalent in CNV

detection algorithms regardless of platform

or evaluation criteria and implicates the im-

portance of using Mendelian inheritance

for validation of CNV calling results and for

accurate detection of CNV calls.

The PennCNV algorithm applied to

data from the Illumina HumanHap550 plat-

form allows detection of a large number of

small-scale CNVs (median size: 13 kb, in

comparison to 204 kb for the WGTP plat-

form and 81 kb for the 500K_EA platform).

To assess the effect of CNV length on calling

accuracy, we analyzed a subset of larger

CNVs, those containing >10 SNPs (median

size: 69 kb), detected by the PennCNV algo-

rithm. We found that 17.7% of offspring

CNVs are CNV-NDPs with relaxed criteria,

indicating that CNV-NDPs are mainly

small-size CNVs. In addition, half of the

CNV-NDPs actually fall within immunoglobulin regions (see be-

low), thus ∼9% of CNV-NDPs can be explained by false-positive

calls in offspring, false-negative calls in parents, or de novo

CNVs.

We next examined the performance of PennCNV by incor-

porating family information into the calling algorithm (Table 2).

After using family information, the total number of CNV calls is

increased for HapMap CEU + YRI offspring (from 624 to 752) and

for parents (from 1393 to 1619), indicating more sensitive CNV

detection. In addition, 8.4% offspring CNVs are CNV-NDPs using

the strict criterion, while 4.3% offspring CNVs are CNV-NDPs

using the relaxed criterion, indicating significant reduction of

CNV-NDPs after application of family information (Supplemen-

tal Fig. 5). Assuming that the vast majority of offspring CNVs are

inherited from parents, we can use family-based CNV calls as a

reference set to give an indirect estimate of false-positive and

sensitivity measures of PennCNV in the absence of family data:

618 out of 624 offspring CNVs detected without the use of family

information are also detected by family-based PennCNV, indi-

cating a false-positive rate of 1.0% and a sensitivity of 82.2%.

Similarly, using parental CNV data, we estimate that the false-

positive rate is 0.2% and the sensitivity is 86%. We caution that

these measures are indirect measures of algorithm performance

and may be biased by the underlying assumption. Overall

our analysis indicates that the use of family information signifi-

cantly improves the sensitivity of CNV detection and reduces

CNV-NDPs.

To examine whether our results from the HapMap individu-

als would apply to other study cohorts, we analyzed 40 addi-

tional trios from another ongoing study (AGRE cohort). Similar

to the results on the HapMap cohort, the use of family informa-

tion leads to a 24% increase of the number of CNV calls in off-

spring, and a 22% increase of CNV calls in parents. After using

family information, the fraction of CNV-NDPs decreases from

55% to 10.1% using the strict criterion and decreases from 36%

to 5.8% using the relaxed criterion. Comparing CNV calls gen-

erated with and without family information by PennCNV, we

estimate that the false-positive rate is 0.8% and the sensitivity is

81.1%. Therefore, results from analysis of the AGRE cohort are in

concordance with those of the HapMap individuals.

Table 3. A comparison of the number and size of CNVs in 112 HapMap individuals
detected by three different technical platforms

Technical
platform

Mean no.
of CNVs

per sample

Median no.
of CNVs

per sample

Mean
size of

CNVs (kb)

Median
size of

CNVs (kb)

WGTP 84 83 239 204
500K_EA 24 24 206 81
HumanHap550 24 22 47.5 13.3

Total CNV calls
(total CNV size)

CNV calls
overlapping

with
WGTP calls

CNV calls
overlapping

with
500K_EA calls

CNV calls
overlapping

with
HumanHap550

calls

WGTP 9408 (2.3 Gb) — 1037 392
500K_EA 2690 (564 Mb) 806 — 877
HumanHap550 2633 (125 Mb) 380 883 —

The PennCNV algorithm is used on the HumanHap550 platform without the use of family infor-
mation.
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The use of family information in CNV characterization

The use of family information may also lead to better character-

ization of CNV-NDPs caused by somatic rearrangements or rear-

rangements in cell lines. The HapMap cohort and the AGRE co-

hort used in our study were genotyped using DNA extracted from

Epstein-Barr Virus (EBV)-transformed lymphoblastoid cell lines.

Recently, studies on cell-line DNA revealed high frequencies of

chromosome rearrangements in several immunoglobulin regions

(Simon-Sanchez et al. 2007; Wong et al. 2007). To address this

issue, we compared CNVs from the HapMap cohort and the

AGRE cohort with CNVs from 300 disease-free children whose

DNA was isolated from whole blood. We found that three im-

munoglobulin regions, including IGLC1 (22q11.22, ∼800 kb),

IGHA1 (14q32.33, ∼1 Mb), and the surrounding region of IGKC

(2p11.2, ∼1 Mb) have elevated frequencies of CNVs in cell lines

compared to whole blood (Table 4). In addition, we found that

22.6% of CNV-NDPs in HapMap offspring and 10.3% of CNV-

NDPs in AGRE offspring fall within immunoglobulin regions.

Therefore, the use of whole-blood samples, together with avail-

able family information, confirmed that the high frequency of

chromosome rearrangements in immunoglobulin regions is a

bona fide cell-line-specific phenomenon. To search for addi-

tional chromosome regions likely to be affected by non-germline

copy number changes, we analyzed whether CNV-NDPs in cell

line samples form frequently occurring clusters. This analysis al-

lowed the identification of an additional locus, the T-cell alpha-

chain constant region (14q11.2), which is likely to harbor CNV-

NDPs. Excluding CNVs in immunoglobulin regions, the actual

fraction of CNV-NDPs among all CNVs in HapMap offspring is

3.3%, indicating the high heritability of CNVs. Furthermore, ex-

amination of CNVs detected in cell lines also revealed prevalent

heterosomic deletions or duplications (chromosome aberrations

in subpopulations of cells). For example, regions with heteroso-

mic deletions show decreased total signal intensity, but the alle-

lic intensity ratio is manifested as chromosome trisomy (Supple-

mental Fig. 6). We found that these cell-batch-specific events

usually occur throughout the entire chromosome or entire arm,

especially on chromosomes X, 2, and 12 (Supplemental Fig. 7),

which were also reported to form aneuploidy in other cell-line

studies (Risin et al. 1992, 1993; Aardema et al. 1997; Locke et al.

2006). Thus, our analysis indicates that CNV detection algo-

rithms based only on signal intensity can be misleading, and that

genotype data on cell lines should be interpreted with caution.

Family information can be also used to extract more bio-

logical knowledge from detected CNVs, such as inferring the pa-

rental origin of predicted de novo CNVs. To illustrate this, con-

sider a scenario in which the father and mother genotypes at a

SNP marker are AA and AB, respectively, and the PennCNV al-

gorithm identified a de novo deletion in the offspring encom-

passing this SNP. If the offspring genotype call is BB (or when B

Allele Frequency indicates that the actual genotype is B in the

presence of the “No Call” genotype), we can infer that the de

novo event happened on the paternal chromosome. Similarly,

when the father, mother, and offspring genotypes are AA, BB,

and AA, respectively, we can infer that the de novo event hap-

pened on the maternal chromosome. We illustrate this idea using

a de novo CNV (located at 3p26, with 50 SNPs encompassing 97

kb) detected by the family-based PennCNV algorithm in the

AGRE cohort (Supplemental Table 2). By manually examining

the B Allele Frequency values for 50 SNPs within the CNV region

in all family members (13 SNPs are informative for this analysis),

we were able to unambiguously determine that the de novo

event occurred on the paternal chromosome. In addition, the

fact that 13/50 SNPs have Mendelian inconsistency and that all

13 SNPs support the paternal origin of the de novo event provides

an additional level of validation for the predicted de novo CNV.

Identification of CNV breakpoints

Experimental validation and precise mapping of CNV break-

points represent an important aspect when predicting functional

consequences of detected rearrangements. The high density of

SNPs in the array, together with the high accuracy of CNV

boundary prediction, permits selection of PCR primers for am-

plification of sequences around breakpoints. Figures 3 and 4 il-

lustrate the computational prediction and experimental map-

ping of deletion breakpoints for three intronic CNVs (predicted

size: ∼700 bp, ∼1 kb, and ∼4 kb; actual size: ∼1.4 kb, ∼3 kb, and ∼9

kb) identified within FBXL7, EYA1, and CTDSPL, respectively.

These CNVs have high prevalence (>5%) in the HapMap cohort

or in the AGRE cohort, and their predicted boundaries encom-

pass or map close to conserved genomic elements (Fig. 4). We

note that the CNV within FBXL7 was previously reported as 1.5 kb

by Hinds et al. (2006) and as 132 kb by Redon et al. (2006), the

CNV within EYA1 was previously reported as 3.2 kb by Hinds et

al. (2006), and the CNV within CTDSPL was previously reported

as 19 kb by Conrad et al. (2006) and 273 kb by Redon et al.

(2006). Selection of PCR primers located just upstream and

downstream of SNPs adjacent to the deletion in FBXL7 validated

and confirmed the actual size of the CNV (Fig. 4A). PCR primer

walking using one forward primer and two reverse primers out-

side of the deleted region in EYA1 mapped the breakpoint to an

∼700-bp genomic region between two reverse primers (Fig. 4B).

PCR primer walking using one forward primer and three reverse

primers outside the deleted region in CTDSPL mapped the break-

point to an ∼1.2-kb genomic region between the forward primer

and the closest reverse primer (Fig. 4C). Resequencing and BLAT

alignment (Kent 2002) identified the exact breakpoints for these

CNVs. In principle, similar approaches may be applied to larger

Table 4. Immunoglobulin-related genomic regions that show elevated frequencies of CNVs in cell
line samples (HapMap cohort and AGRE cohort) compared to whole-blood samples

CNV
cytogenetic
location

CNV prevalence
in HapMap

founders

CNV prevalence
in AGRE
parents

CNV prevalence
in whole-blood

samples Gene

22q11.22 32.1% 35.0% 0.9% Ig light chain constant region
14q32.33 20.2% 22.5% 3.2% Ig heavy chain constant region
2p11.2 10.7% 6.3% 6.6% Ig kappa chain constant region

The increased prevalence of CNVs surrounding IGKC is less obvious, mainly because of low coverage of SNP
markers in this region.

High-resolution copy number variation detection
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deletion or duplication regions, if the outmost SNPs within a

CNV are accurately predicted by a CNV-calling algorithm.

Discussion

We developed a HMM-based algorithm for kilobase-resolution

detection of CNVs using whole-genome SNP genotyping data.

Comparison with previously published CNV calls generated on

the same HapMap individuals indicates that our algorithm is

capable of identifying fine-scale genetic structure of CNVs with a

median size of ∼12 kb, which is an order

of magnitude smaller than previous ex-

perimental studies but concurs with sev-

eral in silico studies (Conrad et al. 2006;

McCarroll et al. 2006). PCR and rese-

quencing techniques were used to iden-

tify the exact breakpoints for several

common CNVs. Our results demonstrate

the feasibility of whole-genome fine-

mapping of CNVs using high-density

SNP genotyping technology.

The key to the performance of a

CNV-calling algorithm is the ability to

exploit all sources of available informa-

tion to their full potential. Compared to

the BeadStudio LOH-plus algorithm (Il-

lumina) and the QuantiSNP algorithm

(Colella et al. 2007), there are several ad-

vantages in the implementation of

PennCNV. First, we used state-specific

and distance-dependent transition prob-

abilities in the HMM state-transition

matrix, which takes into account that

some state transition events (e.g., from

normal state to one-copy deletion) are

more likely than others (e.g., from one-

copy deletion to one-copy duplication).

Second, rather than treating the B Allele

Frequency (BAF) with an arbitrary con-

tinuous distribution, we followed the Il-

lumina BAF calculation procedure and

appropriately modeled the “boundary

truncation” event for BAF inference.

Third, we indexed the CNV genotype

frequency by the population frequency

of the B allele estimated from a large ref-

erence population, which allows more

accurate modeling of the likelihood of

copy number genotypes. Fourth, for

family-based genetic studies, we incor-

porated family information to jointly

validate and re-call CNVs for related

family members. To our knowledge, this

is the first time that family relationship

is used in CNV calling. Our results dem-

onstrate that by incorporating family re-

lationship a posteriori, the accuracy of

CNV calls can be improved. In addition,

although currently the PennCNV algo-

rithm only generates total CNV geno-

types (e.g., a CNV genotype of ABBB for

a four-copy duplication), the use of fam-

ily information may lead to a probabilistic model that separates

total CNV genotypes into chromosome-specific CNV calls (e.g., a

CNV genotype of AB in one chromosome and BB in another

chromosome).

Although the PennCNV algorithm was developed specifi-

cally for data generated on the Illumina Infinium platform, it

could be extended to other similar SNP genotyping platforms.

There are several unique features of the Illumina data processing

procedure, including the use of a group of reference samples

(rather than a single reference sample) for SNP-specific signal

Figure 3. (A) A predicted ∼700-bp CNV within an intronic region of the FBXL7 gene; (B) a predicted
∼1-kb CNV within an intronic region of the EYA1 gene; and (C) a predicted ∼4-kb CNV within an
intronic region of the CTDSPL gene are inherited from parent to offspring. The scatterplots for log R
Ratio and B Allele Frequency are shown for the father, mother, and offspring; (red dots) the SNPs within
the CNVs. The presence of CNVs and their copy numbers are validated by PCR amplification of the
region encompassing breakpoints for FBXL7 and EYA1, or by PCR primer walking for CTDSPL (see Fig.
4 for more detail on primer locations).
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adjustments and the use of “B Allele Frequency” for allelic inten-

sity ratio calculation. These treatments reduce the variances of

signal measures across SNPs, and make different markers more

comparable to each other. In addition, these treatments also al-

low detection and modeling of various CNV events, such as het-

erosomic chromosome deletions and copy-neutral LOH. There-

fore, when allele-specific signal data from a large group of refer-

ence samples are available for other genotyping platforms, it is

desirable to generate similar measures as

the Illumina platform, which can then

be directly analyzed by PennCNV.

Our modeling procedure treats each

SNP position as equally likely to be

within a CNV region. However, different

SNPs have different prior probability

based on whether they are located

within a common CNV region, thus

these prior probabilities can be poten-

tially used to improve the prediction al-

gorithm. The prior probabilities for all

SNPs can be estimated from a large set of

reference samples and can then be used

to construct SNP-specific state transition

matrices. Alternatively, an improved al-

gorithm can take into account the fact

that some chromosomes have more

CNVs than others, or that the centro-

meric and telomeric regions tend to

have more CNVs (Nguyen et al. 2006).

In this case, rather than relying on a

single HMM model for all chromosomes,

the use of chromosome-specific and re-

gion-specific HMM models may detect

CNVs with higher sensitivity.

There are several limitations for in-

terpreting CNV-calling data from Illu-

mina high-density SNP genotyping ar-

rays. These arrays were constructed us-

ing HapMap data and contain primarily

tag SNPs (Steemers and Gunderson

2007). The use of linkage disequilibrium

information in designing the genotyp-

ing array suggests that SNPs are not uni-

formly distributed; thus some small

CNVs may be completely missed by the

array if they are located within two

neighboring SNPs far apart. In addition,

the current HumanHap550 array has no

SNP coverage in several heterochroma-

tin regions, including centromeric re-

gions. Furthermore, SNPs within com-

mon CNVs may be under-represented in

the array, since they are more likely to

violate Hardy-Weinberg equilibrium

and may be excluded during array de-

sign. Finally, the accuracy of SNP geno-

typing depends on the quality of a clus-

tering file that specifies the R and � val-

ues for canonical genotype clusters.

However, the batch-specific manufactur-

ing process and scanning process of ar-

rays, as well as the modification of lab

protocols (including reagents) for array experiments, will lead to

changes of R and � values for many SNPs. In these cases, the

clustering file is no longer accurate for some SNPs and is subject

to regional variations, generating artificial signals of CNVs in

some regions. (We note that array-CGH platforms and other SNP

genotyping platforms are also susceptible to this problem.) For

the reasons described above, we caution that despite the higher

resolution of SNP genotyping arrays in detecting CNVs, different

Figure 4. UCSC Genome Browser (Kuhn et al. 2007) shots of the CNVs within the FBXL7 (A), EYA1

(B), and CTDSPL (C) genes, as well as the location of SNPs and PCR primers. The predicted CNV regions
with (gray solid boxes) deletion of one copy or (black solid boxes) deletion of two copies on the “CNV
calls” track; the actual CNV breakpoints identified by resequencing are shown in the “BLAT Search”
track. For the CNV within FBXL7, a pair of PCR primers (P1 and P2) is able to generate two PCR
products, thus resequencing of shorter PCR products identifies the CNV breakpoint. For the CNV
within EYA1, the primer pair P1–P2, but not P1–P3, generates two PCR products, indicating that the
breakpoint is between P2 and P3; thus resequencing by P2 identifies the exact breakpoint. For the CNV
within CTDSPL, the primer pairs P1–P2, P1–P3, and P1–P4 all generate two PCR products, indicating
that the breakpoint is between P1 and P4; thus resequencing of the shortest PCR product in Figure 3C
by P1 and P4 from both ends identifies the breakpoint. These examples illustrate that the combined
PCR-resequencing approach can pinpoint the exact location of predicted CNVs in the human genome.
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techniques can validate and complement each other to achieve

the most accurate CNV calls.

In conclusion, our study demonstrates the feasibility of ge-

nome-wide CNV fine-mapping via high-density SNP genotyping

technology. With the accumulation of high-density SNP geno-

typing data on many more individuals, we are compiling a large

set of common CNVs in the human genome across populations,

and we plan to fine-map the breakpoints for many of them, es-

pecially those predicted to be functionally important. This col-

lection of common CNVs would be essential in completing the

map of human genetic variation and would greatly advance our

basic understanding of the dynamic human genome.

Methods

Inference of log R Ratio (LRR) and B Allele Frequency (BAF)

For each SNP, its two alleles are referred to as the A and B alleles

using a set of specific naming rules (see http://www.illumina.

com/downloads/TopBot_TechNote.pdf). The raw signal intensity

values measured for the A and B alleles are then subject to a

five-step normalization procedure using the signal intensity of all

SNPs (see Illumina white paper at https://icom.illumina.com/

icom/software.ilmn). This procedure produces the X and Y values
for each SNP, representing the experiment-wide normalized sig-

nal intensity on the A and B alleles, respectively. Two additional

measures are then calculated for each SNP, where R = X + Y refers
to the total signal intensity, and � = arctan(Y/X)/(�/2) refers to

the relative allelic signal intensity ratio.

As a normalized measure of total signal intensity, the log
R Ratio (LRR) value for each SNP is then calculated as

LRR = log2(Robserved/Rexpected), where Rexpected is computed from

linear interpolation of canonical genotype clusters (Peiffer et al.

2006). The B Allele Frequency (BAF) is a somewhat confusing

term that actually refers to a normalized measure of relative sig-

nal intensity ratio of the B and A alleles:

BAF = �
0, if � < �AA

0.5�� − �AA����AB − �AA�, if � � � < �AB

0.5 + 0.5�� − �AB����BB − �AB�, if �AB � � < �BB

1, if � � �BB

(1)

where �AA, �AB, and �BB are the � values for three canonical geno-

type clusters generated from a large set of reference samples. The

transformation from � to BAF values adjusts for different chemi-
cal characteristics of each SNP so that values for different SNPs

are more comparable to each other.

Hidden Markov model for CNV detection

The Hidden Markov Model (HMM) is a statistical technique that
models a Markov process, where the probability of observing a
particular state at a particular time point only depends on the
states at previous time points. HMM provides a natural statistical
framework for modeling dependence structures between copy
numbers at nearby SNPs. To detect CNVs, we used the first-order
HMM that assumes that the hidden copy number state at each
SNP depends only on the copy number state of the most preced-
ing SNP.

Let {ri, bi, zi} denote the log R ratio, B allele frequency, and
copy number state at SNP i (1 � i � M), respectively. The likeli-

hood of the observed data is

P�r1, . . . , rM, b1, . . . , bM� =

�
z1

. . . �
zM

P�r1, . . . , rM, b1, . . . , bM |z1, . . . ,zM� P�z1, . . . , zM�

(2)

Assuming that the values of log R ratio and B allele frequency are
independent given the hidden copy number state, then

P�r1, . . . , rM, b1, . . . , bM� = �
z1

. . .�
zM

���
i=1

M

P�ri|zi�P�bi|zi��
�P�z1��

i=2

M

P�zi|zi−1��� (3)

The challenge of the HMM lies in the inference of the hidden
copy number states of each SNP, given the observed signal in-
tensity values, as represented by LRR and BAF, and other avail-
able information. Below, we describe elements needed in the
HMM calculation.

Hidden copy number states

We adopted the same definition of hidden copy number states as
described in QuantiSNP (Colella et al. 2007) (Table 1). Compared
to HMM implementations that only consider three states (loss,
normal, and gain), we believe that the six-state definition is bio-
logically more plausible yet still computationally feasible.

Emission probability of log R ratio

Given each hidden copy number state, the emission probability
of the log R ratio is modeled as a mixture of uniform and normal
distributions,

P�r |z� = �r + �1 − �r���r; µr,z, sr,z� (4)

where (��;�) is the density function of a normal distribution with

mean µr,z and standard deviation sr,z. Here the uniform distribu-

tion is used to model both random fluctuation of signal measures
in chemical assays and the possible genome misannotation and
misassembly.

Emission probability of B allele frequency

The emission probability of BAF is slightly more complicated

than the LRR. For each hidden state (except state 1), there are

multiple possible genotypes with distinct patterns of B Allele Fre-

quency (Table 1; Supplemental Table 1). Owing to the truncation

procedure used in Equation 1 for BAF calculation, we treated two

different scenarios separately: (1) when the BAF value is between

0 and 1, its distribution is modeled as a normal mixture; (2) when

the BAF value is 0 or 1, its distribution is modeled by a mixture of

point mass at 0 (denoted by M0) or 1 (denoted by M1) and trun-
cated normal. Let K(z) denote the number of genotypes for copy

number state z; then the emission probability of the B allele

frequency can be written as

P�b|z� = �b + �1 − �b� �
g=2

K�z�−1

BN�g − 1; K�z� − 1, pB���b; µb,g, sb,g�

+ �1 − �b�BN�0; K�z� − 1, pB��I�b=0	M0

+ I�0<b<1	��b; µb,1, sb,1�� + �1 − �b�BN�K�z� − 1; K�z� − 1, pB�

�I�b=1	M1 + I�0<b<1	��b; µb,K�z�, sb,K�z��� (5)

where

BN�g − 1; K�z� − 1, pB� = �K�z� − 1
g − 1 �pB

g−1
�1 − pB�

K�z�−g

is the frequency for a genotype with g copies of allele B, and pB is

the population frequency of B allele, which can be estimated
from a large set of reference samples.
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Specific treatment for chromosome X

The modeling and interpretation of LRR and BAF values for chro-
mosome X (chrX) need special treatment. We adjust the level of
LRR for all SNPs in chrX by subtracting a constant so that the
average LRR value is either zero (for female) or the expected LRR
value of single-copy deletion (for male). For chrX in males, the
normal copy number is 1 (state 2 in HMM).

Transition probabilities of hidden states

The transition probability describes the probability of having a

copy number state change between two adjacent SNPs. Intu-

itively, the copy number state is unlikely to change for SNPs that

are nearby but is more likely to change for SNPs that are far apart.

To appropriately model the dependency of transition probabili-

ties on SNP distances, we used a modified version of a previously

described state transition matrix (Marioni et al. 2006). Let zi–l and

zi denote the copy number states at two adjacent SNPs i � 1 and

i, respectively, and let di denote the distance between them. The

transition probability is modeled as

P�zi = l|zi−1 = j� = �1 − �
k=2

6

pj,k−1�1 − e−di�D�, if l = j

pj.,l−1�1 − e−di�D�, if l�j

(6)

where D is a constant that was set as 100 Mb for state 4 and 100 kb
for other states. The values of p are treated as unknown parameters

and estimated in the Baum-Welch algorithm (Baum et al. 1970).

Parameter estimation and CNV calling

The initial model parameters for the HMM were estimated em-

pirically from several large CNV regions, through manually ex-

amining the BeadStudio Genome Viewer for a set of genotyped

individuals. We have found that the exponential of LRR increases

approximately linearly with the copy number; therefore the ex-

pected LRR values at each given copy number state can be esti-

mated from observed large CNV regions from a large set of train-

ing samples via simple linear interpolation. This also indicates

that deletions should be easier to detect than duplications, as the

deviation of LRR from zero for deletions is more than that for

duplications. In addition, the duplications with four or more

copies would be virtually indistinguishable, thus the maximum

copy number is set as 4 in PennCNV. To optimize the HMM

parameters, we relied on the Baum-Welch algorithm (Baum et al.

1970) for training the model to maximize the likelihood of the

observed data for each individual, and then used the Viterbi al-

gorithm (Viterbi 1967) to infer the most likely path (state se-

quences for all SNPs along each chromosome). A CNV is called

from the most likely state sequence whenever a stretch of states

that is different from the normal state (state 3 and state 4 for

autosomes, state 2 for male chrX) is observed. In our analysis, we

excluded all CNVs that contain �2 SNPs, because these CNVs are

more likely to contain a high fraction of false positives.

A posteriori CNV validation using family information

Family information can potentially help eliminate CNVs that are

incompatible with Mendelian inheritance and improve the ac-

curacy of CNV calling and boundary prediction. To incorporate

the family information a posteriori into PennCNV, we analyti-

cally derived a set of three 5 � 5 � 5 CNV inheritance matrices,
for autosomes, male chromosome X, and female chromosome X,

respectively (Supplemental Tables 3–5). In these matrices, state 4

(copy-neutral LOH) is combined with state 3 (normal copy num-

ber), because they are more likely to be caused by cell-line arti-

facts. Construction of the CNV inheritance matrices requires a

priori specification of a parameter e that determines the likeli-

hood of having a de novo CNV event, and we used 0.01 in the

present study.

Let �̂ denote all HMM parameters. Given a CNV region, let
bf, bm, and bo denote the vectors of B allele frequencies of the

father, mother, and offspring, respectively, for all M SNPs in the

region. Similarly, let rf, rm, and ro denote the vectors of log R
Ratios for all SNPs, and let zf, zm, and zo denote the copy number

states of the trio in the region. Using the Bayes rule, we can then

calculate the posterior probability of the copy number states for

the trio. When the parent(s) and the offspring have the same

CNV breakpoints, or when only one individual in the trio has a

CNV call, the posterior probability for the trio states can be cal-

culated by

P�zf, zm, zo|bf, bm, bo, rf, rm, ro, �̂� = �
j=1

M

�
g∈�o,f,m	

P�bg,j|zg, �̂�P�rg,j|zg, �̂�

× P�zo|zf, zm�P�zf |�̂�P�zm|�̂� (7)

where P(zo|zf, zm) is the inheritance probability in the CNV in-
heritance matrices, and P(zf | �̂) and P(zm| �̂) are the initial prob-

abilities of copy number states in the CNV region. The most

likely a posteriori trio state combination is then selected from the

125 scenarios.

Since we initially analyze the parents and the offspring sepa-

rately, it is possible that they have different CNV boundaries

(Supplemental Fig. 1). In this situation, we can partition the en-

tire combined CNV region into several smaller blocks. For ex-

ample, for the scenario in the second row and the second column

in Supplemental Figure 1 that contains three blocks, the posterior

probability of the trio state is

P�zf,i,zm,izo,izf,i+1,zm,i+1,zo,i+1zf,i+2,zm,i+2,zo,i+2|�̂�

= �
k=1

2

P�zo,i+k|zf,i+k−1,zm,i+k−1,zo,i+k−1zf,i+k,zm,i+k,�̂�

× �
k=1

2

P�zf,i+k|zf,i+k−1,�̂�P�zm,i+k|zm,i+k−1,�̂�

× P�zo,i|zf.i,zm,i�P�zf,i|�̂�P�zm,i|�̂�. (8)

The posterior probabilities for other scenarios can be similarly

derived. In practice, rather than enumerating the tens of thou-

sands of scenarios to determine the most likely a posteriori sce-

nario, we used a family-based HMM for joint CNV-calling

(Supplemental Fig. 8). In the HMM, each node denotes the copy

number states for a trio at a block, and the most likely path of

state combinations is called via the Viterbi algorithm.
All CNVs used in this study are detected using the human

May 2004 genome assembly as the reference genome assem-

bly. The PennCNV software is available from http://www.

neurogenome.org/cnv/penncnv. Several support programs for

processing raw genotyping data and for functionally annotating

CNVs are also included. The CNV calls are publicly available for

downloading from the Web site. In addition, we provide custom-

made tracks for visualizing CNVs in the UCSC Genome Browser.
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